1
|
Petropoulos A, Charles L, Becht JM, Schmitt M, Lalevée J, Lutz JF. Photo-Accelerated Synthesis of Oligo(triazole amide)s. Macromol Rapid Commun 2024:e2400759. [PMID: 39535450 DOI: 10.1002/marc.202400759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Indexed: 11/16/2024]
Abstract
A photo-assisted process is explored for improving the synthesis of oligo(triazole amide)s, which are prepared by solid phase synthesis using a repeated cycle of two reactions: amine-carboxylic acid coupling and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The improvement of the second reaction is investigated herein. A catalytic system involving Cu(II)Cl2, N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDETA) and a titanocene photoinitiator is explored for reducing the reaction time of CuAAC. This catalyst is first tested on a model reaction involving phenylacetylene and ethyl azidoacetate in DMSO. The kinetics of these model experiments are monitored by 1H NMR in the presence of different concentrations of the photoinitiator. It is found that 30 mol% of photoinitiator leads to quantitative reactions in only 8 min. These conditions are then applied to the solid phase synthesis of oligo(triazole amide)s, performed on a glycine-loaded Wang resin. The backbone of the oligomers is constructed using 6-heptynoic acid and 1-amino-11-azido-3,6,9-trioxaundecane as submonomers. Due to slow reagent diffusion, the CuAAC step required more time in the solid phase than in solution. Yet, one hour only is necessary to achieve quantitative CuAAC on the resin, which is twice as fast as previously-reported conditions. Using these optimized conditions, oligo(triazole amide)s of different length are prepared.
Collapse
Affiliation(s)
- Alexandros Petropoulos
- CNRS, UMR 7006, ISIS, 8 allée Gaspard Monge, Université de Strasbourg, Strasbourg, 67000, France
- CNRS, UMR 7361, IS2M, 15 rue Jean Starcky, Université de Haute-Alsace, Mulhouse, 68100, France
| | - Laurence Charles
- CNRS, UMR 7273, ICR, Avenue Escadrille Normandie-Niemen, Marseille, 13397, France
| | - Jean-Michel Becht
- CNRS, UMR 7361, IS2M, 15 rue Jean Starcky, Université de Haute-Alsace, Mulhouse, 68100, France
| | - Michael Schmitt
- CNRS, UMR 7361, IS2M, 15 rue Jean Starcky, Université de Haute-Alsace, Mulhouse, 68100, France
| | - Jacques Lalevée
- CNRS, UMR 7361, IS2M, 15 rue Jean Starcky, Université de Haute-Alsace, Mulhouse, 68100, France
| | - Jean-François Lutz
- CNRS, UMR 7006, ISIS, 8 allée Gaspard Monge, Université de Strasbourg, Strasbourg, 67000, France
| |
Collapse
|
2
|
Gumus S, Biechele-Speziale D, Manz KE, Pennell KD, Rubenstein BM, Rosenstein JK. Repurposing Waste Chemicals for Sustainable and Durable Molecular Data Storage. ACS OMEGA 2024; 9:19904-19910. [PMID: 38737050 PMCID: PMC11079871 DOI: 10.1021/acsomega.3c09234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Molecular data storage offers the intriguing possibility of higher theoretical density and longer lifetimes than today's electronic memory devices. Some demonstrations have used deoxyribonucleic acid (DNA), but bottlenecks in nucleic acid synthesis continue to make DNA data storage orders of magnitude more expensive than electronic storage media. Additionally, despite its potential for long-term storage, DNA faces durability challenges from environmental degradation. In this work, we demonstrate nongenomic molecular data storage using molecular libraries redirected from chemical waste streams. This approach requires no synthetic effort and can be implemented by using molecules that have a minimal associated cost. While the technique is agnostic about the exact molecular content of its inputs, we confirmed that some sources contained poly fluoroalkyl substances (PFAS), which persist for long periods in the natural environment and could offer extremely durable information storage as well as environmental benefits. These demonstrations provide a perspective on some of the valuable possibilities for nongenomic molecular information systems.
