1
|
Zhao J, Gao T. Genetic Engineering of Microorganisms with Electroactive Genes for the Fabrication of Electrochemical Microbial Biosensors. Methods Mol Biol 2024; 2844:247-260. [PMID: 39068345 DOI: 10.1007/978-1-0716-4063-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
By integrating electroactive genes into engineered sensing microorganisms, information about the object to be measured can be converted into the output of an electrical signal, omitting the process of converting the output of an electrical signal in conventional sensing strategies and simplifying the steps of biosensor development. By utilizing synthetic biology methods, we can not only create novel genetic circuits by using logic gate operations and integrating genes from other biological components, solving biosensing issues in living systems and enhancing sensor performance, but also convert various types of genetic circuits into electrical signals, broadening the application range of biosensors. Here, we describe an example of how to genetically engineer microorganisms with electroactive genes and the fabrication of an electrochemical microbial biosensor.
Collapse
Affiliation(s)
- Jinming Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China.
| |
Collapse
|
2
|
Jiang X, Zhu Q, Zhu H, Zhu Z, Miao X. Antifouling lipid membrane coupled with silver nanoparticles for electrochemical detection of nucleic acids in biological fluids. Anal Chim Acta 2021; 1177:338751. [PMID: 34482888 DOI: 10.1016/j.aca.2021.338751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
Electrochemical method capable of detecting specific nucleic acids in complex fluid will undoubtedly advance the diagnosis of many kinds of diseases. Herein, by coupling lipid membrane with silver nanoparticles (AgNPs), we develop a new electrochemical method for sensitive and reliable detection of nucleic acids in biological fluids. The advantages of lipid membrane especially its excellent antifouling ability is employed to enhance the applicability of the method in complex environment; while the significant solid-state Ag/AgCl response of AgNPs is used to ensure the detection sensitivity of the method. The core of this method's workflow is the target-induced Y-shape structure formation, which results in the recruitment of AgNPs to the electrode surface, producing considerable electrochemical responses used for target nucleic acid detection. Taking highly upregulated in liver cancer (HULC), a liver cancer-related long non-coding RNA as a model target, the method exhibits high sensitivity, specificity, and reproducibility with a detection limit of 0.42 fM. Moreover, the method displays desirable usability in biological fluids such as serum, which will be of great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Xihui Jiang
- Department of Medical Science and Technology, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China
| | - Qian Zhu
- Department of Medical Science and Technology, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China
| | - Haoyu Zhu
- Department of Medical Science and Technology, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China
| | - Zhiqiang Zhu
- Department of Medical Science and Technology, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China
| | - Xiangyang Miao
- Department of Medical Science and Technology, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China.
| |
Collapse
|
3
|
Wei T, Xu Q, Zou C, He Z, Tang Y, Gao T, Han M, Dai Z. A boronate-modified renewable nanointerface for ultrasensitive electrochemical assay of cellulase activity. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Mao D, Li Y, Lu C, Liu X, Sheng A, Han K, Zhu X. DNA Nanomachine with Multitentacles for Integral Processing of Nanoparticles and Its Application in Biosensing. ACS APPLIED BIO MATERIALS 2020; 3:2940-2947. [DOI: 10.1021/acsabm.9b01219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yifei Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Cuicui Lu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaohao Liu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Anzhi Sheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Kun Han
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
5
|
Schultz J, Uddin Z, Singh G, Howlader MMR. Glutamate sensing in biofluids: recent advances and research challenges of electrochemical sensors. Analyst 2020; 145:321-347. [DOI: 10.1039/c9an01609k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrochemical sensing guidelines for glutamate in biofluids, associated with different diseases, providing knowledge translation among science, engineering, and medical professionals.
