1
|
Chen Q, Yao L, Yao B, Meng X, Wu Q, Chen Z, Chen W. Low-cost signal enhanced colorimetric and SERS dual-mode paper sensor for rapid and ultrasensitive screening of mercury ions in tea. Food Chem 2025; 463:141375. [PMID: 39332369 DOI: 10.1016/j.foodchem.2024.141375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Mercury ions (Hg2+) are highly toxic heavy metals that are commonly found in natural environments. Owning to their non-biodegradability and accumulation in the food chain, the precise detection of trace amounts of Hg2+ is essential for preventing chronic accumulation and ensuring food safety. In this study, we present a dual-mode paper sensor for simultaneous colorimetric and Surface-Enhanced Raman Spectroscopy (SERS) detection of Hg2+ in tea, achieving ultrasensitive, rapid, and on-site screening. 4-Mercaptopyridine (4-MPY) was effectively chemisorbed onto the gold nanoparticles (AuNPs), acting as a signal probe for colorimetric methods. Moreover, it can produce plasmonic hot spots for SERS by interacting with the pyridine ring. To enhance the signal intensity of both colorimetry and SERS, a silver shell is in-situ grown on the surface of AuNPs captured on the paper sensor by reduction of Ag+, achieving signal amplification. The visual limit of detection (LOD) for the colorimetric biosensor is 2.5 pM, while the LOD of SERS is 0.48 pM with this dual-mode paper sensor. The sensitivity of both the colorimetric method and SERS was improved by approximately 200 and 500 times, respectively, with the designed signal amplification strategy. The system allows for multiple parallel screening of the same sample, ensuring accurate results without any false-positive or false-negative. This study provides a valuable platform for the accurate detection of various other heavy metal ions and provides effective strategies for improving the performance of colorimetric methods.
Collapse
Affiliation(s)
- Qi Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Intelligent Manufacturing Institute, Hefei University of Technology, Hefei 230009, PR China
| | - Li Yao
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Intelligent Manufacturing Institute, Hefei University of Technology, Hefei 230009, PR China; Changsha University of Science & Technology, Changsha, 410114, Hunan, China.
| | - Bangben Yao
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, PR China
| | - Xianzhuo Meng
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Intelligent Manufacturing Institute, Hefei University of Technology, Hefei 230009, PR China
| | - Qian Wu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Intelligent Manufacturing Institute, Hefei University of Technology, Hefei 230009, PR China
| | - Zhaoran Chen
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, PR China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Intelligent Manufacturing Institute, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
2
|
Hu J, Yu Y, Pan X, Yue Han, She X, Liu X, Zhang Q, Gai H, Zong C. Highly sensitive and specific detection of human papillomavirus type 16 using CRISPR/Cas12a assay coupled with an enhanced single nanoparticle dark-field microscopy imaging technique. Talanta 2024; 278:126449. [PMID: 38908140 DOI: 10.1016/j.talanta.2024.126449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Human papillomavirus (HPV) is a prevalent sexually transmitted pathogen associated with cervical cancer. Detecting high-risk HPV (hr-HPV) infections is crucial for cervical cancer prevention, particularly in resource-limited settings. Here, we present a highly sensitive and specific sensor for HPV-16 detection based on CRISPR/Cas12a coupled with enhanced single nanoparticle dark-field microscopy (DFM) imaging techniques. Ag-Au satellites were assembled through the hybridization of AgNPs-based spherical nucleic acid (Ag-SNA) and AuNPs-based spherical nucleic acid (Au-SNA), and their disassembly upon target-mediated cleavage by the Cas12a protein was monitored using DFM for HPV-16 quantification. To enhance the cleavage efficiency and detection sensitivity, the composition of the ssDNA sequences on Ag-SNA and Au-SNA was optimized. Additionally, we explored using the SynSed technique (synergistic sedimentation of Brownian motion suppression and dehydration transfer) as an alternative particle transfer method in DFM imaging to traditional electrostatic deposition. This addresses the issue of inconsistent deposition efficiency of Ag-Au satellites and their disassembly due to their size and charge differences. The sensor achieved a remarkable limit of detection (LOD) of 10 fM, lowered by 9-fold compared to traditional electrostatic deposition methods. Clinical testing in DNA extractions from 10 human cervical swabs demonstrated significant response differences between the positive and negative samples. Our sensor offers a promising solution for sensitive and specific HPV-16 detection, with implications for cancer screening and management.
Collapse
Affiliation(s)
- Jiajia Hu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yang Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xiaoyan Pan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yue Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xinyi She
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
3
|
Zhang Q, Chai W, Pan X, Gai H. Amplification-Free Digital Immunoassay down to the Attomolar Level by Synergistic Sedimentation of Brownian Motion Suppression and Dehydration Transfer. Anal Chem 2024. [PMID: 38329294 DOI: 10.1021/acs.analchem.3c05066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Amplification-free digital immunoassays (DIAs) typically utilize optical nanoparticles to enhance single immunocomplex molecule detection. The efficiency and uniformity of transferring the nanoparticles from a bulk solution to a solid surface determine the limit of detection (LOD) and the accuracy of DIAs. Previous methods suffer from issues like low efficiency, nonuniform distribution, and particle aggregation. Here, we present a novel technique named synergistic sedimentation of Brownian motion suppression and dehydration transfer (SynSed) for nanoparticles using water-soluble polymers. The efficiency of transferring quantum dots (QDs) was increased from 10.7 to 91.4%, and the variation in QD distribution was restricted to 8.8%. By incorporating SynSed into DIAs, we achieved a remarkable reduction in the LOD (down to 3.9 aM) for carcinoembryonic antigen and expanded the dynamic range to cover 3 orders of magnitude in concentration, ranging from 0.01 to 10 fM. DIAs enhanced with SynSed possess ultrahigh sensitivity, advanced accuracy, and specificity, offering a great premise in early disease diagnostics, risk stratification, and treatment response monitoring.
Collapse
Affiliation(s)
- Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Wenwen Chai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaoyan Pan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
4
|
Zhang W, Zi X, Bi J, Liu G, Cheng H, Bao K, Qin L, Wang W. Plasmonic Nanomaterials in Dark Field Sensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2027. [PMID: 37446543 DOI: 10.3390/nano13132027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Plasma nanoparticles offer promise in data storage, biosensing, optical imaging, photoelectric integration, etc. This review highlights the local surface plasmon resonance (LSPR) excitation mechanism of plasmonic nanoprobes and its critical significance in the control of dark-field sensing, as well as three main sensing strategies based on plasmonic nanomaterial dielectric environment modification, electromagnetic coupling, and charge transfer. This review then describes the component materials of plasmonic nanoprobes based on gold, silver, and other noble metals, as well as their applications. According to this summary, researchers raised the LSPR performance of composite plasmonic nanomaterials by combining noble metals with other metals or oxides and using them in process analysis and quantitative detection.