Collapse
Affiliation(s)
| | | | - Katherine E. Manz
- Brown
University, Providence, Rhode Island 02912, United States
- University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kurt D. Pennell
- Brown
University, Providence, Rhode Island 02912, United States
| | | | | |
Collapse
|
3
|
Yu L, Chen B, Li Z, Huang Q, He K, Su Y, Han Z, Zhou Y, Zhu X, Yan D, Dong R. Digital synthetic polymers for information storage. Chem Soc Rev 2023; 52:1529-1548. [PMID: 36786068 DOI: 10.1039/d2cs01022d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Digital synthetic polymers with uniform chain lengths and defined monomer sequences have recently become intriguing alternatives to traditional silicon-based information devices or natural biomacromolecules for data storage. The structural diversity of information-containing macromolecules endows the digital synthetic polymers with higher stability and storage density but less occupied space. Through subtly designing each unit of coded structure, the information can be readily encoded into digital synthetic polymers in a more economical scheme and more decodable, opening up new avenues for molecular digital data storage with high-level security. This tutorial review summarizes recent advances in salient features of digital synthetic polymers for data storage, including encoding, decoding, editing, erasing, encrypting, and repairing. The current challenges and outlook are finally discussed to offer potential solution guidance and new perspectives for the creation of next-generation digital synthetic polymers and broaden the scope of their applicability.
Collapse
Affiliation(s)
- Li Yu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Baiyang Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ziying Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Qijing Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Kaiyuan He
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Zeguang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ruijiao Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
4
|
Soete M, Mertens C, Badi N, Du Prez FE. Reading Information Stored in Synthetic Macromolecules. J Am Chem Soc 2022; 144:22378-22390. [PMID: 36454647 DOI: 10.1021/jacs.2c10316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The storage of information in synthetic (macro)molecules provides an attractive alternative for current archival storage media, and the advancements made within this area have prompted the investigation of such molecules for numerous other applications (e.g., anti-counterfeiting tags, steganography). While different strategies have been described for storing information at the molecular level, this Perspective aims to provide a critical overview of the most prominent approaches that can be utilized for retrieving the encoded information. The major part will focus on the sequence determination of synthetic macromolecules, wherein information is stored by the precise arrangement of constituting monomers, with an emphasis on chemically aided strategies, (tandem) mass spectrometry, and nanopore sensing. In addition, recent progress in utilizing (mixtures of) small molecules for information storage will be discussed. Finally, the closing remarks aim to highlight which strategy we believe is the most suitable for a series of specific applications, and will also touch upon the future research avenues that can be pursued for reading (macro)molecular information.
Collapse
Affiliation(s)
- Matthieu Soete
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Chiel Mertens
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
5
|
Bohn P, Weisel MP, Wolfs J, Meier MAR. Molecular data storage with zero synthetic effort and simple read-out. Sci Rep 2022; 12:13878. [PMID: 35974033 PMCID: PMC9381582 DOI: 10.1038/s41598-022-18108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Compound mixtures represent an alternative, additional approach to DNA and synthetic sequence-defined macromolecules in the field of non-conventional molecular data storage, which may be useful depending on the target application. Here, we report a fast and efficient method for information storage in molecular mixtures by the direct use of commercially available chemicals and thus, zero synthetic steps need to be performed. As a proof of principle, a binary coding language is used for encoding words in ASCII or black and white pixels of a bitmap. This way, we stored a 25 × 25-pixel QR code (625 bits) and a picture of the same size. Decoding of the written information is achieved via spectroscopic (1H NMR) or chromatographic (gas chromatography) analysis. In addition, for a faster and automated read-out of the data, we developed a decoding software, which also orders the data sets according to an internal "ordering" standard. Molecular keys or anticounterfeiting are possible areas of application for information-containing compound mixtures.
Collapse
Affiliation(s)
- Philipp Bohn
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Maximilian P Weisel
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Jonas Wolfs
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Michael A R Meier
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
6
|
Berg MT, Herberg A, Kuckling D. Hyphenation of ultra-high-performance liquid chromatography and ion mobility mass spectrometry for the analysis of sequence-defined oligomers with different functionalities and tacticity. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Artjom Herberg
- Department of Chemistry, Paderborn University, Paderborn, Germany
| | - Dirk Kuckling
- Department of Chemistry, Paderborn University, Paderborn, Germany
| |
Collapse
|
7
|
Shi Q, Miao T, Liu Y, Hu L, Yang H, Shen H, Piao M, Huang Z, Zhang Z. Fabrication and Decryption of a Microarray of Digital Dithiosuccinimide Oligomers. Macromol Rapid Commun 2022; 43:e2200029. [PMID: 35322486 DOI: 10.1002/marc.202200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/11/2022] [Indexed: 11/11/2022]