Collapse
Affiliation(s)
- Jessica Schultz
- Department of Electrical and Computer Engineering
- McMaster University
- Hamilton
- Canada
| | - Zakir Uddin
- School of Rehabilitation Science
- McMaster University
- Hamilton
- Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine
- McMaster University
- Hamilton
- Canada
| | | |
Collapse
|
6
|
Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Li J, Hu K, Zhang Y, Zhang Z, Li H. Highly sensitive detection of Smoothened based on the drug binding and rolling cycle amplification. Anal Bioanal Chem 2019; 411:5721-5727. [PMID: 31214754 DOI: 10.1007/s00216-019-01950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 11/30/2022]
Abstract
Metastases are the leading causes of death in cancer patients. Due to intimate connection with metastasis, Smoothened (Smo) has become a therapeutic target for antimetastatic drugs and can provide early warning of metastasis in breast cancer. Thus, we have developed an electrochemical method in Smo analysis based on small-molecule drugs. Smo on the metastatic cell surface can be internalized after combination with the small-molecule drug. The surplus small-molecule drug and rolling circle amplification (RCA) primer are competitively binding with capture probe on the electrode surface through the click chemical reaction. After RCA reaction, methylene blue is used to label the RCA product. In this process, the more Smo on the metastatic cell surface, the more RCA primer is bound with peptide on the electrode. Therefore, the obtained signal response is positively correlated to Smo on the cancer cells. Moreover, the RCA provides sufficiently high sensitivity, enabling the limit of detection of Smo to be calculated as 0.1 pM (S/N = 3). Owing to its desirable sensitivity, excellent reproducibility, and high selectivity, the proposed method may hold great potential in clinical practice in the future. Graphical abstract.
Collapse
Affiliation(s)
- Jinlong Li
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, Jiangsu, China.
| | - Kai Hu
- Department of Ophthalmology, The Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210004, Jiangsu, China
| | - Yongchen Zhang
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, Jiangsu, China
| | - Zhaoli Zhang
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, Jiangsu, China
| | - Hao Li
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, Shandong, China.
| |
Collapse
|
8
|
Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite. Mikrochim Acta 2018; 185:405. [PMID: 30094655 DOI: 10.1007/s00604-018-2918-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/14/2018] [Indexed: 01/22/2023]
Abstract
This paper reports on a sensitive and selective method for the detection of Michigan Cancer Foundation-7 (MCF-7) human breast cancer cells and MUC1 biomarker by using an aptamer-based sandwich assay. A biocompatible nanocomposite consisting of multiwall carbon nanotubes (MWCNT) and poly(glutamic acid) is placed on a glassy carbon electrode (GCE). The sandwich assay relies on the use of a mucin 1 (MUC1)-binding aptamer that is first immobilized on the surface of modified GCE. Another aptamer (labeled with silver nanoparticles) is applied for secondary recognition of MCF-7 cells in order to increase selectivity and produce an amplified signal. Differential pulse anodic stripping voltammetry was used to follow the electrochemical signal of the AgNPs. Under the optimal condition, the sensor responds to MCF-7 cells in the concentration range from 1.0 × 102 to 1.0 × 107 cells·mL-1 with a detection limit of 25 cells. We also demonstrate that the MUC1 tumor marker can be detected by the present biosensor. The assay is highly selective and sensitive, acceptably stable and reproducible. This warrants the applicability of the method to early diagnosis of breast cancer. Graphical abstract Schematic of the fabrication of an aptamer-based sandwich biosensor for Michigan Cancer Foundation-7 cells (MCF-7). A MWCNT-poly(glutamic acid) nanocomposite was used as a biocompatible matrix for MUC1-aptamer immobilization. Stripping voltammetry analysis of AgNPs was performed using aptamer conjugated AgNPs as signalling probe.
Collapse
|
9
|
Li J, He G, Wang B, Shi L, Gao T, Li G. Fabrication of reusable electrochemical biosensor and its application for the assay of α-glucosidase activity. Anal Chim Acta 2018; 1026:140-146. [PMID: 29852990 DOI: 10.1016/j.aca.2018.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/24/2018] [Accepted: 04/12/2018] [Indexed: 01/21/2023]
Abstract
A reusable biosensor has been fabricated in this work for the assay of α-glucosidase activity and the inhibitor screening. In this design, the aptamer of ATP is split as split aptamer 1 (Apt 1) and split aptamer 2 (Apt 2), and Apt 2 can link gold nanoparticles (AuNPs) modified with Apt 1 and 4-aminophenyl-α-d-glucopyranoside (pAPG). Consequently, the functional AuNPs can be immobilized onto the surface of gold electrode, allowing for salt-induced regeneration. In the presence of α-glucosidase, the glycosyl of pAPG is cut off, and the electroactive phenolic hydroxyls appear to give a strong current signal. Furthermore, the biosensor can be recovered very easily by incubating it in water to dissociate the AuNPs modified with Apt 1 and pAPG. So, a new biosensor for α-glucosidase activity detection and inhibitor screening is developed based on enzyme-activated signal generation and recovery. The biosensor may also exhibit good sensitivity for α-glucosidase determination with the detection limit 0.005 U/mL and can be reused by water-washing regeneration with good repeatability. Meanwhile this biosensor can also be utilized for inhibitor screening, which may have potential for clinical applications.
