1
|
Zhong G, Liu Q, Wang Q, Qiu H, Li H, Xu T. Fully integrated microneedle biosensor array for wearable multiplexed fitness biomarkers monitoring. Biosens Bioelectron 2024; 265:116697. [PMID: 39182414 DOI: 10.1016/j.bios.2024.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Fitness monitoring has become increasingly important in modern lifestyles; the current fitness monitoring always relies on physical sensors, making it challenging to detect pertinent issues at a deeper level when exercising. Here, we report a fully integrated wearable microneedle sensor that simultaneously measures fitness related biomarkers (e.g., glucose, lactate, and alcohol) during physical exercise. Such a sensor integrates a biocompatible 3D-printed microneedle array that can comfortably access skin interstitial fluid and a small circuit for signal processing and calibration, and wireless communication. The microneedle array features good biocompatibility and highly sensitive biochemical sensors that can detect even the slightest variations within the biomarkers of this fluid. On-body experimental results indicate that such a sensor can monitor fitness-related biomarkers across multiple subjects and support multi-day monitoring, with results showing a good correlation with commercial devices. The data was transmitted to a smartphone via Bluetooth and uploaded to cloud platforms for further health assessment. This study has the potential to boost intelligent wearable devices in sports health.
Collapse
Affiliation(s)
- Geng Zhong
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Qingzhou Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, PR China.
| | - Qiyu Wang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Haoji Qiu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Hanlin Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Tailin Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
2
|
He R, Chen L, Chu P, Gao P, Wang J. Recent advances in nonenzymatic electrochemical biosensors for sports biomarkers: focusing on antibodies, aptamers and molecularly imprinted polymers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6079-6097. [PMID: 39212159 DOI: 10.1039/d4ay01002g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nonenzymatic electrochemical biosensors, renowned for their high sensitivity, multi-target analysis capabilities, and miniaturized integration, align well with the requirements of non-invasive, multi-index integrated, continuous monitoring, and user-friendly wearable biosensors in sports science. In the past three years, novel strategies targeting specific responses to sports biomarkers have opened new avenues for applications in sports science. However, these advancements also pose challenges in achieving adequate sensitivity and specificity for online analysis of complex sweat bio-samples. Our article focuses on three key nonenzymatic electrochemical biosensing strategies: antigen-antibody reactions, nucleic acid aptamer recognition, and molecular imprinting capture. We delve into strategies to enhance specificity and sensitivity in the application of biosensors in sports science, including shortening signal transduction paths through built-in signal probes, increasing reaction sites through increased surface area and the introduction of nanostructures, multi-target analyses, and microfluidic techniques.
Collapse
Affiliation(s)
- Rui He
- Physical Education Department, Wuhan University, No. 299 Bayi Road, Wuchang District, Wuhan City, Hubei province, People's Republic of China
| | - Long Chen
- School of Physical Education and Equestrian, Wuhan Business University, No. 816 Dongfeng Avenue, Wuhan Economic and Technological Development Zone, Hubei Province, People's Republic of China
| | - Pengfei Chu
- School of Sports Science and Physical Education, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Pengcheng Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Junjie Wang
- School of Sports Science and Physical Education, China University of Geosciences, Wuhan 430074, People's Republic of China.