Abstract
Digital polymer with precisely arranged binary units provides an important option for information storage. This is especially true if the digital polymers are assembled in a device, as it would be of great benefit to data writing and reading in practice. Herein, inspired by DNA microarray technique, the programmable information storing and reading on a mass spectrometry target plate is proposed. First, an array of 4-bit sequence-coded dithiosuccinimide oligomers was efficiently built through sequential thiol-maleimide Michael couplings with good sequence readability by tandem mass spectrometry (MS/MS). Then, toward engineering microarray for information storage, a programmed robotic arm was specifically designed for precisely loading sequence-coded oligomers onto the target plate, and a decoding software was developed for efficient readout of the data from MS/MS sequencing. Notably, short sequence-coded oligomers chains can be used to write long strings of information, and extra error-correction codes are not required as usual due to the inherent concomitant fragmentation signals. Not only text but also bitimages can be automatically stored and decoded with excellent accuracy. This work provides a promising platform of digital polymers for programmable information storing and reading. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qiunan Shi
- Q. Shi, T. Miao, Y. Liu, Prof. H. Shen, Prof. Z. Huang, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- Q. Shi, T. Miao, Y. Liu, Prof. H. Shen, Prof. Z. Huang, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuxin Liu
- Q. Shi, T. Miao, Y. Liu, Prof. H. Shen, Prof. Z. Huang, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lihua Hu
- Dr. L. Hu, Analysis and Testing Center, Soochow University, Suzhou, 215123, China
| | - Hai Yang
- H. Yang, Eurosmart Intelligent Technology Research Institute, Nanjing, 211106, China
| | - Hang Shen
- Q. Shi, T. Miao, Y. Liu, Prof. H. Shen, Prof. Z. Huang, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Minghao Piao
- Prof. M. Piao, Collaborative Innovation Center of Novel Software Technology and Industrialization, School of Computer Science and Technology, Soochow University, Suzhou, 215123, China
| | - Zhihao Huang
- Q. Shi, T. Miao, Y. Liu, Prof. H. Shen, Prof. Z. Huang, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- Prof. Z. Zhang, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Leguizamon SC, Scott TF. Mimicking DNA Functions with Abiotic, Sequence-Defined Polymers. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2014519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Samuel C. Leguizamon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy F. Scott
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Nagarkar AA, Root SE, Fink MJ, Ten AS, Cafferty BJ, Richardson DS, Mrksich M, Whitesides GM. Storing and Reading Information in Mixtures of Fluorescent Molecules. ACS CENTRAL SCIENCE 2021; 7:1728-1735. [PMID: 34729416 PMCID: PMC8554834 DOI: 10.1021/acscentsci.1c00728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 05/22/2023]
Abstract
The rapidly increasing use of digital technologies requires the rethinking of methods to store data. This work shows that digital data can be stored in mixtures of fluorescent dye molecules, which are deposited on a surface by inkjet printing, where an amide bond tethers the dye molecules to the surface. A microscope equipped with a multichannel fluorescence detector distinguishes individual dyes in the mixture. The presence or absence of these molecules in the mixture encodes binary information (i.e., "0" or "1"). The use of mixtures of molecules, instead of sequence-defined macromolecules, minimizes the time and difficulty of synthesis and eliminates the requirement of sequencing. We have written, stored, and read a total of approximately 400 kilobits (both text and images) with greater than 99% recovery of information, written at an average rate of 128 bits/s (16 bytes/s) and read at a rate of 469 bits/s (58.6 bytes/s).
Collapse
Affiliation(s)
- Amit A. Nagarkar
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Samuel E. Root
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Michael J. Fink
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Alexei S. Ten
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Brian J. Cafferty
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Douglas S. Richardson
- Harvard
Center for Biological Imaging, 16 Divinity Avenue, Cambridge, Massachusetts 02138, United States
| | - Milan Mrksich
- Department
of Chemistry and Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George M. Whitesides
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
10
|
Zhang X, Gou F, Wang X, Wang Y, Ding S. Easily Functionalized and Readable Sequence-Defined Polytriazoles. ACS Macro Lett 2021; 10:551-557. [PMID: 35570766 DOI: 10.1021/acsmacrolett.1c00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Developing sequence-defined skeletons that could be conveniently characterized and functionalized with diverse side groups is attractive but challenging. Here we report one novel sequence-defined polytriazole structure bearing side groups at its triazole rings. Its construction was facilely accessed by the iterative employments of azidation and iridium-catalyzed cycloaddition of azide with internal 1-thioalkyne (IrAAC) in solution phase. The easy preparation of 1-thioalkyne monomers and the excellent tolerance of IrAAC enable the introduction of diverse functional side chains to this architecture. The obtained sequence was effectively characterized by tandem mass spectrometry owing to the efficient fractures of both of the Csp3-S and Csp3-N bonds in its backbone, indicating its potential utilization in high-capacity digital polymer developments. Further successful application of this structure in building monodisperse macromolecules exhibiting aggregation-induced emission (AIE) characteristics demonstrates its expected application in functional material fabrications.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuqi Gou
