1
|
Stantič M, Gunčar G, Kuzman D, Mravljak R, Cvijić T, Podgornik A. Application of lectin immobilized on polyHIPE monoliths for bioprocess monitoring of glycosylated proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122731. [PMID: 33971517 DOI: 10.1016/j.jchromb.2021.122731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/04/2023]
Abstract
In-process monitoring of glycosylated protein concentration becomes very important with the introduction of perfusion bioprocesses. Affinity chromatography based on lectins allows selective monitoring when carbohydrates are accessible on the protein surface. In this work, we immobilized lectin on polyHIPE type of monoliths and implemented it for bioprocess monitoring. A spacer was introduced to lectin, which increased binding kinetics toward Fc-fusion protein, demonstrated by bio-layer interferometry. Furthermore, complete desorption using 0.25 M galactose was shown. Affinity column exhibited linearity in the range between 0.5 and 8 mg/ml and flow-unaffected binding for the flow-rates between 0.5 and 8 ml/min. Long-term stability over at least four months period was demonstrated. No unspecific binding of culture media components, including host cell proteins and DNA, was detected. Results obtained by affinity column matched concentration values obtained by a reference method.
Collapse
Affiliation(s)
- Metka Stantič
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Gregor Gunčar
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Drago Kuzman
- Technical development biosimilars, Global drug development, Novartis, Kolodvorska 27, 1234 Mengeš, Slovenia
| | - Rok Mravljak
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Tamara Cvijić
- Technical development biosimilars, Global drug development, Novartis, Kolodvorska 27, 1234 Mengeš, Slovenia
| | - Aleš Podgornik
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; COBIK, Tovarniška 26, 5270 Ajdovščina, Slovenia.
| |
Collapse
|
2
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
3
|
Shimazaki H, Ono A, Tsuruga M, Ueki A, Koseki-Kuno S, Toyoda T, Saito K, Sawakami K, Kariya M, Segawa O, Nakamura K, Koizuka M, Kuno A. GlycoBIST: A System for Automatic Glycan Profiling of a Target Protein Using Milli-Bead Array in a Tip. ACTA ACUST UNITED AC 2020; 99:e103. [PMID: 32073758 DOI: 10.1002/cpps.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lectin is a biomolecule that recognizes a specific part of glycans and, thus, has been used widely as a probe for glycoprotein analysis. Owing to the wide repertoire in nature combined with the recent two decades of advances in microarray technology, the multiplexed use of lectins has been widely used for glycan profiling of endogenous proteins. Because protein glycosylation is recognized as being biologically important and is expected to be a reliable disease marker, lectin microarray analysis with highly sensitive detection has been used to discover disease-relevant glycosylation alterations. However, the conventional system is limited to research purposes; thus, its implementation in clinical settings is warranted. Here, we provide an automatic glycan profiling method using GlycoBIST. A unique array format is used for 10-plexed lectin-glycoprotein interaction analysis on 1-mm-sized beads, which are arranged vertically in a capillary-shaped plastic tip. Using a one-boxed autopipetting machine, the whole process (including interaction, washing, and detection) is performed automatically and serially, resulting in reproducible measurements. In this article, a typical method for glycan profiling of a purified glycoprotein and the fabrication of GlycoBIST tips is explained. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Fabrication of a GlycoBIST tip Basic Protocol 2: Automatic profiling of a target glycoprotein using GlycoBIST.
Collapse
Affiliation(s)
- Hiroko Shimazaki
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ayaka Ono
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Masako Tsuruga
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Aya Ueki
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shiori Koseki-Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takako Toyoda
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kozue Saito
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | - Minoru Kariya
- Precision System Science, Kamihongou, Matsudo, Chiba, Japan
| | - Osamu Segawa
- Precision System Science, Kamihongou, Matsudo, Chiba, Japan
| | | | | | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Aldosari MH, den Hartog M, Ganizada H, Evers MJW, Mastrobattista E, Schellekens H. Feasibility Study for Bedside Production of Recombinant Human Acid α-Glucosidase: Technical and Financial Considerations. Curr Pharm Biotechnol 2020; 21:467-479. [PMID: 32065100 DOI: 10.2174/1389201021666200217113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The high cost of orphan drugs limits their access by many patients, especially in low- and middle-income countries. Many orphan drugs are off-patent without alternative generic or biosimilar versions available. Production of these drugs at the point-of-care, when feasible, could be a cost-effective alternative. METHODS The financial feasibility of this approach was estimated by setting up a small-scale production of recombinant human acid alpha-glucosidase (rhGAA). The commercial version of rhGAA is Myozyme™, and Lumizyme™ in the United States, which is used to treat Pompe disease. The rhGAA was produced in CHO-K1 mammalian cells and purified using multiple purification steps to obtain a protein profile comparable to Myozyme™. RESULTS The established small-scale production of rhGAA was used to obtain a realistic cost estimation for the magistral production of this biological drug. The treatment cost of rhGAA using bedside production was estimated at $3,484/gram, which is 71% lower than the commercial price of Myozyme ™. CONCLUSION This study shows that bedside production might be a cost-effective approach to increase the access of patients to particular life-saving drugs.