Collapse
Affiliation(s)
- Jinlong Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China; Department of Laboratory Medicine, The Second Affiliated Hospital of Southeast University, Nanjing, 210003, PR China
| | - Guangwu He
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Bei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Tao Gao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
Nucleic acid-based electrochemical nanobiosensors. Biosens Bioelectron 2018; 102:479-489. [DOI: 10.1016/j.bios.2017.11.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
|
11
|
Gao T, Zhi J, Mu C, Gu S, Xiao J, Yang J, Wang Z, Xiang Y. One-step detection for two serological biomarker species to improve the diagnostic accuracy of hepatocellular carcinoma. Talanta 2018; 178:89-93. [DOI: 10.1016/j.talanta.2017.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 01/14/2023]
|
12
|
Qin X, Sui Y, Xu A, Liu L, Li Y, Tan Y, Chen C, Xie Q. Ultrasensitive immunoassay of proteins based on in-situ enzymatic formation of quantum dots and microliter-droplet anodic stripping voltammetry. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Gao T, Mu C, Shi H, Shi L, Mao X, Li G. Embedding Capture-Magneto-Catalytic Activity into a Nanocatalyst for the Determination of Lipid Kinase. ACS APPLIED MATERIALS & INTERFACES 2018; 10:59-65. [PMID: 29231711 DOI: 10.1021/acsami.7b10857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of emerging nanocatalysts to investigate the activity of biocatalysts (protein enzymes, catalytic RNAs, etc.) is increasingly receiving attention from material, analytic, and biomedical scientists. Here, we have first fabricated a three-in-one nanocatalyst, the nitrilotriacetic acid (NTA)-modified magnetite nanoparticle (NTA-MNP), to develop an integrated magneto-colorimetric (MagColor) assay for lipid kinase activity so as to solve the inherent problems in a lipid kinase assay. On the basis of three integrated functions of the NTA-MNPs (capture, magnetic separation, and peroxidase activity), the catalytic activity of lipid kinase is directly converted to colorimetric signals. Therefore, the assay procedure is significantly simplified such that in one step the visual detection of lipid kinase activity is possible. Moreover, the whole system responds sensitively in the case that NTA-MNPs recognize a few numbers of the reaction sites, which efficiently initiates the chromogenic reaction of a large amount of chromogens; thus, the detection limit decreases to 6.5 ± 5.8 fM, about three orders of magnitude lower as compared to that of enzyme-linked immune-sorbent assay. So, by embedding desired functions into nanocatalysts, the assay for biocatalysts becomes easy, which may promisingly provide useful tools for biomedical and clinical research in the future.
Collapse
Affiliation(s)
| | - Chaoli Mu
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, P. R. China
| | - Hai Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, P. R. China
| | - Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, P. R. China
| | | | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
14
|
Gao T, Gu S, Mu C, Zhang M, Yang J, Liu P, Li G. Electrochemical assay of lipid kinase activity facilitated by liposomes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Assay of DNA methyltransferase 1 activity based on uracil-specific excision reagent digestion induced G-quadruplex formation. Anal Chim Acta 2017; 986:131-137. [DOI: 10.1016/j.aca.2017.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 12/23/2022]
|
16
|
Amperometric low potential aptasensor for the fucosylated Golgi protein 73, a marker for hepatocellular carcinoma. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2334-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Mashhadizadeh MH, Naseri N, Mehrgardi MA. A simple non-enzymatic strategy for adenosine triphosphate electrochemical aptasensor using silver nanoparticle-decorated graphene oxide. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1138-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Zhu X, Chen Y, Feng C, Wang W, Bo B, Ren R, Li G. Assembly of Self-Cleaning Electrode Surface for the Development of Refreshable Biosensors. Anal Chem 2017; 89:4131-4138. [DOI: 10.1021/acs.analchem.6b05177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaoli Zhu
- Center for Molecular Recognition
and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yaoyao Chen
- Center for Molecular Recognition
and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chang Feng
- Center for Molecular Recognition