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaojun Wang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Shengtao Ding
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Trhlíková O, Walterová Z, Janata M, Kanizsová L, Horský J. Compositional Distribution of Binary Living Copolymers and Their End Sequences. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Olga Trhlíková
- Department of Analytical Chemistry Institute of Macromolecular Chemistry of the Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Zuzana Walterová
- Department of Analytical Chemistry Institute of Macromolecular Chemistry of the Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Miroslav Janata
- Department of Controlled Polymer Synthesis Institute of Macromolecular Chemistry of the Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Lívia Kanizsová
- Department of Analytical Chemistry Institute of Macromolecular Chemistry of the Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Jiří Horský
- Department of Analytical Chemistry Institute of Macromolecular Chemistry of the Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| |
Collapse
|
12
|
Aksakal R, Mertens C, Soete M, Badi N, Du Prez F. Applications of Discrete Synthetic Macromolecules in Life and Materials Science: Recent and Future Trends. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004038. [PMID: 33747749 PMCID: PMC7967060 DOI: 10.1002/advs.202004038] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/22/2020] [Indexed: 05/19/2023]
Abstract
In the last decade, the field of sequence-defined polymers and related ultraprecise, monodisperse synthetic macromolecules has grown exponentially. In the early stage, mainly articles or reviews dedicated to the development of synthetic routes toward their preparation have been published. Nowadays, those synthetic methodologies, combined with the elucidation of the structure-property relationships, allow envisioning many promising applications. Consequently, in the past 3 years, application-oriented papers based on discrete synthetic macromolecules emerged. Hence, material science applications such as macromolecular data storage and encryption, self-assembly of discrete structures and foldamers have been the object of many fascinating studies. Moreover, in the area of life sciences, such structures have also been the focus of numerous research studies. Here, it is aimed to highlight these recent applications and to give the reader a critical overview of the future trends in this area of research.
Collapse
Affiliation(s)
- Resat Aksakal
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Chiel Mertens
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Matthieu Soete
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Nezha Badi
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Filip Du Prez
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| |
Collapse
|
13
|
Frölich M, Hofheinz D, Meier MAR. Reading mixtures of uniform sequence-defined macromolecules to increase data storage capacity. Commun Chem 2020; 3:184. [PMID: 36703345 PMCID: PMC9814948 DOI: 10.1038/s42004-020-00431-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 01/29/2023] Open
Abstract
In recent years, the field of molecular data storage has emerged from a niche to a vibrant research topic. Herein, we describe a simultaneous and automated read-out of data stored in mixtures of sequence-defined oligomers. Therefore, twelve different sequence-defined tetramers and three hexamers with different mass markers and side chains are successfully synthesised via iterative Passerini three-component reactions and subsequent deprotection steps. By programming a straightforward python script for ESI-MS/MS analysis, it is possible to automatically sequence and thus read-out the information stored in these oligomers within one second. Most importantly, we demonstrate that the use of mass-markers as starting compounds eases MS/MS data interpretation and furthermore allows the unambiguous reading of sequences of mixtures of sequence-defined oligomers. Thus, high data storage capacity considering the field of synthetic macromolecules (up to 64.5 bit in our examples) can be obtained without the need of synthesizing long sequences, but by mixing and simultaneously analysing shorter sequence-defined oligomers.
Collapse
Affiliation(s)
- Maximiliane Frölich
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Dennis Hofheinz
- Department of Computer Science, ETH Zürich, Universitätsstrasse 6, 8092, Zürich, Switzerland
| | - Michael A R Meier
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany.
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
14
|
Berg MT, Mertens C, Du Prez F, Kühne TD, Herberg A, Kuckling D. Analysis of sequence-defined oligomers through Advanced Polymer Chromatography™ - mass spectrometry hyphenation. RSC Adv 2020; 10:35245-35252. [PMID: 35515639 PMCID: PMC9056843 DOI: 10.1039/d0ra06419j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023] Open
Abstract
In recent years, sequence-defined oligomers have attracted increasing interest in the polymer community and the number of new applications such as macromolecular data storage and encryption is increasing. However, techniques allowing sequence differentiation are still lacking. In this study, the focus is put towards a new strategy allowing structural distinction between sequence-defined oligomers with identical molecular weight and composition, but bearing different sequences. This technique relies on the hyphenation of size exclusion chromatography and mass spectrometry, coupled with ion mobility separation. This approach allows for a quick and easy separation and identification of oligomers with different length and/or sequence.
