1
|
Oney-Hawthorne SD, Barondeau DP. Fe-S cluster biosynthesis and maturation: Mass spectrometry-based methods advancing the field. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119784. [PMID: 38908802 DOI: 10.1016/j.bbamcr.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Iron‑sulfur (FeS) clusters are inorganic protein cofactors that perform essential functions in many physiological processes. Spectroscopic techniques have historically been used to elucidate details of FeS cluster type, their assembly and transfer, and changes in redox and ligand binding properties. Structural probes of protein topology, complex formation, and conformational dynamics are also necessary to fully understand these FeS protein systems. Recent developments in mass spectrometry (MS) instrumentation and methods provide new tools to investigate FeS cluster and structural properties. With the unique advantage of sampling all species in a mixture, MS-based methods can be utilized as a powerful complementary approach to probe native dynamic heterogeneity, interrogate protein folding and unfolding equilibria, and provide extensive insight into protein binding partners within an entire proteome. Here, we highlight key advances in FeS protein studies made possible by MS methodology and contribute an outlook for its role in the field.
Collapse
Affiliation(s)
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|
2
|
Oates RN, Lieu LB, Srzentić K, Damoc E, Fornelli L. Characterization of a Monoclonal Antibody by Native and Denaturing Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2197-2208. [PMID: 39105725 DOI: 10.1021/jasms.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Established in recent years as an important approach to unraveling the heterogeneity of intact monoclonal antibodies, native mass spectrometry has been rarely utilized for sequencing these complex biomolecules via tandem mass spectrometry. Typically, top-down mass spectrometry has been performed starting from highly charged precursor ions obtained via electrospray ionization under denaturing conditions (i.e., in the presence of organic solvents and acidic pH). Here we systematically benchmark four distinct ion dissociation methods─namely, higher-energy collisional dissociation, electron transfer dissociation, electron transfer dissociation/higher-energy collisional dissociation, and 213 nm ultraviolet photodissociation─in their capability to characterize a therapeutic monoclonal antibody, trastuzumab, starting from denatured and native-like precursor ions. Interestingly, native top-down mass spectrometry results in higher sequence coverage than the experiments carried out under denaturing conditions, with the exception of ultraviolet photodissociation. Globally, electron transfer dissociation followed by collision-based activation of product ions generates the largest number of backbone cleavages in disulfide protected regions, including the complementarity determining regions, regardless of electrospray ionization conditions. Overall, these findings suggest that native mass spectrometry can certainly be used for the gas-phase sequencing of whole monoclonal antibodies, although the dissociation of denatured precursor ions still returns a few backbone cleavages not identified in native experiments. Finally, a comparison of the fragmentation maps obtained under denaturing and native conditions strongly points toward disulfide bonds as the primary reason behind the largely overlapping dissociation patterns.
Collapse
Affiliation(s)
- Ryan N Oates
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Linda B Lieu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | | | - Eugen Damoc
- Thermo Fisher Scientific, Bremen, DE-HB 28199, Germany
| | - Luca Fornelli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Hanifi K, Scrosati PM, Konermann L. MD Simulations of Peptide-Containing Electrospray Droplets: Effects of Parameter Settings on the Predicted Mechanisms of Gas Phase Ion Formation. J Phys Chem B 2024; 128:5973-5986. [PMID: 38864851 DOI: 10.1021/acs.jpcb.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Electrospray ionization (ESI) mass spectrometry is widely used for interrogating peptides, proteins, and other biomolecular analytes. A growing number of laboratories use molecular dynamics (MD) simulations for uncovering ESI mechanisms by modeling the behavior of highly charged nanodroplets. The outcome of any MD simulation depends on certain assumptions and parameter settings, and it is desirable to optimize these factors by benchmarking computational data against experiments. Unfortunately, benchmarking of ESI simulations is difficult because experimentally generated gaseous ions do not generally retain any features that would reveal their formation pathway [e.g., the charged residue mechanism (CRM) or the ion evaporation mechanism (IEM)]. Here, we tackle this problem by examining the effects of various MD settings on the ESI behavior of the 9-residue peptide bradykinin in acidic aqueous droplets. Several parameters were found to significantly affect the kinetic competition between peptide IEM and CRM. By systematically probing the droplet behavior, we uncovered problems associated with certain settings, including peptide/solvent temperature imbalances, unexpected peptide deceleration during IEM, and a dependence of the ESI mechanism on the water model. We also noted different simulation outcomes for different force fields. On the basis of comprehensive tests, we propose a set of "best practice" parameter settings for MD simulations of ESI droplets. The strategies used here should be transferable to other types of droplet simulations, paving the way toward a more solid understanding of ESI mechanisms.