Collapse
Affiliation(s)
- Wenjia Zhang
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| | - Xingyu Zi
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Jinqiang Bi
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300192, China
| | - Guohua Liu
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Hongen Cheng
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Kexin Bao
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300192, China
| | - Liu Qin
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| | - Wei Wang
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| |
Collapse
|
5
|
Manjubaashini N, Daniel Thangadurai T. Unaided-eye detection of diverse Metal ions by AuNPs-based Nanocomposites: A Review. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Liu L, Ling Y, Han J, Hao T, Li X. Rapid and highly selective colorimetric detection of mercury(II) ions in water sources based on a ribavirin functionalized AuNP sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4669-4679. [PMID: 36345946 DOI: 10.1039/d2ay01437h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solvated mercuric ions (Hg2+), a toxic and harmful water pollutant, can easily accumulate in organisms and cause serious damage to the kidney, liver, and central nervous system. To realize rapid and efficient detection of mercury (II) ions in water sources, a kind of new colorimetric sensor of gold nanoparticles (AuNPs) functionalized with ribavirin (Rib-AuNPs) was proposed and characterized by TEM, DLS, XRD, and UV-vis in this work. The color of the Rib-AuNP solution rapidly changed from wine-red to gray-blue with the addition of Hg2+ based on the aggregation mechanism. The limits of detection (LODs) are 0.20 μM by the naked eye and 3.64 nM by UV-vis spectroscopy with a fine linear relationship in the range of 0-0.25 μM (R2 = 0.9834) and 0.25-0.80 μM (R2 = 0.9893) of Hg2+, indicating that the detection system of Rib-AuNPs could be applied to analyze Hg2+ with excellent selectivity and anti-interference in real water samples.
Collapse
Affiliation(s)
- Lvcheng Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yuqi Ling
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Junshan Han
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Tingting Hao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Xing Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
7
|
Sawan S, Errachid A, Maalouf R, Jaffrezic-Renault N. Aptamers functionalized metal and metal oxide nanoparticles: Recent advances in heavy metal monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhu H, Xu W, Shan M, Yang T, Lin Q, Yu K, Xing Y, Yu Y. High-Throughput Color Imaging Hg2+ Sensing via Amalgamation-Mediated Shape Transition of Concave Cube Au Nanoparticles. NANOMATERIALS 2022; 12:nano12111902. [PMID: 35683757 PMCID: PMC9182504 DOI: 10.3390/nano12111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
Mercury, as one type of toxic heavy metal, represents a great threat to environmental and biological metabolic systems. Thus, reliable and sensitive quantitative detection of mercury levels is particularly meaningful for environmental protection and human health. We proposed a high-throughput single-particle color imaging strategy under dark-field microscopy (DFM) for mercury ions (Hg2+) detection by using individual concave cube Au nanoparticles as optical probes. In the presence of ascorbic acid (AA), Hg2+ was reduced to Hg which forms Au–Hg amalgamate with Au nanoparticles, altering their localized surface plasmon resonance (LSPR). Transmission electron microscopy (TEM) images demonstrated that the concave cube Au nanoparticles were approaching to sphere upon increasing the concentration of Hg2+. The nanoparticles underwent an obvious color change from red to yellow, green, and finally blue under DFM due to the shape-evolution and LSPR changes. In addition, we demonstrated for the first time that the LSPR of Au–Hg amalgamated below 400 nm. Inspired by the above-mentioned results, single-particle color variations were digitalized by converting the color image into RGB channels to obtain (green+blue)/red intensity ratios [(G+B)/R]. The concentration-dependence change was quantified by statistically analyzing the (G+B)/R ratios of a large number of particles. A linear range from 10 to 2000 nM (R2 = 0.972) and a limit of detection (LOD) of 1.857 nM were acquired. Furthermore, many other metal ions, like Cu2+, Cr3+, etc., did not interfere with Hg2+ detection. More importantly, Hg2+ content in industrial wastewater samples and in the inner regions of human HepG2 cells was determined, showing great potential for developing a single-particle color imaging sensor in complex biological samples using concave cube Au nanoparticles as optical probes.
Collapse
Affiliation(s)
- He Zhu
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China; (H.Z.); (W.X.)
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; (M.S.); (Y.Y.)
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Facully of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weizhen Xu
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China; (H.Z.); (W.X.)
| | - Min Shan
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; (M.S.); (Y.Y.)
| | - Tao Yang
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China; (H.Z.); (W.X.)
- Correspondence: (T.Y.); (Q.L.); (K.Y.); (Y.X.)
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-Products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China; (H.Z.); (W.X.)
- Correspondence: (T.Y.); (Q.L.); (K.Y.); (Y.X.)
| | - Kexue Yu
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; (M.S.); (Y.Y.)
- Correspondence: (T.Y.); (Q.L.); (K.Y.); (Y.X.)
| | - Yanxia Xing
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; (M.S.); (Y.Y.)
- Correspondence: (T.Y.); (Q.L.); (K.Y.); (Y.X.)
| | - Yang Yu
- Technology Center of Gaoqing Black Cattle Product Processing and Quality Improvement, College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; (M.S.); (Y.Y.)
| |
Collapse
|
9
|
Liu X, Lin X, Pan X, Gai H. Multiplexed Homogeneous Immunoassay Based on Counting Single Immunocomplexes together with Dark-Field and Fluorescence Microscopy. Anal Chem 2022; 94:5830-5837. [PMID: 35380795 DOI: 10.1021/acs.analchem.1c05269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of multiplexed immunoassays is impeded by the difficulty in distinguishing labeled immunocomplexes from free probes and nonspecifically bound probes. Here, we attempted to overcome this issue by counting core-satellite-structured immunocomplexes simultaneously using dark-field and fluorescence microscopy. The tumor biomarkers of carcinoembryonic antigen (CEA), α-fetoprotein (AFP), and prostate-specific antigen (PSA) were chosen as model targets. Gold nanoparticles (AuNPs) with diameters of 70 nm were coated with the detection antibodies of the three targets. Quantum dot (QD) 525, QD 585, and QD 655 were modified with the capture antibodies of CEA, AFP, and PSA, respectively. Then, an immunocomplex containing one AuNP and one or several QDs was formed, whereas free and nonspecifically bound probes had either one AuNP or one QD. When observed with a transmission grating-based spectral microscope, the immunocomplexes had overlapping scattering and fluorescent spectral images and were therefore identified and quantified precisely. The biomarkers inside the immunocomplexes were recognized on the basis of the fluorescent first-order streaks of the QDs. Model biomarkers in buffer and in 12.6% blank plasma were quantified for validation. The limits of detection for CEA, PSA, and AFP in buffer were in dozens of femtomolar and were close to those in blank plasma. The results demonstrated that our approach worked well in distinguishing immunocomplexes from free and nonspecifically bound probes. The successful quantification of the three targets in five human plasma samples verified the reliability of our method in clinical applications.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xiaoyan Pan
- School of Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
10
|
Painuli R, Raghav S, Jha PC, Athar M, Kumar D. Thermodynamics and kinetics to develop an analytical method for sensing of aqueous Hg(II) using caffeic acid decorated AgNPs. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ritu Painuli
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Sapna Raghav
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Prakash C. Jha
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Mohd Athar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
11
|
Ye W, Yu M, Wang F, Li Y, Wang C. Multiplexed detection of heavy metal ions by single plasmonic nanosensors. Biosens Bioelectron 2021; 196:113688. [PMID: 34700264 DOI: 10.1016/j.bios.2021.113688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Detection of multiple analytes simultaneously in small liquid samples with high efficiency and precision is highly important to the fields like water quality monitoring. In this letter, we present a multiplexed nanosensors with position-encoded aptamer functionalized gold nanorods for heavy metal ions detection. The individual gold nanorods respond specifically to two different heavy metal ions (Pb2+ and Hg2+) with a spectral shift in the scattering spectrum. We used a home-built spectral imaging dark-field microscope to measure the response of thousands of single plasmonic nanosensors with relatively high time resolution and precision. To explore the performance and limit of detection (LOD) of our nanosensor and setup, we recorded the concentration-dependent response of our position-encoded nanosensors with a series of mixture solutions that contain different concentrations of Hg2+ and Pb2+ ions. The LOD levels of our system are around 5 nM for Pb2+ ions and 1 nM for Hg2+ ions. Our method and results demostrate the nanomolar sensitivity and the potential to detect more different heavy metal ions.