Collapse
Affiliation(s)
- Mohammed H Aldosari
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | | | - Hubertina Ganizada
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Martijn J W Evers
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Huub Schellekens
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
High-Throughput Quantification and Glycosylation Analysis of Antibodies Using Bead-Based Assays. Methods Mol Biol 2019. [PMID: 31858473 DOI: 10.1007/978-1-0716-0191-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A novel version of bead -based assays with fluorescence detection enables the high-throughput analysis of antibodies and proteins. The protocols are carried out in special 384-well plates, require very few manual interventions, and are easy to automate. Here we describe how the technology can be used to determine antibody titers and screen for product glycosylation, a critical quality attribute, early in cell line and bioprocess development.
Collapse
|
6
|
Research and Application of Glycoprotein Sensors Based on Glycosyl Recognition. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61185-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Shimazaki H, Saito K, Matsuda A, Sawakami K, Kariya M, Segawa O, Miyashita Y, Ueda T, Koizuka M, Nakamura K, Kaji H, Tajima H, Kuno A. Lectin Bead Array in a Single Tip Facilitates Fully Automatic Glycoprotein Profiling. Anal Chem 2019; 91:11162-11169. [DOI: 10.1021/acs.analchem.9b01876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroko Shimazaki
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Kozue Saito
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Atsushi Matsuda
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Kazumi Sawakami
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Minoru Kariya
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Osamu Segawa
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Yukiko Miyashita
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Tetsuya Ueda
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Michinori Koizuka
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Kazuhiro Nakamura
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Hiroyuki Kaji
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Hideji Tajima
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
8
|
Guerra A, von Stosch M, Glassey J. Toward biotherapeutic product real-time quality monitoring. Crit Rev Biotechnol 2019; 39:289-305. [DOI: 10.1080/07388551.2018.1524362] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- André Guerra
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Moritz von Stosch
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jarka Glassey
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Hedayati MH, Norouzian D, Aminian M, Teimourian S, Ahangari Cohan R, Khorramizadeh MR. Identification of methionine oxidation in human recombinant erythropoietin by mass spectrometry: Comparative isoform distribution and biological activity analysis. Prep Biochem Biotechnol 2017; 47:990-997. [PMID: 28825868 DOI: 10.1080/10826068.2017.1365243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Oxidative degradation of human recombinant erythropoietin (hrEPO) may occur in manufacturing process or therapeutic applications. This unfavorable alteration may render EPO inefficient or inactive. We investigated the effect of methionine/54 oxidative changes on the amino acid sequences, glycoform distribution and biological activity of hrEPO. METHODS Mass spectrometry was applied to verify the sequence and determine the methionine oxidation level of hrEPO. Isoform distribution was studied by capillary zone electrophoresis method. In vivo normocythemic mice assay was used to assess the biological activity of three different batches (A, B, and C) of the proteins. RESULTS Nano-LC/ESI/MS/MS data analyses confirmed the amino acid sequences of all samples. The calculated area percent of three isoforms (2-4 of the 8 obtained isoforms) were decreased in samples of C, B, and A with 27.3, 16.7, and 6.8% of oxidation, respectively. Specific activities were estimated as 53671.54, 95826.47, and 112994.93 mg/mL for the samples of A, B, and C, respectively. CONCLUSION The observed decrease in hrEPO biological activity, caused by increasing methionine oxidation levels, was rather independent of its amino acid structure and mainly associated with the higher contents of acidic isoforms.