and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Wang
- Center for Molecular Recognition
and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Bing Bo
- Center for Molecular Recognition
and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Ruixin Ren
- Center for Molecular Recognition
and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Genxi Li
- Center for Molecular Recognition
and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
19
|
Li J, Gao T, Gu S, Zhi J, Yang J, Li G. An electrochemical biosensor for the assay of alpha-fetoprotein-L3 with practical applications. Biosens Bioelectron 2017; 87:352-357. [DOI: 10.1016/j.bios.2016.08.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 12/21/2022]
|
20
|
Qin X, Xu A, Liu L, Sui Y, Li Y, Tan Y, Chen C, Xie Q. Selective staining of CdS on ZnO biolabel for ultrasensitive sandwich-type amperometric immunoassay of human heart-type fatty-acid-binding protein and immunoglobulin G. Biosens Bioelectron 2016; 91:321-327. [PMID: 28039809 DOI: 10.1016/j.bios.2016.12.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
We report on an ultrasensitive metal-labeled amperometric immunoassay of proteins, which is based on the selective staining of nanocrystalline cadmium sulfide (CdS) on ZnO nanocrystals and in-situ microliter-droplet anodic stripping voltammetry (ASV) detection on the immunoelectrode. Briefly, antibody 1 (Ab1), bovine serum albumin (BSA), antigen and ZnO-multiwalled carbon nanotubes (MWCNTs) labeled antibody 2 (Ab2-ZnO-MWCNTs) were successively anchored on a β-cyclodextrin-graphene sheets (CD-GS) nanocomposite modified glassy carbon electrode (GCE), forming a sandwich-type immunoelectrode (Ab2-ZnO-MWCNTs/antigen/BSA/Ab1/CD-GS/GCE). CdS was selectively grown on the catalytic ZnO surfaces through chemical reaction of Cd(NO3)2 and thioacetamide (ZnO-label/CdS-staining), due to the presence of an activated cadmium hydroxide complex on ZnO surfaces that can decompose thioacetamide. A beforehand cathodic "potential control" in air and then injection of 7μL of 0.1M aqueous HNO3 on the immunoelectrode allow dissolution of the stained CdS and simultaneous cathodic preconcentration of atomic Cd onto the electrode surface, thus the following in-situ ASV detection can be used for immunoassay with enhanced sensitivity. Under optimized conditions, human immunoglobulin G (IgG) and human heart-type fatty-acid-binding protein (FABP) are analyzed by this method with ultrahigh sensitivity, excellent selectivity and small reagent-consumption, and the limits of detection (LODs, S/N=3) are 0.4fgmL-1 for IgG and 0.3fgmL-1 for FABP (equivalent to 73 FABP molecules in the 6μL sample employed).
Collapse
Affiliation(s)
- Xiaoli Qin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Aigui Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yuyun Sui
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yunlong Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
21
|
Zhong Y, Huang L, Zhang Z, Xiong Y, Sun L, Weng J. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges. Int J Nanomedicine 2016; 11:5989-6002. [PMID: 27956830 PMCID: PMC5113928 DOI: 10.2147/ijn.s120659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA < GO-PAM < GO-PEG < GO-pSB. Thus, zwitterionic polymer-modified GO is superior to other GO derivatives with different charges in enhancing the specificity of PCR. GO derivatives are also successfully used to enhance the specificity of PCR for the amplification of human mitochondrial DNA using blood genomic DNA as template. Molecular dynamics simulations and molecular docking are performed to elucidate the interaction between the polymers and Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR.
Collapse
Affiliation(s)
- Yong Zhong
- Department of Biomaterials, College of Materials
| | - Lihong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Xiamen, People’s Republic of China
| | | | - Liping Sun
- Department of Biomaterials, College of Materials
| | - Jian Weng
- Department of Biomaterials, College of Materials
| |
Collapse
|
22
|
Zhang S, Huang N, Lu Q, Liu M, Li H, Zhang Y, Yao S. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate. Biosens Bioelectron 2016; 77:1078-85. [DOI: 10.1016/j.bios.2015.10.089] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022]
|
23
|
Gao T, Gu S, Liu F, Li L, Wang Z, Yang J, Li G. Investigation of MTH1 activity via mismatch-based DNA chain elongation. Anal Chim Acta 2016; 905:66-71. [DOI: 10.1016/j.aca.2015.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 12/27/2022]
|