Collapse
Affiliation(s)
- Weixiang Ye
- Department of Physics, School of Science, Hainan University, Haikou, 570228, China; School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Minghuai Yu
- Department of Physics, School of Science, Hainan University, Haikou, 570228, China
| | - Fuquan Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China; Semiconductor Manufacturing International Corporation (SMIC), Tianjin, 300385, China
| | - Yijun Li
- Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Cheng Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China; Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Wang W, You Y, Gunasekaran S. LSPR-based colorimetric biosensing for food quality and safety. Compr Rev Food Sci Food Saf 2021; 20:5829-5855. [PMID: 34601783 DOI: 10.1111/1541-4337.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
Ensuring consistently high quality and safety is paramount to food producers and consumers alike. Wet chemistry and microbiological methods provide accurate results, but those methods are not conducive to rapid, onsite testing needs. Hence, many efforts have focused on rapid testing for food quality and safety, including the development of various biosensors. Herein, we focus on a group of biosensors, which provide visually recognizable colorimetric signals within minutes and can be used onsite. Although there are different ways to achieve visual color-change signals, we restrict our focus on sensors that exploit the localized surface plasmon resonance (LSPR) phenomenon of metal nanoparticles, primarily gold and silver nanoparticles. The typical approach in the design of LSPR biosensors is to conjugate biorecognition ligands on the surface of metal nanoparticles and allow the ligands to specifically recognize and bind the target analyte. This ligand-target binding reaction leads to a change in color of the test sample and a concomitant shift in the ultraviolet-visual absorption peak. Various designs applying this and other signal generation schemes are reviewed with an emphasis on those applied for evaluating factors that compromise the quality and safety of food and agricultural products. The LSPR-based colorimetric biosensing platform is a promising technology for enhancing food quality and safety. Aided by the advances in nanotechnology, this sensing technique lends itself easily for further development on field-deployable platforms such as smartphones for onsite and end-user applications.
Collapse
Affiliation(s)
- Weizheng Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Youngsang You
- Department of Food Engineering, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Mao K, Zhang H, Pan Y, Yang Z. Biosensors for wastewater-based epidemiology for monitoring public health. WATER RESEARCH 2021; 191:116787. [PMID: 33421639 DOI: 10.1016/j.watres.2020.116787] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Public health is attracting increasing attention due to the current global pandemic, and wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring of public health by analysis of a variety of biomarkers (e.g., chemicals and pathogens) in wastewater. Rapid development of WBE requires rapid and on-site analytical tools for monitoring of sewage biomarkers to provide immediate decision and intervention. Biosensors have been demonstrated to be highly sensitive and selective tools for the analysis of sewage biomarkers due to their fast response, ease-to-use, low cost and the potential for field-testing. This paper presents biosensors as effective tools for wastewater analysis of potential biomarkers and monitoring of public health via WBE. In particular, we discuss the use of sewage sensors for rapid detection of a range of targets, including rapid monitoring of community-wide illicit drug consumption and pathogens for early warning of infectious diseases outbreaks. Finally, we provide a perspective on the future use of the biosensor technology for WBE to enable rapid on-site monitoring of sewage, which will provide nearly real-time data for public health assessment and effective intervention.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Yuwei Pan
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| |
Collapse
|
14
|
Montes-García V, Squillaci MA, Diez-Castellnou M, Ong QK, Stellacci F, Samorì P. Chemical sensing with Au and Ag nanoparticles. Chem Soc Rev 2021; 50:1269-1304. [PMID: 33290474 DOI: 10.1039/d0cs01112f] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noble metal nanoparticles (NPs) are ideal scaffolds for the fabrication of sensing devices because of their high surface-to-volume ratio combined with their unique optical and electrical properties which are extremely sensitive to changes in the environment. Such characteristics guarantee high sensitivity in sensing processes. Metal NPs can be decorated with ad hoc molecular building blocks which can act as receptors of specific analytes. By pursuing this strategy, and by taking full advantage of the specificity of supramolecular recognition events, highly selective sensing devices can be fabricated. Besides, noble metal NPs can also be a pivotal element for the fabrication of chemical nose/tongue sensors to target complex mixtures of analytes. This review highlights the most enlightening strategies developed during the last decade, towards the fabrication of chemical sensors with either optical or electrical readout combining high sensitivity and selectivity, along with fast response and full reversibility, with special attention to approaches that enable efficient environmental and health monitoring.
Collapse
Affiliation(s)
- Verónica Montes-García
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
15
|
Yang YX, Fang YZ, Tian JX, Xiao Q, Kong XJ. Fluorescent polydopamine nanoparticles as a nanosensor for the sequential detection of mercury ions and l-ascorbic acid based on a coordination effect and redox reaction. RSC Adv 2020; 10:28164-28170. [PMID: 35519102 PMCID: PMC9055638 DOI: 10.1039/d0ra02031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/11/2020] [Indexed: 12/04/2022] Open
Abstract
Herein, a novel fluorescence nanosensor using intrinsic fluorescent polydopamine nanoparticles (PDA NPs) as an effective signal reporter has been constructed for the simple, rapid and sequential detection of mercury ions (Hg2+) and l-ascorbic acid (AA) based on a coordination effect and redox reaction. The fluorescence of the PDA NPs could be specifically quenched by Hg2+ through intense coordination effects between the Hg2+ and the groups (catechol, amine, ketone and imine) on the surface of the PDA NPs. However, when AA and Hg2+ coexisted in solution, the fluorescence of the PDA NPs pronouncedly recovered via the redox reaction of Hg2+, with it being reduced to Hg0 by AA. The fluorescence quenching mechanism of Hg2+ towards the PDA NPs and the redox reaction between Hg2+ and AA were also fully investigated. The nanosensor exhibited high sensitivity and desirable selectivity for Hg2+ and AA detection. Moreover, the strategy was successfully explored in real samples (tap water, lake water and human serum samples) with satisfactory recoveries. The developed nanosensor provides new sights and good inspiration for Hg2+ and AA detection under real conditions.