Collapse
Affiliation(s)
- Mohammad Hossein Hedayati
- a Department of Medical Biotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Dariush Norouzian
- b Department of Pilot Nanobiotechnology , Pasteur Institute of Iran , Tehran , Iran
| | - Mahdi Aminian
- c Department of Clinical Biochemistry, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Shahram Teimourian
- d Department of Medical Genetics , Iran University of Medical sciences , Tehran , Iran
| | - Reza Ahangari Cohan
- b Department of Pilot Nanobiotechnology , Pasteur Institute of Iran , Tehran , Iran
| | - M Reza Khorramizadeh
- e Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute , University of Medical Sciences , Tehran , Iran
| |
Collapse
|
10
|
A Novel Fiber Optic Surface Plasmon Resonance Biosensors with Special Boronic Acid Derivative to Detect Glycoprotein. SENSORS 2017; 17:s17102259. [PMID: 28974028 PMCID: PMC5676611 DOI: 10.3390/s17102259] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/28/2023]
Abstract
We proposed and demonstrated a novel tilted fiber Bragg grating (TFBG)-based surface plasmon resonance (SPR) label-free biosensor via a special boronic acid derivative to detect glycoprotein with high sensitivity and selectivity. TFBG, as an effective sensing element for optical sensing in near-infrared wavelengths, possess the unique capability of easily exciting the SPR effect on fiber surface which coated with a nano-scale metal layer. SPR properties can be accurately detected by measuring the variation of transmitted spectra at optical communication wavelengths. In our experiment, a 10° TFBG coated with a 50 nm gold film was manufactured to stimulate SPR on a sensor surface. To detect glycoprotein selectively, the sensor was immobilized using designed phenylboronic acid as the recognition molecule, which can covalently bond with 1,2- or 1,3-diols to form five- or six-membered cyclic complexes for attaching diol-containing biomolecules and proteins. The phenylboronic acid was synthetized with long alkyl groups offering more flexible space, which was able to improve the capability of binding glycoprotein. The proposed TFBG-SPR sensors exhibit good selectivity and repeatability with a protein concentration sensitivity up to 2.867 dB/ (mg/mL) and a limit of detection (LOD) of 15.56 nM.
Collapse
|
11
|
Glycan profiling of proteins using lectin binding by Surface Plasmon Resonance. Anal Biochem 2017; 538:53-63. [PMID: 28947169 DOI: 10.1016/j.ab.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/21/2023]
Abstract
Glycan profiling of proteins was studied through their lectin binding activity by Surface Plasmon Resonance (SPR). To validate the method, we monitored specific lectin binding with sequential removal of sugar moieties from human transferrin using specific glycosidases. The results clearly indicated that glycans on the protein can be identified by their selective binding activity to various lectins. Using this method, we characterized Fc glycosylation profiles of therapeutic peptibodies and antibodies expressed in mammalian cells (CHO and HEK 293 6E cells), with E. coli expressed proteins as the negative controls. We observed that antibodies expressed in CHO cells did not contain any sialic acid, while antibodies expressed in 293 6E cells contained sialic acid. CHO cell expressed antibodies were also more heavily fucosylated than the ones expressed by 293 6E cells. We further applied this method to measure the fucose composition of glycan engineered mouse antibodies, as well as to determine mannose composition of human antibody variants with depletion or enrichment of high mannose. The glycan profiles generated using this method were comparable to results from 2-AB labeled glycan analysis of normal-phase separated glycans, and Fc gamma receptor binding activity of the glycan engineered antibodies were consistent with their glycan profiles. Hence, we demonstrated that SPR lectin binding analysis can be a quick alternative method to profile protein glycosylation.
Collapse
|
12
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
13
|
Wu J, Jiang Y, Wang L, Zeng Q. Effects of Interfacial Properties of a Surface Modified Surface Plasmon Resonance Chip on Protein Immobilization Performance. ANAL SCI 2017; 33:481-486. [PMID: 28392525 DOI: 10.2116/analsci.33.481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In order to confirm the correlation between interfacial properties of modified surface plasmon resonance (SPR) chips and their SPR responses to immobilized anti-IgG, SPR chips were modified by mercaptoundecanoic acid, poly(ethylene glycol) diacrylate (PEG), PEG-based copolymer and cyclodextrin coupled PEG using self-assembled or radical polymerization methods. The resulting interfacial properties such as film thickness and hydrophilicity were characterized by AFM, elliptic polarization scanners and contact angle meter. Immobilization of human IgG on the modified chips was achieved by EDC/NHS activation through an amide bond. The association between fixed IgG and free anti-IgG was reflected by the variation of SPR responses and the binding ability was evaluated by Langmuir isotherms. As observed, the adsorption between IgG and anti-IgG was affected by the interfacial properties of different modifiers, such that a chip with a thinner and more hydrophilic layer may result in a higher SPR response, producing a larger adsorption equilibrium constant for protein interaction.
Collapse
Affiliation(s)
- Juan Wu
- School of Chemistry and Chemical Engineering, South China University of Technology
| | | | | | | |
Collapse
|
14
|
Fenzl C, Hirsch T, Baeumner AJ. Liposomes with High Refractive Index Encapsulants as Tunable Signal Amplification Tools in Surface Plasmon Resonance Spectroscopy. Anal Chem 2015; 87:11157-63. [DOI: 10.1021/acs.analchem.5b03405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Christoph Fenzl
- Institute of Analytical Chemistry,
Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry,
Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- Institute of Analytical Chemistry,
Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|