| |
Collapse
|
3
|
Chen B, Wang D, Wei S, Wang J. Portable electrochemical aptasensor for highly sensitive detection of 3,3',4,4'-tetrachlorobiphenyl. Biosens Bioelectron 2024; 260:116434. [PMID: 38810414 DOI: 10.1016/j.bios.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Aptamer-based electrochemical sensors are frequently used as independent, surface-functionalized, passive electrodes. However, their sensitivity and detection limits become limited, particularly when the electrode area is reduced to facilitate miniaturization. A mobile phone-based microfluidic electrochemical aptamer sensing platform for 3,3',4,4'-tetrachlorobiphenyl (PCB77) detection was developed in this work. This aptamer sensor utilized Exonuclease I (Exo I) and DNA/AuNPs/horseradish peroxidase (DNA/AuNPs/HRP) nanoprobes as a merged signal amplification method, which resulted in an increase in the electrochemical sensing performance. Sensitive detection of PCB77 was accomplished by functionalizing the hierarchically structured Au@MoS2/CNTs/GO modified working/sensing electrode with the specific aptamer. The aptamer sensor was tested with different concentrations of PCB77 within the microfluidic platform. Afterward, the differential pulse voltammograms were recorded using a wireless integrated circuit device. Subsequently, the collected data was transmitted to a smartphone using Bluetooth communication. A detection limit of 0.0085 ng/L was obtained for PCB77 detection, with a detection range from 0.1 to 1000 ng/L. In addition, the detection of PCB77 in spiked water samples validated the possibility of using this aptamer sensor in a real environment, and the aptamer sensor demonstrated high selectivity in distinguishing PCB77 from other potential interfering species. The merging of electrochemical aptamer sensors with purposefully engineered microfluidic and integrated devices in this study is a novel and promising method that provides a dependable platform for on-site applications.
Collapse
Affiliation(s)
- Beibei Chen
- Shanghai Key Laboratory of Materials Protection and Adv. Mater. in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Dou Wang
- Shanghai Key Laboratory of Materials Protection and Adv. Mater. in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Shusheng Wei
- Shanghai Key Laboratory of Materials Protection and Adv. Mater. in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Juan Wang
- Shanghai Key Laboratory of Materials Protection and Adv. Mater. in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China.
| |
Collapse
|
4
|
Quan Z, Chen Z, Li H, Sun S, Xu Y. A hydrogel sensor based on cellulose nanofiber/polyvinyl alcohol with colorimetric-fluorescent bimodality for non-invasive detection of urea in sweat. Int J Biol Macromol 2024; 276:133760. [PMID: 39013510 DOI: 10.1016/j.ijbiomac.2024.133760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
The concentration of urea in sweat serves as a valuable indicator of an individual's overall health. In this study, we present a novel hydrogel sensor (BAF-CPu), based on cellulose nanofiber and polyvinyl alcohol, designed to achieve non-invasive in situ and highly sensitive detection of urea in sweat by combining the dual-mode response of colorimetric and ratiometric fluorescence techniques. The bright red fluorescent gold‑copper bimetallic nanoclusters and green fluorescent fluorescein isothiocyanate-modified cellulose nanofibers endowed BAF-CPu with proportional fluorescence responsive properties. Under the catalytic action of urease, the hydrolysis of urea raises the pH, resulting in diminished red fluorescence along with enhanced green fluorescence, and the fluorescence color of BAF-CPu changes from red to green. Moreover, BAF-CPu hydrogel encapsulates pH-responsive bromothymol blue (BTB), which changes from yellow to blue in the presence of urea. Importantly, BAF-CPu absorbs sweat by adhering directly to the skin surface, avoiding the complicated sampling process and improving the maneuverability of the detection process. With both ratiometric fluorescence and colorimetric modes, BAF-CPu is not only able to detect sweat in situ, but also can reduce the interference of the complex sweat environment on the urea detection, and realize the high sensitivity detection of urea in sweat.