Collapse
Affiliation(s)
- Yi-Xuan Yang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-86422903 +86-791-86422903
| | - Yan-Zhao Fang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-86422903 +86-791-86422903
| | - Jing-Xuan Tian
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-86422903 +86-791-86422903
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-86422903 +86-791-86422903
| | - Xiang-Juan Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China +86-791-86422903 +86-791-86422903
| |
Collapse
|
16
|
Lu Y, Yang Q, Wu J. Recent advances in biosensor-integrated enrichment methods for preconcentrating and detecting the low-abundant analytes in agriculture and food samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Ray A, Khalid MA, Demčenko A, Daloglu M, Tseng D, Reboud J, Cooper JM, Ozcan A. Holographic detection of nanoparticles using acoustically actuated nanolenses. Nat Commun 2020; 11:171. [PMID: 31949134 PMCID: PMC6965092 DOI: 10.1038/s41467-019-13802-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
The optical detection of nanoparticles, including viruses and bacteria, underpins many of the biological, physical and engineering sciences. However, due to their low inherent scattering, detection of these particles remains challenging, requiring complex instrumentation involving extensive sample preparation methods, especially when sensing is performed in liquid media. Here we present an easy-to-use, high-throughput, label-free and cost-effective method for detecting nanoparticles in low volumes of liquids (25 nL) on a disposable chip, using an acoustically actuated lens-free holographic system. By creating an ultrasonic standing wave in the liquid sample, placed on a low-cost glass chip, we cause deformations in a thin liquid layer (850 nm) containing the target nanoparticles (≥140 nm), resulting in the creation of localized lens-like liquid menisci. We also show that the same acoustic waves, used to create the nanolenses, can mitigate against non-specific, adventitious nanoparticle binding, without the need for complex surface chemistries acting as blocking agents.
Collapse
Affiliation(s)
- Aniruddha Ray
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
| | - Muhammad Arslan Khalid
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Andriejus Demčenko
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Mustafa Daloglu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Derek Tseng
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Julien Reboud
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Jonathan M Cooper
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
- David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Abdelhamid HN, Wu HF. A New Binary Matrix for Specific Detection of Mercury(II) Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2617-2622. [PMID: 31659719 DOI: 10.1007/s13361-019-02324-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/29/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The development of simple, low-cost, and specific detection method for mercury (Hg(II)) ions in aqueous media using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is a challenge due to matrix interferences and acidity that destroy weak interactions. Herein, a new binary matrix consists of mefenamic acid, and thymine (T) is applied for simple and specific detection of Hg(II) in aqueous solution and blood sample. Mass spectra show metal-to-ligand ratio of 1:2 (Hg(II):T) in which Hg(II) ions are bound to two T molecules and two water molecules, i.e., [Hg(T)2(H2O)2]. The method is simple and fast, and requires cheap reagents. In addition, the spectra show extremely specific signals for Hg(II) ions and insignificant signals in case of other competing metal ions. The concept of our protocol can be applied for other metals. The new matrix may be used for the analysis of small molecules with minimal interferences peaks.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71515, Egypt.
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71515, Egypt.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
19
|
Li Y, Liu Q, Chen Z. Optical aptasensing of mercury(II) by using salt-induced and exonuclease I-induced gold nanoparticle aggregation under dark-field microscope observation. Mikrochim Acta 2019; 186:729. [PMID: 31659462 DOI: 10.1007/s00604-019-3876-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/26/2019] [Indexed: 02/03/2023]
Abstract
An optical method for determination of Hg(II) is described that exploits the aggregation of gold nanoparticles (AuNPs) under dark-field microscope (DFM) observation. This assay is based on the use of a Hg(II)-specific aptamer, AuNPs modified with complementary DNA strands, and exonuclease I (Exo I). In the absence of Hg(II), the added dsDNA prevents salt-induced aggregation of the green-colored AuNPs. If Hg(II) is added, the aptamer will capture it to form T-Hg(II)-T pairs, and the complementary strand is digested by Exo I. On addition of a solution of NaCl, the AuNPs will aggregate. This is accompanied by a color change from green to orange/red) in the dark-field image. By calculating the intensity of the orange/red dots in the dark-field image, concentration of Hg(II) can be accurately determined. The limit of detection is as low as 36 fM, and response is a linear in the 83 fM to 8.3 μM Hg(II) concentration range. Graphical abstract Schematic representation of a colorimetric assay for Hg(II) based on the use of a mercury(II)-specific aptamer, gold nanoparticles modified with complementary DNA strands, and exonuclease I.
Collapse
Affiliation(s)
- Yanan Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
20
|
Falahati M, Attar F, Sharifi M, Saboury AA, Salihi A, Aziz FM, Kostova I, Burda C, Priecel P, Lopez-Sanchez JA, Laurent S, Hooshmand N, El-Sayed MA. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim Biophys Acta Gen Subj 2019; 1864:129435. [PMID: 31526869 DOI: 10.1016/j.bbagen.2019.129435] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Gold nanoparticles (AuNPs) with unique physicochemical properties have received a great deal of interest in the field of biological, chemical and biomedical implementations. Despite the widespread use of AuNPs in chemical and biological sensing, catalysis, imaging and diagnosis, and more recently in therapy, no comprehensive summary has been provided to explain how AuNPs could aid in developing improved sensing and catalysts systems as well as medical settings. SCOPE OF REVIEW The chemistry of Au-based nanosystems was followed by reviewing different applications of Au nanomaterials in biological and chemical sensing, catalysis, imaging and diagnosis by a number of approaches, and finally synergistic combination therapy of different cancers. Afterwards, the clinical impacts of AuNPs, future application of AuNPs, and opportunities and challenges of AuNPs application were also discussed. MAJOR CONCLUSIONS AuNPs show exclusive colloidal stability and are considered as ideal candidates for colorimetric detection, catalysis, imaging, and photothermal transducers, because their physicochemical properties can be tuned by adjusting their structural dimensions achieved by the different manufacturing methods. GENERAL SIGNIFICANCE This review provides some details about using AuNPs in sensing and catalysis applications as well as promising theranostic nanoplatforms for cancer imaging and diagnosis, and sensitive, non-invasive, and synergistic methods for cancer treatment in an almost comprehensive manner.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 2 Dunav St., Sofia 1000, Bulgaria
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Peter Priecel
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kingdom
| | - Jose A Lopez-Sanchez
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, United Kingdom
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Rue A. Bolland, 8 B-6041 Gosselies, Belgium