Collapse
Affiliation(s)
- Marie-Theres Berg
- Paderborn University, Faculty of Science, Department of Chemistry Warburger Straße 100 33098 Paderborn NRW Germany
| | - Chiel Mertens
- Ghent University, Centre of Macromolecular Research (CMaC), Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry Krijgslaan 281, S4bis B-9000 Ghent Belgium
| | - Filip Du Prez
- Ghent University, Centre of Macromolecular Research (CMaC), Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry Krijgslaan 281, S4bis B-9000 Ghent Belgium
| | - Thomas D Kühne
- Paderborn University, Faculty of Science, Department of Chemistry Warburger Straße 100 33098 Paderborn NRW Germany
| | - Artjom Herberg
- Paderborn University, Faculty of Science, Department of Chemistry Warburger Straße 100 33098 Paderborn NRW Germany
| | - Dirk Kuckling
- Paderborn University, Faculty of Science, Department of Chemistry Warburger Straße 100 33098 Paderborn NRW Germany
| |
Collapse
|
15
|
Charles L, Mondal T, Greff V, Razzini M, Monnier V, Burel A, Carapito C, Lutz JF. Optimal conditions for tandem mass spectrometric sequencing of information-containing nitrogen-substituted polyurethanes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8815. [PMID: 32311797 DOI: 10.1002/rcm.8815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE To prevent solubility issues faced with sequence-defined polyurethanes, a new family of digital polyurethanes was conceived with the alkyl coding chain held by the carbamate nitrogen (N) atom and CH3 instead of OH as the ϖ termination. This led to different dissociation mechanisms that were explored prior to optimizing tandem mass spectrometric (MS/MS) sequencing. METHODS N-Substituted polyurethanes (N-R PUs) were dissolved in methanol and subjected to collision-induced dissociation (CID) as deprotonated chains in the negative ion mode, and as ammonium and sodium adducts in the positive ion mode, using electrospray ionization (ESI) as the ionization technique. Their dissociation behavior was thoroughly investigated using a quadrupole time-of-flight (QTOF) instrument in order to provide accurate mass measurements to support proposed fragmentation mechanisms. RESULTS While O-(CO) bonds were broken in N-H PUs, the CH2 -O linkage between repeating units was cleaved upon CID of N-R PUs. This main process occurred either from deprotonated molecules or from cationized chains but was followed by different rearrangements, producing up to four product ion series. Yet, MS/MS spectra could be drastically simplified for precursor ions having their acidic α group methylated, as was found to spontaneously occur upon storage in methanol. CONCLUSIONS Using experimental conditions aimed at avoiding any reactive proton in precursor ions (no acidic end-groups and alkali adduction), full coverage sequence of N-R PUs was successfully achieved with the single ion series observed in MS/MS, opening a promising perspective for reading large amounts of information stored in these dyad-encoded polymers.
Collapse
Affiliation(s)
- Laurence Charles
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, Marseille, France
| | - Tathagata Mondal
- University de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, France
| | - Vincent Greff
- University de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, France
| | - Mattia Razzini
- University de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, France
| | - Valérie Monnier
- Aix Marseille Univ, CNRS, Fédération des Sciences Chimiques de Marseille, Marseille, France
| | - Alexandre Burel
- CNRS, Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, Strasbourg, France
| | - Christine Carapito
- CNRS, Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, Strasbourg, France
| | - Jean-François Lutz
- University de Strasbourg, CNRS, Institut Charles Sadron UPR22, Strasbourg, France
| |
Collapse
|
16
|
Wetzel KS, Frölich M, Solleder SC, Nickisch R, Treu P, Meier MAR. Dual sequence definition increases the data storage capacity of sequence-defined macromolecules. Commun Chem 2020; 3:63. [PMID: 36703457 PMCID: PMC9814518 DOI: 10.1038/s42004-020-0308-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 01/29/2023] Open
Abstract
Sequence-defined macromolecules offer applications in the field of data storage. Challenges include synthesising precise and pure sequences, reading stored information and increasing data storage capacity. Herein, the synthesis of dual sequence-defined oligomers and their application for data storage is demonstrated. While applying the well-established Passerini three-component reaction, the degree of definition of the prepared monodisperse macromolecules is improved compared to previous reports by utilising nine specifically designed isocyanide monomers to introduce backbone definition. The monomers are combined with various aldehyde components to synthesise dual-sequence defined oligomers. Thus, the side chains and the backbones of these macromolecules can be varied independently, exhibiting increased molecular diversity and hence data storage capacity per repeat unit. In case of a dual sequence-defined pentamer, 33 bits are achieved in a single molecule. The oligomers are obtained in multigram scale and excellent purity. Sequential read-out by tandem ESI-MS/MS verifies the high data storage capacity of the prepared oligomers per repeat unit in comparison to other sequence defined macromolecules.
