Zhong Z, Chu Z, Dong Z, Zhang W, Zhang L. The separation characteristics and performance evaluation of the silica-based poly(pentabromostyrene) stationary phase in capillary electrochromatography.
ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021;
13:5764-5771. [PMID:
34816827 DOI:
10.1039/d1ay01594j]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A mixed-mode capillary column packed with silica-based poly(pentabromostyrene) particles (denoted as SiO2@pPBS) was prepared and applied to capillary electrochromatography (CEC) separation. With the presence of benzene rings and bromine atoms in polymer chains, the SiO2@pPBS column provides a reversed-phase/hydrophilic mixed-mode retention mechanism owing to hydrophilic, hydrophobic and π-π interactions between the stationary phase and various analytes, including alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides, phenols and anilines. In CEC mode, the separation behavior of charged solutes is not only related to the interaction with the stationary phase, but also influenced by electrophoretic effects, which may lead to different selectivities compared to high performance liquid chromatography (HPLC). A column efficiency of up to 1.22 × 105 N m-1 was achieved for p-chloroaniline. Besides, the RSDs of retention time of anilines for run to run (n = 5), day to day (n = 5) and column to column (n = 3) were all less than 4.4%. Finally, the SiO2@pPBS capillary column was applied to the separation of coking wastewater with satisfactory results. All the results demonstrated that the SiO2@pPBS capillary packed column with RP/HILIC mixed-mode has great application potential.
Collapse