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
21
|
|
22
|
A DNA based visual and colorimetric aggregation assay for the early growth factor receptor (EGFR) mutation by using unmodified gold nanoparticles. Mikrochim Acta 2019; 186:546. [DOI: 10.1007/s00604-019-3696-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
|
23
|
Liu F, Guo Y, Hu Y, Zhang X, Zheng X. Intracellular dark-field imaging of ATP and photothermal therapy using a colorimetric assay based on gold nanoparticle aggregation via tetrazine/trans-cyclooctene cycloaddition. Anal Bioanal Chem 2019; 411:5845-5854. [PMID: 31278549 DOI: 10.1007/s00216-019-01966-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022]
Abstract
In this study, we developed a colorimetric ATP assay based on the ATP-induced aggregation of Au nanoparticles (AuNPs). This aggregation modified the local surface plasmon resonance (LSPR) of the AuNPs, which was used to detect and localize ATP in cells via dark-field imaging. The AuNP aggregation process involved the reaction of two types of functionalized AuNPs with each other: tetrazine-modified AuNPs (Au3-N4) and asymmetrically functionalized trans-cyclooctene-modified AuNPs (Au1-(E)-cyclooctene). This cycloaddition reaction occurs without the need for a catalyst such as the Cu ions that are used in the "click" reactions often employed in assays of this type. Initially, we asymmetrically functionalized both types of AuNPs and let them dimerize, which permitted us to explore the resulting wavelength shift in the LSPR of the AuNPs. Then, to facilitate the specific recognition of ATP, a designed DNA (DNA1) containing an ATP aptamer sequence was attached to carboxyl polystyrene microbeads (MBs). After attaching a different DNA (DNA2, which hybridizes with DNA1) to Au1-(E)-cyclooctene, the assay probe MB/DNA1/DNA2/Au1-(E)-cyclooctene (MB/Au1) was generated. While bound to MB/DNA1, the DNA2/Au1-(E)-cyclooctene cannot react with Au3-N4 due to steric hindrance from the MB. However, in the presence of ATP, the probe MB/Au1 dissociates, and the resulting free DNA2/Au1-(E)-cyclooctene can then react with the Au3-N4, leading to the formation of AuNP aggregates. Dark-field microscopy (DFM) images showed that the LSPR of the AuNPs shifted from the green region (AuNP monomers) to the orange-red region (AuNP aggregates) in the presence of intracellular ATP. Moreover, the AuNP aggregates were found to exhibit significant photothermal effects under 808-nm laser irradiation. Upon introducing the probe MB/Au1 and Au3-N4 into HeLa cells in vitro and in vivo, and then irradiating the cells with a 808-nm NIR laser, the resulting AuNP aggregates showed promising photothermal cancer therapy performance. This assay therefore has the potential to be widely used for the identification and determination of nanoparticles in biological DFM and in tumor theranostics. Graphical abstract.
Collapse
Affiliation(s)
- Fei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.,Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Yingshu Guo
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| | - Yinhua Hu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Xiaoru Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiangjiang Zheng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| |
Collapse
|
24
|
Yin J, Wang J, Yang X, Wu T, Wang H, Zhou X. Poly(adenine)-mediated DNA-functionalized gold nanoparticles for sensitive detection of mercury ions in aqueous media. RSC Adv 2019; 9:18728-18733. [PMID: 35516856 PMCID: PMC9064783 DOI: 10.1039/c9ra03041g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/28/2021] [Accepted: 06/04/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, a facile and sensitive colorimetric sensor for Hg2+ ions based on poly (adenine)-mediated DNA-functionalized gold nanoparticles (Au NPs) is reported. One DNA sequence consisting of poly-A and T-rich DNA was designed rationally. Poly-A was used as an anchoring block to bind tightly to Au NPs, and T-rich DNA was utilized for specific recognition of Hg2+ ions. With the assistance of poly-A, T-rich DNA was easily introduced onto the surface of Au NPs and kept an upright orientation. In the presence of Hg2+ ions, T base binding with Hg2+ ions results in the formation of "T-Hg2+-T" among the Au NPs, which caused aggregation of the Au NPs and a subsequent change in the color of the solution, from wine red to grayish blue. On this occasion, the limit of detection (LOD) was 3.75 nM Hg2+ ions with a linear range from 5 nM to 200 nM, as measured by UV-Vis spectroscopy. Moreover, successful application of this method for the detection of Hg2+ ions in real samples was demonstrated.
Collapse
Affiliation(s)
- Jinjin Yin
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Jiuchao Wang
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiyue Yang
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Tao Wu
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaoming Zhou
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
25
|
Li Y, Chang Y, Ma J, Wu Z, Yuan R, Chai Y. Programming a Target-Initiated Bifunctional DNAzyme Nanodevice for Sensitive Ratiometric Electrochemical Biosensing. Anal Chem 2019; 91:6127-6133. [DOI: 10.1021/acs.analchem.9b00690] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yunrui Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yuanyuan Chang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Jing Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Zhongyu Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
26
|
Berlina AN, Zherdev AV, Dzantiev BB. Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules. Mikrochim Acta 2019; 186:172. [PMID: 30767144 DOI: 10.1007/s00604-018-3168-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023]
Abstract
This review (with 230 refs.) covers recent progress in rapid optical assays for heavy metals (primarily lead and mercury as the most relevant) based on the use of nanoparticles and receptor molecules. An introduction surveys the importance, regulatory demands (such as maximum permissible concentrations) and potential and limitations of various existing methods. This is followed by a general discussion on the use of nanoparticles in optical assays of heavy metals (including properties, basic mechanisms of signal generation). The next sections cover methods for the functionalization of nanoparticles with (a) sulfur-containing compounds (used for modification of nanoparticles or added to the reaction medium), (b) nitrogen-containing compounds (such as amino acids, polypeptides, and heterocyclic molecules), and (c) oxygen-containing species (such as hydroxy and carbonyl compounds). This is continued by a specific description of specific assays based on the use of aptamers as receptors, on the use of deoxyribozymes as synthetic reaction catalysts, of G-quadruplex aptamers, of aptamers in logic gate-type of assays of linear (unstructured) aptamers ("hairpins"), and on the use of aptamers in lateral flow assays. A next section covers assays based on the employment of antibodies as receptors (used in the immunoassay development). The properties of various nanoparticles and their applicability in optical assays are also discussed in some detail. Final sections discuss the selectivity of assays, potential interferences by other cations, methods for their elimination, and also matrix effects and approaches for sample pretreatment. A concluding section discusses current challenges and future trends. Analysis based on enzyme inhibition assay is not treated here but enzyme-like action of some receptor molecules such as DNAzymes is discussed. Graphical abstract Schematic presentation of main principles of application of various nanoparticles with receptor molecules (S-, N-, O-containing, heterocyclic compounds, proteins, antibody, aptamers) for heavy metals ions detection. The included methods cover optical assays with description of mechanisms of interactions and signal generation.