Collapse
Affiliation(s)
- Katharina S. Wetzel
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Maximiliane Frölich
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Susanne C. Solleder
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Roman Nickisch
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Philipp Treu
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Michael A. R. Meier
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany ,grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
17
|
De Bruycker K, Welle A, Hirth S, Blanksby SJ, Barner-Kowollik C. Mass spectrometry as a tool to advance polymer science. Nat Rev Chem 2020; 4:257-268. [PMID: 37127980 DOI: 10.1038/s41570-020-0168-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
In contrast to natural polymers, which have existed for billions of years, the first well-understood synthetic polymers date back to just over one century ago. Nevertheless, this relatively short period has seen vast progress in synthetic polymer chemistry, which can now afford diverse macromolecules with varying structural complexities. To keep pace with this synthetic progress, there have been commensurate developments in analytical chemistry, where mass spectrometry has emerged as the pre-eminent technique for polymer analysis. This Perspective describes present challenges associated with the mass-spectrometric analysis of synthetic polymers, in particular the desorption, ionization and structural interrogation of high-molar-mass macromolecules, as well as strategies to lower spectral complexity. We critically evaluate recent advances in technology in the context of these challenges and suggest how to push the field beyond its current limitations. In this context, the increasingly important role of high-resolution mass spectrometry is emphasized because of its unrivalled ability to describe unique species within polymer ensembles, rather than to report the average properties of the ensemble.
Collapse
|
18
|
Liu B, Shi Q, Hu L, Huang Z, Zhu X, Zhang Z. Engineering digital polymer based on thiol–maleimide Michael coupling toward effective writing and reading. Polym Chem 2020. [DOI: 10.1039/c9py01939a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Based on thiol–maleimide Michael coupling, a digital polymer allowing efficient message writing and reading was rationally designed.
Collapse
Affiliation(s)
- Baolei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University, Suzhou
- China
| | - Qiunan Shi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University, Suzhou
- China
| | - Lihua Hu
- Analysis and Testing Center
- Soochow University
- Suzhou 215123
- China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University, Suzhou
- China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University, Suzhou
- China
- Global Institute of Software Technology
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University, Suzhou
- China
| |
Collapse
|
19
|
Shi Q, Cao X, Zhang Y, Duan S, Hu L, Xu Y, Lu J, Huang Z, Zhang Z, Zhu X. Easily readable palindromic sequence-defined polymers built by cascade thiol-maleimide Michael couplings. Polym Chem 2020. [DOI: 10.1039/d0py01088j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rational combination of cascade thiol-maleimide Michael couplings (CTMMC) with iterative exponential chain growth was demonstrated as an efficient way to synthesize palindromic sequence-defined polymers.
Collapse
|
20
|
Maes L, Massana Roqeuro D, Pitet LM, Adriaensens P, Junkers T. Sequence-defined nucleobase containing oligomers via reversible addition–fragmentation chain transfer single monomer addition. Polym Chem 2020. [DOI: 10.1039/c9py01853k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleobase acrylate monomers have been synthesized and monodisperse tetramers with any order of bases are created via single monomer insertion reactions in a RAFT process.
Collapse
Affiliation(s)
- Lowie Maes
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Daniel Massana Roqeuro
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Louis M. Pitet
- Advanced Polymer Functionalization group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
| | - Peter Adriaensens
- Nuclear Magnetic Resonance Spectroscopy Group
- Institute for Materials Research (IMO-IMOMEC)
- B-3590 Diepenbeek
- Belgium
- IMEC vzw–Division IMOMEC
| | - Tanja Junkers
- Polymer Reaction Design group
- Hasselt University – Institute for Materials Research
- B-3590 Diepenbeek
- Belgium
- School of Chemistry
| |
Collapse
|
21
|
Nishimori K, Ouchi M. AB-alternating copolymers via chain-growth polymerization: synthesis, characterization, self-assembly, and functions. Chem Commun (Camb) 2020; 56:3473-3483. [DOI: 10.1039/d0cc00275e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, four topics on alternating copolymers synthesized via chain-growth polymerization are reviewed: (1) how to control the alternating sequence; (2) sequence analysis; (3) self-assembly; and (4) functions.
Collapse
Affiliation(s)
- Kana Nishimori
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
22
|
Ding K, Zhang Y, Huang Z, Liu B, Shi Q, Hu L, Zhou N, Zhang Z, Zhu X. Easily encodable/decodable digital polymers linked by dithiosuccinimide motif. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Meier MAR, Barner-Kowollik C. A New Class of Materials: Sequence-Defined Macromolecules and Their Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806027. [PMID: 30600565 DOI: 10.1002/adma.201806027] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Emerging applications of a new class of materials, sequence-defined macromolecules, are explored. Such molecularly highly defined macromolecules require stringent synthesis and purification procedures, yet offer unprecedented application possibilities. The first examples of molecular data storage and related technologies are already starting to emerge today. From a more fundamental point of view, such macromolecules offer a unique opportunity to determine quantitative structure-property relationships (QSPR), which critically aids in designing materials with applications ranging from catalysis to artificial enzymes.