Collapse
Affiliation(s)
- Zongyan Quan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiping Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Liu S, Huo Y, Yin S, Chen C, Shi T, Mi W, Hu Z, Gao Z. A smartphone-based fluorescent biosensor with metal-organic framework biocomposites and cotton swabs for the rapid determination of tetrodotoxin in seafood. Anal Chim Acta 2024; 1311:342738. [PMID: 38816159 DOI: 10.1016/j.aca.2024.342738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Tetrodotoxin (TTX) is a potent neurovirulent marine biotoxin that is present in puffer fish and certain marine animals. It is capable of causing severe neurotoxic symptoms and even death when consumed through contaminated seafood. Due to its high toxicity, developing an effective assay for TTX determination in seafood has significant benefits for food safety and human health. Currently, it remains challenging to achieve on-site determination of TTX in seafood. To facilitate mass on-site assays, more affordable technologies utilizing accessible equipment that require no skilled personnel are needed. RESULTS A smartphone-based portable fluorescent biosensor is proposed for TTX determination by using metal-organic framework (MOF) biocomposites and cotton swabs. Oriented antibody (Ab)-decorated and fluorescent quantum dot (QD)-loaded MOF biocomposites (QD@MOF*Ab) are rapidly synthesized for binding targets and fluorescent responses by utilizing the tunability of zinc-based MOF. Moreover, facile Ab-immobilized household cotton swabs are utilized as TTX capture tools. TTX forms sandwich immune complexes with QD@MOF*Ab probes, achieving signal amplification. These probes are excited by a portable device to generate bright fluorescent signals, which can be detected by the naked eye, and TTX quantitative results are obtained using a smartphone. When observed with the naked eye, the limit of detection (LOD) is 0.4 ng/mL, while intelligent quantitation presents an LOD of 0.13 ng/mL at logarithmic concentrations of 0.2-400 ng/mL. SIGNIFICANCE This biosensor is convenient to use, and an easy-to-operate analysis is completed within 15 min, thus demonstrating excellent performance in terms of detection speed and portability. Furthermore, it successfully determines TTX contents in puffer fish and clam samples, demonstrating its potential for monitoring seafood. Herein, this work provides a favorable rapid sensing platform that is easily portable.
Collapse
Affiliation(s)
- Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, 264003, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Yantai Center for Disease Control and Prevention, Yantai, 264003, China
| | - Shuying Yin
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Caiyun Chen
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Tala Shi
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, 264003, China.
| | - Zhiyong Hu
- School of Public Health, Binzhou Medical University, Yantai, 264003, China.
| | - Zhixian Gao
- School of Public Health, Binzhou Medical University, Yantai, 264003, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
6
|
Zhang S, Xiong J, Wang S, Li Z, Qin L, Sun B, Wang Z, Liu X, Zheng Y, Jiang H. Four birds with one stone: Aggregation-induced emission-type zeolitic imidazolate framework-8 based bionic nanoreactor for portable detection of olaquindox in environmental water and swine urine by smartphone. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134068. [PMID: 38521040 DOI: 10.1016/j.jhazmat.2024.134068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
The abuse of olaquindox (OLA) as both an antimicrobial agent and a growth promoter poses significant threats to the environment and human health. While nanoreactors have proven effective in hazard detection, their widespread adoption has been hindered by tedious chemical processes and limited functionality. In this study, we introduce a novel green self-assembly strategy utilizing invertase, horseradish peroxidase, antibodies, and gold nanoclusters to form an aggregation-induced emission-type zeolitic imidazolate framework-8 nanoreactor. The results demonstrate that the lateral flow immunoassay not only allows for qualitative naked eye detection but also enables optical analysis through the fluorescence generated by aggregated gold nanoclusters and enzyme-catalyzed enhancement of visible colorimetric signals. To accommodate more detection scenarios, the photothermal effects and redox reactions of the nanoreactor can fulfill the requirements of thermal sensing and electrochemical analysis for smartphone applications. Remarkably, the proposed approach achieves a detection limit 17 times lower than conventional methods. Besides, the maximum linear range spans from 0.25 to 5 μg/L with high specificity, and the recovery is 85.2-112.9% in environmental water and swine urine. The application of this high-performance nanoreactor opens up avenues for the construction of multifunctional biosensors with great potential in monitoring hazardous materials.