Collapse
Affiliation(s)
- Anna N Berlina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, Moscow, 119071, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, Moscow, 119071, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, Moscow, 119071, Russia.
| |
Collapse
|
27
|
Feng W, He W, Zhou J, Gu XY, Li YF, Huang CZ. Inconspicuous Reactions Identified by Improved Precision of Plasmonic Scattering Dark-Field Microscopy Imaging Using Silver Shell-Isolated Nanoparticles as Internal References. Anal Chem 2019; 91:3002-3008. [DOI: 10.1021/acs.analchem.8b05285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wei Feng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wei He
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Jun Zhou
- College of Computer and Information Science, Southwest University, Chongqing 400715, P. R. China
| | - Xiao Ying Gu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
28
|
Wang J, Zhang HZ, Liu JJ, Yuan D, Li RS, Huang CZ. Time-resolved visual detection of heparin by accelerated etching of gold nanorods. Analyst 2019; 143:824-828. [PMID: 29363687 DOI: 10.1039/c7an01923h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmonic gold nanorods are promising and sensitive light scattering probes, which can reach the single particle level. Herein, we present the light scattering properties of gold nanorods for time-resolved visual detection of heparin based on the rapid etching of gold nanorods under dark-field microscopy.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | |
Collapse
|
29
|
Zong C, Ge M, Pan H, Wang J, Nie X, Zhang Q, Zhao W, Liu X, Yu Y. In situ synthesis of low-cost and large-scale flexible metal nanoparticle–polymer composite films as highly sensitive SERS substrates for surface trace analysis. RSC Adv 2019; 9:2857-2864. [PMID: 35520535 PMCID: PMC9059991 DOI: 10.1039/c8ra08818g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been one of the most promising analytical tools. Despite many efforts in the design of SERS substrates, it remains a great challenge for creating a general flexible substrate that could in situ detect analytes on diverse objects. Herein, we report our attempt to address this issue by developing a facile and versatile method capable of generating silver/gold nanoparticles in situ on the surface of a cellulose acetate (CA) polymer in a simple, cheap, practical, and capping agent-free way. The as-prepared substrates exhibit excellent sensitivity, which enabled detection of Rhodamine 6G at concentrations as low as 10−12 M. Taking advantage of the excellent flexibility and optical transparency of the CA matrix, the highly SERS-active substrate was applied for in situ identification and detection of pesticide residues on fruits. The results indicated that tetramethylthiuram disulfide (TMTD) and thiabendazole (TBZ) can be clearly identified at concentrations as low as 18.05 ng cm−2 and 15.1 ng cm−2, respectively, which were much lower than the maximum permitted residue doses with respect to food safety. Facile and large-scale synthesis of flexible metal nanoparticle–polymer composite films as highly sensitive SERS substrates for in situ food inspection.![]()
Collapse
Affiliation(s)
- Chenghua Zong
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Mengyi Ge
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Hong Pan
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Jing Wang
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Xinming Nie
- School of Physics and Electronic Engineering
- Jiangsu Normal University
- Xuzhou
- China
| | - Qingquan Zhang
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Wenfeng Zhao
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Xiaojun Liu
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| | - Yang Yu
- School of Chemistry and Materials Science
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials
- Jiangsu Normal University
- Xuzhou
- P. R. China
| |
Collapse
|
30
|
Liu X, Zhang Y, Liang A, Ding H, Gai H. Plasmonic resonance energy transfer from a Au nanosphere to quantum dots at a single particle level and its homogenous immunoassay. Chem Commun (Camb) 2019; 55:11442-11445. [DOI: 10.1039/c9cc05548g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PRET from a AuNS to a QD is discovered at a single particle level, and then is used to develop ultra-sensitive homogenous immunoassays.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Yusu Zhang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Aiye Liang
- Department of Physical Sciences
- Charleston Southern University
- North Charleston
- USA
| | - Hongwei Ding
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Hongwei Gai
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
31
|
Xie YF, Cheng YY, Liu ML, Zou HY, Huang CZ. A single gold nanoprobe for colorimetric detection of silver(i) ions with dark-field microscopy. Analyst 2019; 144:2011-2016. [DOI: 10.1039/c8an02397b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, the formation of C–Ag+–C bonding between cytosines was utilized to induce interparticle coupling of gold nanoparticles modified with single-strand DNA, resulting in a color change as the signal transduction to quantify Ag+ sensitively under dark-field microscopy imaging, while we achieved the quantification of Ag+ could be directly realized in lake water samples and drug samples.
Collapse
Affiliation(s)
- Yi Fen Xie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
| | - Yun Ying Cheng
- Key Laboratory of Biomedical Analysis (Southwest University)
- Chongqing Science & Technology Commission
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400716
| | - Meng Li Liu
- Key Laboratory of Biomedical Analysis (Southwest University)
- Chongqing Science & Technology Commission
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400716
| | - Hong Yan Zou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
| |
Collapse
|
32
|
Hu L, Zhu B, Zhang L, Yuan H, Zhao Q, Yan Z. Chitosan–gold nanocomposite and its functionalized paper strips for reversible visual sensing and removal of trace Hg2+ in practice. Analyst 2019; 144:474-480. [DOI: 10.1039/c8an01707g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To eliminate mercury contamination in aqueous environment, chitosan–gold nanocomposite and its functionalized paper strips were designed and developed for visual sensing and removal of trace Hg2+.
Collapse
Affiliation(s)
- Lei Hu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Baohui Zhu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Li Zhang
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Hua Yuan
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Qi Zhao
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| |
Collapse
|
33
|
Sensitive DNA detection by polymerase chain reaction with gold nanoparticles. Anal Chim Acta 2018; 1038:105-111. [DOI: 10.1016/j.aca.2018.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 01/21/2023]
|
34
|
Du J, Zhao M, Huang W, Deng Y, He Y. Visual colorimetric detection of tin(II) and nitrite using a molybdenum oxide nanomaterial-based three-input logic gate. Anal Bioanal Chem 2018; 410:4519-4526. [DOI: 10.1007/s00216-018-1109-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/01/2018] [Accepted: 04/24/2018] [Indexed: 11/28/2022]
|
35
|
A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates. Biosens Bioelectron 2018; 114:15-21. [PMID: 29775854 DOI: 10.1016/j.bios.2018.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022]
Abstract
The study presented herein investigated an easy preparation, high performance, wavelength-modulated LSPR optical fiber chemosensor coated by gold nanospheres(AuNS) for Hg2+ detection based on thymine-Hg2+-thymine base pair mismatches and the coupled plasmonic resonance effect.Utilizing electrostatic self-assembly method, the high density and dispersivity monolayer AuNS coated LSPR fiber sensor had the near field refractive index sensitivity up to 2016 nm/RIU. The single-strand probe DNA served as a binding element for free AuNS labelled-target DNA conjugates was attached to the monolayer AuNS by Au-S bond. In the present of Hg2+, the coupled plasmonic resonance band between monolayer AuNS and free AuNS was produced by thymine-Hg2+-thymine structure and leaded to red-shift of LSPR peak. Under the optimal conditions, the enlarged red-shift in peak of LSPR spectroscopy was linearly with the concentration of Hg2+ in the range from 1.0 × 10-9 to 5.0 × 10-8 M with the coefficient of 0.976. The limit of detection was 0.7 nM(S/N = 3). The specificity of the sensor was proved high by evaluating the response to other heavy metal ions. The proposed fiber sensor provided a label-free, miniature, low-cost approach for the Hg2+ detection and had potential in real environmental evaluations.