Collapse
Affiliation(s)
- Michael A R Meier
- Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum (MZE), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany
| |
Collapse
|
24
|
Núñez-Villanueva D, Ciaccia M, Iadevaia G, Sanna E, Hunter CA. Sequence information transfer using covalent template-directed synthesis. Chem Sci 2019; 10:5258-5266. [PMID: 31191881 PMCID: PMC6540929 DOI: 10.1039/c9sc01460h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
Kinetically inert ester bonds were used to attach monomers to a template, dictating the sequence of the polymer product.
Template-directed synthesis is the biological method for the assembly of oligomers of defined sequence, providing the molecular basis for replication and the process of evolution. To apply analogous processes to synthetic oligomeric molecules, methods are required for the transfer of sequence information from a template to a daughter strand. We show that covalent template-directed synthesis is a promising approach for the molecular replication of sequence information in synthetic oligomers. Two monomer building blocks were synthesized: a phenol monomer and a benzoic acid monomer, each bearing an alkyne and an azide for oligomerization via copper catalyzed azide alkyne cycloaddition (CuAAC) reactions. Stepwise synthesis was used to prepare oligomers, where information was encoded as the sequence of phenol (P) and benzoic acid (A) units. Ester base-pairing was used to attach monomers to a mixed sequence template, and CuAAC was used to zip up the backbone. Hydrolysis of the ester base-pairs gave back the starting template and the sequence complementary copy. When the AAP trimer was used as the template, the complementary sequence PPA was obtained as the major product, with a small amount of scrambling resulting in PAP as a side-product. This covalent base-pairing strategy represents a general approach that can be implemented in different formats for the replication of sequence information in synthetic oligomers.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Maria Ciaccia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Elena Sanna
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
25
|
Amalian JA, Cavallo G, Al Ouahabi A, Lutz JF, Charles L. Revealing Data Encrypted in Sequence-Controlled Poly(Alkoxyamine Phosphodiester)s by Combining Ion Mobility with Tandem Mass Spectrometry. Anal Chem 2019; 91:7266-7272. [PMID: 31074610 DOI: 10.1021/acs.analchem.9b00813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The defined sequence of two comonomers in sequence-controlled macromolecules can be used to store binary information which is further decoded by MS/MS sequencing. In order to achieve the full sequence coverage requested for reliable decoding, the structure of these polymers can be optimized to minimize their dissociation extent, as shown for poly(alkoxyamine phosphodiester)s (PAPs) where weak alkoxyamine bonds were introduced in each repeating unit to make all phosphate groups MS/MS silent. However, for secret communications, a too high MS/MS readability could be a drawback. In this context, the design of PAPs was further optimized in this work to also include a decrypting key based on slight variation of a fragment collision cross section. This was achieved by employing two different nitroxides to build the alkoxyamine moiety, each containing a coding alkyl segment of the same mass but different architectures. As a result, the digital sequence determined from primary fragments observed in MS/MS had to be decrypted according to appropriate rules that depend on the drift times measured by ion mobility spectrometry for repeating units released as secondary product ions.
