2
|
Arivazhagan M, Maduraiveeran G. Gold dispersed hierarchical flower-like copper oxide microelectrodes for the sensitive detection of glucose and lactic acid in human serum and urine. Biomater Sci 2022; 10:4538-4548. [DOI: 10.1039/d2bm00527a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report self-supported gold dispersed copper oxide microflowers (Au@CuO MFs) on copper microelectrodes (CME) as a sensitive platform for the sensing of glucose and lactic acid in human serum...
Collapse
|
3
|
Asai K, Einaga Y. Fabrication of an all-diamond microelectrode using a chromium mask. Chem Commun (Camb) 2019; 55:897-900. [PMID: 30489578 DOI: 10.1039/c8cc08077a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a new method for fabricating all-diamond microelectrodes. The process comprises three steps: masking the tip of an electrode by electroplating with chromium, depositing undoped diamond, which acts as an insulator on the sides of the electrode, and removing the chromium mask to expose the tip of the electrode. The active area of the electrode can be easily controlled in combination only with a conventional electroplating technique.
Collapse
Affiliation(s)
- Kai Asai
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| | | |
Collapse
|
4
|
Yang N, Yu S, Macpherson JV, Einaga Y, Zhao H, Zhao G, Swain GM, Jiang X. Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev 2019; 48:157-204. [DOI: 10.1039/c7cs00757d] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review summarizes systematically the growth, properties, and electrochemical applications of conductive diamond.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | - Siyu Yu
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | | | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Hongying Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Guohua Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | | | - Xin Jiang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| |
Collapse
|
5
|
Kondo T, Udagawa I, Aikawa T, Sakamoto H, Shitanda I, Hoshi Y, Itagaki M, Yuasa M. Enhanced Sensitivity for Electrochemical Detection Using Screen-Printed Diamond Electrodes via the Random Microelectrode Array Effect. Anal Chem 2016; 88:1753-9. [DOI: 10.1021/acs.analchem.5b03986] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takeshi Kondo
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- ACT-C/JST, 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan
| | - Ikuto Udagawa
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tatsuo Aikawa
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hironori Sakamoto
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Isao Shitanda
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yoshinao Hoshi
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masayuki Itagaki
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Makoto Yuasa
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- ACT-C/JST, 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan
| |
Collapse
|