Collapse
|
36
|
Li J, Jiao Y, Liu Q, Chen Z. The aptamer-thrombin-aptamer sandwich complex-bridged gold nanoparticle oligomers for high-precision profiling of thrombin by dark field microscopy. Anal Chim Acta 2018; 1028:66-76. [PMID: 29884355 DOI: 10.1016/j.aca.2018.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
We present a simple and efficient colorimetric assay strategy for ultrasensitive visual detection of human α-thrombin, which is essentially based on the formation of the DNA1-thrombin-DNA2 sandwich complex-bridged gold nanoparticle (Au NP) oligomers. Unlike the traditional colorimetric sensing strategies which induced the nanoparticle aggregates with uncontrolled aggregate size. In this work, the DNA1with rich G bases was firstly conjugated on the surfaces of Au NPs fixed on the hexadecyl trimethylammonium bromide (CTAB)-coated glass slide, and thrombin was captured by the DNA1. Then, the other DNA2 with rich G bases interacted with the former DNA1-thrombin complex and formed a DNA1-thrombin-DNA2 sandwich complex. The subsequently added Au NPs can be bound to the Au NP-DNA1-thrombin-DNA2 via Au-S bond to trigger the formation of Au NP oligomers, an apparent color change of the single Au NPs from green to yellow and red was observed under dark field microscopy. By measuring the intensity change of the yellow and red Au NPs, the concentration of target thrombin could be accurately quantified. As a proof of concept experiment, the formation of Au NP oligomers resulted in significantly improved sensitivity (10 fM of limit of detection and 20 fM of limit of quantity) and wider linear dynamic range of thrombin detection (20 fM-20 nM), the relative standard deviation (RSD) was less than 5.73% (n = 5). In addition, in order to validate the potential application in clinical diagnosis, the content of thrombin in a human serum samples was also quantified.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yunfei Jiao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
37
|
Li L, Zhang L, Zhao Y, Chen Z. Colorimetric detection of Hg(II) by measurement the color alterations from the "before" and "after" RGB images of etched triangular silver nanoplates. Mikrochim Acta 2018; 185:235. [PMID: 29594673 DOI: 10.1007/s00604-018-2759-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
Abstract
It is shown that triangular silver nanoplates (TAgNPs) are viable colorimetric probes for the fast, sensitive and selective detection of Hg(II). Detection is accomplished by reducing Hg(II) ions to elemental Hg so that an Ag/Hg amalgam is formed on the surface of the TAgNPs. This leads to the inhibition of the etching TAgNPs by chloride ions. Correspondingly, a distinct color transition can be observed that goes from yellow to brown, purple, and blue. The color alterations extracted from the red, green, and blue part of digital (RGB) images can be applied to the determination of Hg(II). The relationship between the Euclidean distances (EDs), i.e. the square roots of the sums of the squares of the ΔRGB values, vary in the 5 nM to 100 nM Hg(II) concentration range, and the limit of detection is as low as 0.35 nM. The color changes also allow for a visual estimation of the concentrations of Hg(II). The method is simple in that it only requires a digital camera for data acquisition and a Photoshop software for extracting RGB variations and data processing. Graphical abstract Hg2+ detection was achieved by anti-etching of TAgNPs caused by the formation of silver amalgam, along with vivid multicolor variations from yellow to brown, purple, and eventually to be blue.
Collapse
Affiliation(s)
- Li Li
- College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, 453003, China.
| | - Laiping Zhang
- College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, 453003, China
| | - Yan Zhao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
38
|
Nirala NR, Saxena PS, Srivastava A. Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:506-512. [PMID: 28965066 DOI: 10.1016/j.saa.2017.09.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 05/21/2023]
Abstract
We develop a simple colorimetric method for determination of free cholesterol in aqueous solution based on functionalized gold nanoparticles with cholesterol oxidase. Functionalized gold nanoparticles interact with free cholesterol to produce H2O2 in proportion to the level of cholesterol visually is being detected. The quenching in optical properties and agglomeration of functionalized gold nanoparticles play a key role in cholesterol sensing due to the electron accepting property of H2O2. While the lower ranges of cholesterol (lower detection limit i.e. 0.2mg/dL) can be effectively detected using fluorescence study, the absorption study attests evident visual color change which becomes effective for detection of higher ranges of cholesterol (lower detection limit i.e. 19mg/dL). The shades of red gradually change to blue/purple as the level of cholesterol detected (as evident at 100mg/dL) using unaided eye without the use of expensive instruments. The potential of the proposed method to be applied in the field is shown by the proposed cholesterol measuring color wheel.
Collapse
Affiliation(s)
- Narsingh R Nirala
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India; School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| | - Preeti S Saxena
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | - Anchal Srivastava
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
39
|
Li DE, Lin CH. Microfluidic chip for droplet-based AuNP synthesis with dielectric barrier discharge plasma and on-chip mercury ion detection. RSC Adv 2018; 8:16139-16145. [PMID: 35542220 PMCID: PMC9080253 DOI: 10.1039/c8ra02468e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
This study presents a novel microfluidic chip that can achieve on-demand gold nanoparticle (AuNP) synthesis using atmospheric pressure helium plasma and on-site mercury ion detection. Instead of using conventional chemical reaction methods, this chip uses helium plasma as the reducing agent to reduce gold ions and to synthesize AuNP, such that there is no residual reducing agent in the solution after removing the external electric field for plasma generation. The plasma discharge, gas–liquid separation, liquid collection and mercury ion detection can be achieved by this proposed microfluidic chip. The synthesized gold nanoparticles are further functionalized by 3-mercaptopropionic acid (3-MPA) for mercury ion detection. The 3-MPA-capped gold nanoparticles aggregate and result in a colour change of the solution due to the existence of Hg2+. The absorption spectra of the solution shifts from red to blue due to the cluster aggregation. The concentration of Hg2+ can be quantitatively determined by UV-Vis spectrometry, and the limit of detection was found to be 10−6 M (0.2 ppm). This developed integrated microfluidic device provides a simple and on-demand method for synthesis of AuNPs and Hg2+ detection in a single chip. This study presents a novel microfluidic chip that can achieve on-demand gold nanoparticle (AuNP) synthesis using atmospheric pressure helium plasma and on-site mercury ion detection.![]()
Collapse
Affiliation(s)
- Dai-En Li
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Taiwan
| | - Che-Hsin Lin
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Taiwan
| |
Collapse
|
40
|
Recent Studies on the Speciation and Determination of Mercury in Different Environmental Matrices Using Various Analytical Techniques. Int J Anal Chem 2017; 2017:3624015. [PMID: 29348750 PMCID: PMC5733771 DOI: 10.1155/2017/3624015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/26/2017] [Indexed: 11/25/2022] Open
Abstract
This paper reviews the current research on the speciation and determination of mercury by various analytical techniques, including the atomic absorption spectrometry (AAS), voltammetry, inductively coupled plasma optical emission spectrometry (ICP-OES), ICP-mass spectrometry (MS), atomic fluorescence spectrometry (AFS), spectrophotometry, spectrofluorometry, and high performance liquid chromatography (HPLC). Approximately 96 research papers on the speciation and determination of mercury by various analytical instruments published in international journals since 2015 were reviewed. All analytical parameters, including the limits of detection, linearity range, quality assurance and control, applicability, and interfering ions, evaluated in the reviewed articles were tabulated. In this review, we found a lack of information in speciation studies of mercury in recent years. Another important conclusion from this review was that there were few studies regarding the concentration of mercury in the atmosphere.