Collapse
Affiliation(s)
- Kasra Hanifi
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
4
|
Brundridge NM, Koers AM, McLuckey SA. Probing Metal Ion Adduction in the ESI Charged Residue Mechanism via Gas-Phase Ion/Ion Chemistry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1342-1351. [PMID: 38775832 DOI: 10.1021/jasms.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The final stages of the charged residue mechanism/model (CRM) for ion generation via electrospray ionization (ESI) involves the binding of excess charge onto analyte species. Ions of both polarities can bind to the analyte with an excess of ions of the same polarity as the droplet. For large biomolecule/biocomplex ions, which are commonly the species of interest in native mass spectrometry (MS), the binding of acids and salts onto the analyte can lead to extensive broadening of ion signals due to adduction. Therefore, heating step(s) to facilitate desolvation and salt adduct removal are commonplace. In this work, we describe an approach to study the final stages of CRM using gas-phase ion/ion reactions to generate analyte ion/salt clusters of well-defined composition, followed by gas-phase collision-induced dissociation (CID). While there are many variables that can be studied systematically via this approach, the work described herein is focused on salt clusters of the form [Na10X11]-, where X = acetate (Ac-), chloride (Cl-), or nitrate (NO3-), in reaction with a common charge state of ubiquitin as well as several model peptides. Experiments in which equimolar quantities of each salt (i.e., NaAc, NaCl, and NaNO3) are subjected to ESI with ubiquitin (Ubi) and gas-phase ion/ion reaction studies involving [Na10X11]- and [Ubi + 6H]6+ show similar trends, in terms of the extent of sodium ion incorporation into the protein ions. Ion/ion reaction studies using model peptides show that the acetate-containing salt transfers significantly more Na+ ions into the peptide ions. Exchange of Na+ for H+ is shown to occur at the C-terminus and at up to all of the amide linkages using [Na10X11]-, whereas only the C-terminus engages in Na+/H+ exchange with [Na10Cl11]- and [Na10(NO3)11]-. In the latter cases, an additional Na+ is taken up as the excess positive charge, presumably due to solvation of the charge by multiple sites (e.g., carbonyl oxygens and basic sites).
Collapse
Affiliation(s)
- Nicole M Brundridge
- Department of Chemistry, Purdue University 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Alexander M Koers
- Department of Chemistry, Purdue University 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Fan J, Liang L, Zhou X, Ouyang Z. Accelerating protein aggregation and amyloid fibrillation for rapid inhibitor screening. Chem Sci 2024; 15:6853-6859. [PMID: 38725489 PMCID: PMC11077537 DOI: 10.1039/d4sc00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
The accumulation and deposition of amyloid fibrils, also known as amyloidosis, in tissues and organs of patients has been found to be linked to numerous devastating neurodegenerative diseases. The aggregation of proteins to form amyloid fibrils, however, is a slow pathogenic process, and is a major issue for the evaluation of the effectiveness of inhibitors in new drug discovery and screening. Here, we used microdroplet reaction technology to accelerate the amyloid fibrillation process, monitored the process to shed light on the fundamental mechanism of amyloid self-assembly, and demonstrated the value of the technology in the rapid screening of potential inhibitor drugs. Proteins in microdroplets accelerated to form fibrils in milliseconds, enabling an entire cycle of inhibitor screening for Aβ40 within 3 minutes. The technology would be of broad interest to drug discovery and therapeutic design to develop treatments for diseases associated with protein aggregation and fibrillation.
Collapse
Affiliation(s)
- Jingjin Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Liwen Liang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Ochirov O, Urban PL. Spontaneous Recycling of Electrosprayed Sample by Retrograde Motion of Microdroplets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:631-635. [PMID: 38353427 PMCID: PMC10921457 DOI: 10.1021/jasms.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
Here, we discuss an interesting phenomenon occurring spontaneously near the sample liquid meniscus at the tip of the electrospray emitter. While most ejected droplets move from the emitter tip toward the counter electrode, some of the droplets decelerate and move backward to the liquid meniscus. When they hit the surface of the liquid meniscus, they either merge with the bulk liquid or get recharged during intermittent contact with the liquid meniscus and immediately reaccelerate toward the counter electrode. In some cases, while in contact with the meniscus they spontaneously form a secondary Taylor cone and emit progeny droplets. This observation suggests that the amount of electric charge transferred to such a droplet is sufficient to surpass the Rayleigh limit. Similar effects were previously observed for water as well as for NaCl-water and ethanol-water mixtures. However, here we observed it for electrolyte solutions commonly used in electrospray ionization mass spectrometry: methanol-water solutions with the addition of ammonium acetate, formic acid, or ammonium hydroxide. The reported phenomenon reveals the ongoing recycling of sample liquid in electrosprays. Such recycling can contribute to enhancement of sample utilization efficiency in electrospray ionization.
