1
|
Douma C, Bowser MT. Assessing Surface Adsorption in Cyclic Olefin Copolymer Microfluidic Devices Using Two-Dimensional Nano Liquid Chromatography-Micro Free Flow Electrophoresis Separations. Anal Chem 2023; 95:18379-18387. [PMID: 38060457 PMCID: PMC10733905 DOI: 10.1021/acs.analchem.3c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 12/20/2023]
Abstract
Surface interactions are a concern in microscale separations, where analyte adsorption can decrease the speed, sensitivity, and resolution otherwise achieved by miniaturization. Here, we functionally characterize the surface adsorption of hot-embossed cyclic olefin copolymer (COC) micro free-flow electrophoresis (μFFE) devices using two-dimensional nLC × μFFE separations, which introduce a 3- to 5 s plug of analyte into the device and measure temporal broadening that arises from surface interactions. COC is an attractive material for microfluidic devices, but little is known about its potential for surface adsorption in applications with continuous fluid flow and temporal measurements. Adsorption was minimal for three small molecule dyes: positively charged rhodamine 123, negatively charged fluorescein, and neutral rhodamine 110. Temporal peak widths for the three dyes ranged from 3 to 7 s and did not change significantly with increasing transit distance. Moderate adsorption was observed for Chromeo P503-labeled myoglobin and cytochrome c with temporal peak widths around 20 s. Overall, the COC surface adsorption was low compared to traditional glass devices, where peak widths are on the order of minutes. Improvements in durability, long-term performance, and ease of fabrication, combined with low overall adsorption, make the COC μFFE devices a practical choice for applications involving time-resolved continuous detection.
Collapse
Affiliation(s)
- Cecilia
C. Douma
- Department of Chemistry, University
of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael T. Bowser
- Department of Chemistry, University
of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Mahmud S, Ramproshad S, Deb R, Dutta D. A review of the zone broadening contributions in free-flow electrophoresis. Electrophoresis 2023; 44:1519-1538. [PMID: 37548630 DOI: 10.1002/elps.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
The broadening of analyte streams, as they migrate through a free-flow electrophoresis (FFE) channel, often limits the resolving power of FFE separations. Under laminar flow conditions, such zonal spreading occurs due to analyte diffusion perpendicular to the direction of streamflow and variations in the lateral distance electrokinetically migrated by the analyte molecules. Although some of the factors that give rise to these contributions are inherent to the FFE method, others originate from non-idealities in the system, such as Joule heating, pressure-driven crossflows, and a difference between the electrical conductivities of the sample stream and background electrolyte. The injection process can further increase the stream width in FFE separations but normally influencing all analyte zones to an equal extent. Recently, several experimental and theoretical works have been reported that thoroughly investigate the various contributions to stream variance in an FFE device for better understanding, and potentially minimizing their magnitudes. In this review article, we carefully examine the findings from these studies and discuss areas in which more work is needed to advance our comprehension of the zone broadening contributions in FFE assays.
Collapse
Affiliation(s)
- Sakur Mahmud
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Sarker Ramproshad
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Rajesh Deb
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
3
|
LeMon MB, Douma CC, Burke GS, Bowser MT. Fabrication of µFFE Devices in COC via Hot Embossing with a 3D-Printed Master Mold. MICROMACHINES 2023; 14:1728. [PMID: 37763891 PMCID: PMC10534651 DOI: 10.3390/mi14091728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The fabrication of high-performance microscale devices in substrates with optimal material properties while keeping costs low and maintaining the flexibility to rapidly prototype new designs remains an ongoing challenge in the microfluidics field. To this end, we have fabricated a micro free-flow electrophoresis (µFFE) device in cyclic olefin copolymer (COC) via hot embossing using a PolyJet 3D-printed master mold. A room-temperature cyclohexane vapor bath was used to clarify the device and facilitate solvent-assisted thermal bonding to fully enclose the channels. Device profiling showed 55 µm deep channels with no detectable feature degradation due to solvent exposure. Baseline separation of fluorescein, rhodamine 110, and rhodamine 123, was achieved at 150 V. Limits of detection for these fluorophores were 2 nM, 1 nM, and 10 nM, respectively, and were comparable to previously reported values for glass and 3D-printed devices. Using PolyJet 3D printing in conjunction with hot embossing, the full design cycle, from initial design to production of fully functional COC µFFE devices, could be completed in as little as 6 days without the need for specialized clean room facilities. Replicate COC µFFE devices could be produced from an existing embossing mold in as little as two hours.
Collapse
Affiliation(s)
| | | | | | - Michael T. Bowser
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Anciaux SK, Bowser MT. Reduced surface adsorption in 3D printed acrylonitrile butadiene styrene micro free-flow electrophoresis devices. Electrophoresis 2020; 41:225-234. [PMID: 31816114 PMCID: PMC7316087 DOI: 10.1002/elps.201900179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/27/2023]
Abstract
We have 3D printed and fabricated micro free-flow electrophoresis (µFFE) devices in acrylonitrile butadiene styrene (ABS) that exhibit minimal surface adsorption without requiring additional surface coatings or specialized buffer additives. 2D, nano LC-micro free flow electrophoresis (2D nLC × µFFE) separations were used to assess both spatial and temporal broadening as peaks eluted through the separation channel. Minimal broadening due to wall adsorption was observed in either the spatial or temporal dimensions during separations of rhodamine 110, rhodamine 123, and fluorescein. Surface adsorption was observed in separations of Chromeo P503 labeled myoglobin and cytochrome c but was significantly reduced compared to previously reported glass devices. Peak widths of < 30 s were observed for both proteins. For comparison, Chromeo P503 labeled myoglobin and cytochrome c adsorb strongly to the surface of glass µFFE devices resulting in peak widths >20 min. A 2D nLC × µFFE separation of a Chromeo P503 labeled tryptic digest of BSA was performed to demonstrate the high peak capacity possible due to the low surface adsorption in the 3D printed ABS devices, even in the absence of surface coatings or buffer additives.