Collapse
|
41
|
Jash B, Müller J. Metal-Mediated Base Pairs: From Characterization to Application. Chemistry 2017; 23:17166-17178. [PMID: 28833684 DOI: 10.1002/chem.201703518] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 12/11/2022]
Abstract
The investigation of metal-mediated base pairs and the development of their applications represent a prominent area of research at the border of bioinorganic chemistry and supramolecular coordination chemistry. In metal-mediated base pairs, the complementary nucleobases in a nucleic acid duplex are connected by coordinate bonds to an embedded metal ion rather than by hydrogen bonds. Because metal-mediated base pairs facilitate a site-specific introduction of metal-based functionality into nucleic acids, they are ideally suited for use in DNA nanotechnology. This minireview gives an overview of the general requirements that need to be considered when devising a new metal-mediated base pair, both from a conceptual and from an experimental point of view. In addition, it presents selected recent applications of metal-modified nucleic acids to indicate the scope of metal-mediated base pairing.
Collapse
Affiliation(s)
- Biswarup Jash
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Corrensstr. 28/30, 48149, Münster, Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Corrensstr. 28/30, 48149, Münster, Germany
| |
Collapse
|
42
|
Kumar P, Kim KH, Bansal V, Lazarides T, Kumar N. Progress in the sensing techniques for heavy metal ions using nanomaterials. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Ahn S, Yu H, Kang SH. Enhanced detection sensitivity of carcinoembryonic antigen on a plasmonic nanoimmunosensor by transmission grating-based total internal reflection scattering microscopy. Biosens Bioelectron 2017; 96:159-166. [DOI: 10.1016/j.bios.2017.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
|
44
|
Zhi L, Zeng X, Wang H, Hai J, Yang X, Wang B, Zhu Y. Photocatalysis-Based Nanoprobes Using Noble Metal–Semiconductor Heterostructure for Visible Light-Driven in Vivo Detection of Mercury. Anal Chem 2017; 89:7649-7658. [DOI: 10.1021/acs.analchem.7b01602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lihua Zhi
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
- College
of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xiaofan Zeng
- College
of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Hao Wang
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
| | - Jun Hai
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
| | - Xiangliang Yang
- College
of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Baodui Wang
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
| | - Yanhong Zhu
- College
of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
45
|
|
46
|
Guang S, Tian J, Wei G, Yan Z, Pan H, Feng J, Xu H. A modified fluorescein derivative with improved water-solubility for turn-on fluorescent determination of Hg 2+ in aqueous and living cells. Talanta 2017; 170:89-96. [PMID: 28501218 DOI: 10.1016/j.talanta.2017.03.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022]
Abstract
To improve the water-solubility of heavy-metal sensing materials, a modified fluorescein-based derivative, acryloyl fluorescein hydrazine (ACFH), was designed and developed by incorporating a non-hydrogen-bonding group into the conjugated molecule for weakening intermolecular hydrogen-bonding interactions. In neutral water environments, ACFH presented a fluorescence-enhancement performance at λmax=512nm in the presence of Hg2+, which could be visualized by naked-eyes. Under the optimized conditions, the linear range of Hg2+ detection was 1.0-100×10-9molL-1 with a correlation coefficient of 0.9992 and a detection limit of 0.86×10-9molL-1. The recognition mechanism was confirmed to be a stable and irreversible 1:1 five-member ring complex between ACFH and Hg2+ with a coordination constant of 3.36×109. ACFH would possess a potential application in detecting Hg2+ for biological assay with low cytotoxicity.
Collapse
Affiliation(s)
- Shanyi Guang
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jiachan Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Gang Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; College of Materials Science and Technology & Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China.
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Hongfei Pan
- Department of Immunology & Oncology department, Immunology Innovation Base of Education of Guizhou Province, Zunyi Medical College & The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China.
| | - Jihong Feng
- Department of Immunology & Oncology department, Immunology Innovation Base of Education of Guizhou Province, Zunyi Medical College & The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China.
| | - Hongyao Xu
- College of Materials Science and Technology & Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China.
| |
Collapse
|
47
|
Thymine chitosan nanomagnets for specific preconcentration of mercury(II) prior to analysis using SELDI-MS. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2125-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Gong L, Du B, Pan L, Liu Q, Yang K, Wang W, Zhao H, Wu L, He Y. Colorimetric aggregation assay for arsenic(III) using gold nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2122-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Bothra S, Kumar R, Sahoo SK. Pyridoxal conjugated gold nanoparticles for distinct colorimetric detection of chromium(iii) and iodide ions in biological and environmental fluids. NEW J CHEM 2017. [DOI: 10.1039/c7nj00350a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed pyridoxal conjugated gold nanoparticles (CAPy-AuNPs) for the selective colorimetric detection of Cr3+ and iodide ions in an aqueous medium.
Collapse
Affiliation(s)
- Shilpa Bothra
- Department of Applied Chemistry
- S.V. National Institute of Technology (SVNIT)
- Surat-395007
- India
| | - Rajender Kumar
- Department of Applied Chemistry
- S.V. National Institute of Technology (SVNIT)
- Surat-395007
- India
| | - Suban K. Sahoo
- Department of Applied Chemistry
- S.V. National Institute of Technology (SVNIT)
- Surat-395007
- India
| |
Collapse
|
50
|
Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, Chen J, Ramakrishna S. Recent advances in nanomaterials for water protection and monitoring. Chem Soc Rev 2017; 46:6946-7020. [DOI: 10.1039/c6cs00921b] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomaterials (NMs) for adsorption, catalysis, separation, and disinfection are scrutinized. NMs-based sensor technologies and environmental transformations of NMs are highlighted.
Collapse
Affiliation(s)
- Rasel Das
- Leibniz Institute of Surface Modification
- D-04318 Leipzig
- Germany
| | - Chad D. Vecitis
- School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Agnes Schulze
- Leibniz Institute of Surface Modification
- D-04318 Leipzig
- Germany
| | - Bin Cao
- School of Civil and Environmental Engineering
- Nanyang Technological University
- Singapore
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre
- Universiti Teknologi Malaysia
- 81310 Johor
- Malaysia
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Dalian 116023
- China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Dalian 116023
- China
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| |
Collapse
|