Collapse
Affiliation(s)
- Ochir Ochirov
- Department of Chemistry, National
Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Pawel L. Urban
- Department of Chemistry, National
Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
7
|
Hatvany JB, Liyanage OT, Gallagher ES. Effect of pH on In-Electrospray Hydrogen/Deuterium Exchange of Carbohydrates and Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:441-448. [PMID: 38323552 DOI: 10.1021/jasms.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Carbohydrates are critical for cellular functions as well as an important class of metabolites. Characterizing carbohydrate structures is a difficult analytical challenge due to the presence of isomers. In-electrospray hydrogen/deuterium exchange mass spectrometry (in-ESI HDX-MS) is a method of HDX that samples the solvated structure of carbohydrates during the ESI process and requires little to no instrument modification. Traditionally, solution-phase HDX is utilized with proteins to sample conformational differences, and pH is a critical parameter to monitor and control due to the presence of both acid- and base-catalyzed mechanisms of exchange. For In-ESI HDX, the pH surrounding the analyte changes before and during labeling, which has the potential to affect the rate of labeling for analytes. Herein, we alter the pH of spray solutions containing model carbohydrates and peptides, perform in-ESI HDX-MS, and characterize the deuterium uptake trends. Varying pH results in altered D uptake, though the overall trends differ from the expected bulk-solution trends due to the electrospray process. These findings show the utility of varying pH prior to in-ESI HDX-MS for establishing different extents of HDX as well as distinguishing labile functional groups that are present in different analytes.
Collapse
Affiliation(s)
- Jacob B Hatvany
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - O Tara Liyanage
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
8
|
Harvey SR, Gadkari VV, Ruotolo BT, Russell DH, Wysocki VH, Zhou M. Expanding Native Mass Spectrometry to the Masses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:646-652. [PMID: 38303101 DOI: 10.1021/jasms.3c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
At the 33rd ASMS Sanibel Meeting, on Membrane Proteins and Their Complexes, a morning roundtable discussion was held discussing the current challenges facing the field of native mass spectrometry and approaches to expanding the field to nonexperts. This Commentary summarizes the discussion and current initiatives to address these challenges.
Collapse
Affiliation(s)
- Sophie R Harvey
- Department of Chemistry and Biochemistry, Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Varun V Gadkari
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77844, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Mowei Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
9
|
Davis BTV, Velyvis A, Vahidi S. Fluorinated Ethylamines as Electrospray-Compatible Neutral pH Buffers for Native Mass Spectrometry. Anal Chem 2023; 95:17525-17532. [PMID: 37997939 DOI: 10.1021/acs.analchem.3c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Native electrospray ionization mass spectrometry (ESI-MS) has emerged as a potent tool for examining the native-like structures of macromolecular complexes. Despite its utility, the predominant "buffer" used, ammonium acetate (AmAc) with pKa values of 4.75 for acetic acid and 9.25 for ammonium, provides very little buffering capacity within the physiological pH range of 7.0-7.4. ESI-induced redox reactions alter the pH of the liquid within the ESI capillary. This can result in protein unfolding or weakening of pH-sensitive interactions. Consequently, the discovery of volatile, ESI-compatible buffers, capable of effectively maintaining pH within a physiological range, is of high importance. Here, we demonstrate that 2,2-difluoroethylamine (DFEA) and 2,2,2-trifluoroethylamine (TFEA) offer buffering capacity at physiological pH where AmAc falls short, with pKa values of 7.2 and 5.5 for the conjugate acids of DFEA and TFEA, respectively. Native ESI-MS experiments on model proteins cytochrome c and myoglobin electrosprayed with DFEA and TFEA demonstrated the preservation of noncovalent protein-ligand complexes in the gas phase. Protein stability assays and collision-induced unfolding experiments further showed that neither DFEA nor TFEA destabilized model proteins in solution or in the gas phase. Finally, we demonstrate that multisubunit protein complexes such as alcohol dehydrogenase and concanavalin A can be studied in the presence of DFEA or TFEA using native ESI-MS. Our findings establish DFEA and TFEA as new ESI-compatible neutral pH buffers that promise to bolster the use of native ESI-MS for the analysis of macromolecular complexes, particularly those sensitive to pH fluctuations.
Collapse
Affiliation(s)
- Bradley T V Davis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|