Collapse
Affiliation(s)
- Sarah K. Anciaux
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN, 55455
| | - Michael T. Bowser
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN, 55455
| |
Collapse
|
5
|
Abstract
Micro free-flow electrophoresis (μFFE) is a continuous separation technique in which analytes are streamed through a perpendicularly applied electric field in a planar separation channel. Analyte streams are deflected laterally based on their electrophoretic mobilities as they flow through the separation channel. A number of μFFE separation modes have been demonstrated, including free zone (FZ), micellar electrokinetic chromatography (MEKC), isoelectric focusing (IEF) and isotachophoresis (ITP). Approximately 60 articles have been published since the first μFFE device was fabricated in 1994. We anticipate that recent advances in device design, detection, and fabrication, will allow μFFE to be applied to a much wider range of applications. Applications particularly well suited for μFFE analysis include continuous, real time monitoring and microscale purifications.
Collapse
Affiliation(s)
- Alexander C Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
6
|
Continuous purification of reaction products by micro free-flow electrophoresis enabled by large area deep-UV fluorescence imaging. Anal Bioanal Chem 2017; 410:853-862. [DOI: 10.1007/s00216-017-0697-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
7
|
Novo P, Janasek D. Current advances and challenges in microfluidic free-flow electrophoresis-A critical review. Anal Chim Acta 2017; 991:9-29. [PMID: 29031303 DOI: 10.1016/j.aca.2017.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
Abstract
The research field on microfluidic free-flow electrophoresis has developed vast amounts of devices, methods, applications and raised new questions, often in analogy to conventional techniques from which it derives. Most efforts have been employed on device development and a myriad of architectures and fabrication techniques have been reported using simple proof-of-principle separations. As technological aspects reach a quite mature state, researchers' new challenges include the development of protocols for the separation of complex mixtures, as required in the fields of application. The success of this effort is extremely dependent on the capability to transfer the device's fabrication to an industrial setting as well as to ensure interfacing simplicity, namely at the solutions' supply and collection, and actuation such as electric potential application and temperature control. Other advanced applications such as direct interfacing to downstream systems such as mass spectrometry, integration of sensing and feedback controls will require further development in the laboratory. In this review we provide an overview on the field, from basic concepts, through advanced developments both in the theoretical and experimental arenas, and addressing the above details. A comprehensive survey of designs, materials and applications is presented with particular highlights to most recent developments, namely the integration of electrodes, flow control and hyphenation of microfluidic free-flow electrophoresis with other techniques.
Collapse
Affiliation(s)
- Pedro Novo
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227, Otto-Hahn-Str. 6b, Dortmund, Germany
| | - Dirk Janasek
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227, Otto-Hahn-Str. 6b, Dortmund, Germany.
| |
Collapse
|
8
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
9
|
Johnson AC, Bowser MT. High-Speed, Comprehensive, Two Dimensional Separations of Peptides and Small Molecule Biological Amines Using Capillary Electrophoresis Coupled with Micro Free Flow Electrophoresis. Anal Chem 2017; 89:1665-1673. [PMID: 27989118 DOI: 10.1021/acs.analchem.6b03768] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional (2D) separations are able to generate significantly higher peak capacities than their one-dimensional counterparts. Unfortunately, current hyphenated 2D separations are limited by the speed of the second dimension separation and the consequent loss of peak capacity due to under sampling of peaks as they elute from the first dimension separation. Continuous micro free flow electrophoresis (μFFE) separations eliminate under sampling as a limitation when incorporated as the second dimension of a 2D separation. In the current manuscript we describe the first coupling of capillary electrophoresis (CE) with μFFE to perform 2D CE × μFFE separations. The CE separation capillary was directly inserted into the μFFE separation channel using an edge on interface. Analyte peaks streamed directly into the μFFE separation channel as they migrated off the CE capillary. No complicated injection, valving, or voltage changes were necessary to couple the two separation modes. 2D CE × μFFE generated an ideal peak capacity of 2 592 in a 9 min separation of fluorescently labeled peptides (7.6 min separation window, 342 peaks/min). Data points were recorded every 250-500 ms (>8 data points/peak), effectively eliminating under sampling as a source of band broadening. CE × μFFE generated an ideal peak capacity of 1885 in a 2.7 min separation of fluorescently labeled small molecule bioamines (1.8 min separation window, 1053 peaks/min). Peaks in the 2D CE × μFFE separation of peptides covered 30% of the available separation space, resulting in a corrected peak capacity of 778 (102 peaks/min). The fractional coverage of the 2D CE × μFFE separation of small molecule bioamines was 20%, resulting in a corrected peak capacity of 377 (209 peaks/min).
Collapse
Affiliation(s)
- Alexander C Johnson
- University of Minnesota , Department of Chemistry, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael T Bowser
- University of Minnesota , Department of Chemistry, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Ranjbar L, Foley JP, Breadmore MC. Multidimensional liquid-phase separations combining both chromatography and electrophoresis – A review. Anal Chim Acta 2017; 950:7-31. [DOI: 10.1016/j.aca.2016.10.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 01/31/2023]
|
11
|
Abstract
The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively.
Collapse
Affiliation(s)
- Sarah K Anciaux
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Matthew Geiger
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael T Bowser
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Geiger M, Bowser MT. Effect of Fluorescent Labels on Peptide and Amino Acid Sample Dimensionality in Two Dimensional nLC × μFFE Separations. Anal Chem 2016; 88:2177-87. [DOI: 10.1021/acs.analchem.5b03811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew Geiger
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael T. Bowser
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|