Collapse
Affiliation(s)
- Shuai Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jincheng Xiong
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Sihan Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zhaoyang Li
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zile Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xingxing Liu
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yongjun Zheng
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
7
|
Zhang S, Xiao J, Zhong G, Xu T, Zhang X. Design and application of dual-emission metal-organic framework-based ratiometric fluorescence sensors. Analyst 2024; 149:1381-1397. [PMID: 38312079 DOI: 10.1039/d3an02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Metal-organic frameworks (MOFs) are novel inorganic-organic hybridized crystals with a wide range of applications. In the last twenty years, fluorescence sensing based on MOFs has attracted much attention. MOFs can exhibit luminescence from metal nodes, ligands or introduced guests, which provides an excellent fluorescence response in sensing. However, single-signal emitting MOFs are susceptible to interference from concentration, environment, and excitation intensity, resulting in poor accuracy. To overcome the shortcomings, dual-emission MOF-based ratiometric fluorescence sensors have been proposed and rapidly developed. In this review, we first introduce the luminescence mechanisms, synthetic methods, and detection mechanisms of dual-emission MOFs, highlight the strategies for constructing ratiometric fluorescence sensors based on dual-emission MOFs, and classify them into three categories: intrinsic dual-emission and single-emission MOFs with luminescent guests, and non-emission MOFs with other luminescent materials. Then, we summarize the recent advances in dual-emission MOF-based ratiometric fluorescence sensors in various analytical industries. Finally, we discuss the current challenges and prospects for the future development of these sensors.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jingyu Xiao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Geng Zhong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Lv M, Qiao X, Li Y, Zeng X, Luo X. A stretchable wearable sensor with dual working electrodes for reliable detection of uric acid in sweat. Anal Chim Acta 2024; 1287:342154. [PMID: 38182356 DOI: 10.1016/j.aca.2023.342154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024]
Abstract
Wearable sweat sensors with stretch capabilities and robust performances are desired for continuous monitoring of human health, and it remains a challenge for sweat sensors to detect targets reliably in both static and dynamic states. Herein, a flexible sweat sensor was created using a cost-effective approach involving the utilization of three-dimensional graphene foam and polydimethylsiloxane (PDMS). The flexible electrochemical sensor was fabricated based on PDMS and Pt/Pd nanoparticles modified 3D graphene foam for the detection of uric acid in sweat. Pt/Pd nanoparticles were electrodeposited on the graphene foam to markedly enhance the electrocatalytic activity for uric acid detection. The graphene foam with excellent electrical property and high porosity, and PDMS with an ideal mechanical property endow the sensing device with high stretchability (tolerable strain up to 110 %), high sensitivity (0.87 μA μM-1 cm-2), and stability (remaining unchanged for more than 5000 cycles) for daily wear. To eliminate possible interferences, the wearable sensor was designed with dual working electrodes, and their response difference ensured reliable and accurate detection of targets. This strategy of constructing sweat sensors with dual working electrodes based on the flexible composite material represents a promising way for the development of robust wearable sensing devices.
Collapse
Affiliation(s)
- Mingrui Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yanxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xianghua Zeng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
9
|
Zheng L, Cao M, Du Y, Liu Q, Emran MY, Kotb A, Sun M, Ma CB, Zhou M. Artificial enzyme innovations in electrochemical devices: advancing wearable and portable sensing technologies. NANOSCALE 2023; 16:44-60. [PMID: 38053393 DOI: 10.1039/d3nr05728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid evolution of sensing technologies, the integration of nanoscale catalysts, particularly those mimicking enzymatic functions, into electrochemical devices has surfaced as a pivotal advancement. These catalysts, dubbed artificial enzymes, embody a blend of heightened sensitivity, selectivity, and durability, laying the groundwork for innovative applications in real-time health monitoring and environmental detection. This minireview penetrates into the fundamental principles of electrochemical sensing, elucidating the unique attributes that establish artificial enzymes as foundational elements in this field. We spotlight a range of innovations where these catalysts have been proficiently incorporated into wearable and portable platforms. Navigating the pathway of amalgamating these nanoscale wonders into consumer-appealing devices presents a multitude of challenges; nevertheless, the progress made thus far signals a promising trajectory. As the intersection of materials science, biochemistry, and electronics progressively intensifies, a flourishing future seems imminent for artificial enzyme-infused electrochemical devices, with the potential to redefine the landscapes of wearable health diagnostics and portable sensing solutions.
Collapse
Affiliation(s)
- Long Zheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Mengzhu Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China.
| |
Collapse
|