Collapse
Affiliation(s)
- Jean-Arthur Amalian
- Aix Marseille Université , CNRS, UMR 7273, Institute of Radical Chemistry , Marseille 13397 CEDEX 20 , France
| | - Gianni Cavallo
- Université de Strasbourg , Institut Charles Sadron , UPR22-CNRS, BP84047, 23 rue du Loess , Strasbourg 67034 CEDEX 2 , France
| | - Abdelaziz Al Ouahabi
- Université de Strasbourg , Institut Charles Sadron , UPR22-CNRS, BP84047, 23 rue du Loess , Strasbourg 67034 CEDEX 2 , France
| | - Jean-François Lutz
- Université de Strasbourg , Institut Charles Sadron , UPR22-CNRS, BP84047, 23 rue du Loess , Strasbourg 67034 CEDEX 2 , France
| | - Laurence Charles
- Aix Marseille Université , CNRS, UMR 7273, Institute of Radical Chemistry , Marseille 13397 CEDEX 20 , France
| |
Collapse
|
26
|
Haler JRN, Massonnet P, Far J, de la Rosa VR, Lecomte P, Hoogenboom R, Jérôme C, De Pauw E. Gas-Phase Dynamics of Collision Induced Unfolding, Collision Induced Dissociation, and Electron Transfer Dissociation-Activated Polymer Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:563-572. [PMID: 30523570 DOI: 10.1007/s13361-018-2115-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Polymer characterizations are often performed using mass spectrometry (MS). Aside from MS and different tandem MS (MS/MS) techniques, ion mobility-mass spectrometry (IM-MS) has been recently added to the inventory of characterization technique. However, only few studies have focused on the reproducibility and robustness of polymer IM-MS analyses. Here, we perform collisional and electron-mediated activation of polymer ions before measuring IM drift times, collision cross-sections (CCS), or reduced ion mobilities (K0). The resulting IM behavior of different activated product ions is then compared to non-activated native intact polymer ions. First, we analyzed collision induced unfolding (CIU) of precursor ions to test the robustness of polymer ion shapes. Then, we focused on fragmentation product ions to test for shape retentions from the precursor ions: cation ejection species (CES) and product ions with m/z and charge state values identical to native intact polymer ions. The CES species are formed using both collision induced dissociation (CID) and electron transfer dissociation (ETD, formally ETnoD) experiments. Only small drift time, CCS, or K0 deviations between the activated/formed ions are observed compared to the native intact polymer ions. The polymer ion shapes seem to depend solely on their mass and charge state. The experiments were performed on three synthetic homopolymers: poly(ethoxy phosphate) (PEtP), poly(2-n-propyl-2-oxazoline) (Pn-PrOx), and poly(ethylene oxide) (PEO). These results confirm the robustness of polymer ion CCSs for IM calibration, especially singly charged polymer ions. The results are also discussed in the context of polymer analyses, CCS predictions, and probing ion-drift gas interaction potentials. Graphical Abstract.
Collapse
Affiliation(s)
- Jean R N Haler
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium.
| | - Philippe Massonnet
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium
| | - Victor R de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules, CESAM Research Unit, Quartier Agora, University of Liège, Allée du Six Aout 13, B-4000, Liège, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, CESAM Research Unit, Quartier Agora, University of Liège, Allée du Six Aout 13, B-4000, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium
| |
Collapse
|
27
|
Szweda R, Tschopp M, Felix O, Decher G, Lutz JF. Sequences of Sequences: Spatial Organization of Coded Matter through Layer-by-Layer Assembly of Digital Polymers. Angew Chem Int Ed Engl 2018; 57:15817-15821. [DOI: 10.1002/anie.201810559] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Roza Szweda
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Michel Tschopp
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Olivier Felix
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Gero Decher
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
28
|
Szweda R, Tschopp M, Felix O, Decher G, Lutz JF. Sequences of Sequences: Spatial Organization of Coded Matter through Layer-by-Layer Assembly of Digital Polymers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Roza Szweda
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Michel Tschopp
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Olivier Felix
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Gero Decher
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
29
|
|
30
|
Martens S, Landuyt A, Espeel P, Devreese B, Dawyndt P, Du Prez F. Multifunctional sequence-defined macromolecules for chemical data storage. Nat Commun 2018; 9:4451. [PMID: 30367037 PMCID: PMC6203848 DOI: 10.1038/s41467-018-06926-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Sequence-defined macromolecules consist of a defined chain length (single mass), end-groups, composition and topology and prove promising in application fields such as anti-counterfeiting, biological mimicking and data storage. Here we show the potential use of multifunctional sequence-defined macromolecules as a storage medium. As a proof-of-principle, we describe how short text fragments (human-readable data) and QR codes (machine-readable data) are encoded as a collection of oligomers and how the original data can be reconstructed. The amide-urethane containing oligomers are generated using an automated protecting-group free, two-step iterative protocol based on thiolactone chemistry. Tandem mass spectrometry techniques have been explored to provide detailed analysis of the oligomer sequences. We have developed the generic software tools Chemcoder for encoding/decoding binary data as a collection of multifunctional macromolecules and Chemreader for reconstructing oligomer sequences from mass spectra to automate the process of chemical writing and reading.
Collapse
Affiliation(s)
- Steven Martens
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000, Ghent, Belgium
| | - Annelies Landuyt
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000, Ghent, Belgium
| | - Pieter Espeel
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000, Ghent, Belgium
| | - Bart Devreese
- Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Peter Dawyndt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 S9, 9000, Ghent, Belgium
| | - Filip Du Prez
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000, Ghent, Belgium.
| |
Collapse
|
31
|
Poyer S, Fouquet T, Sato H, Lutz JF, Charles L. Convenient Graphical Visualization of Messages Encoded in Sequence-Defined Synthetic Polymers Using Kendrick Mass Defect Analysis of their MS/MS Data. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Salomé Poyer
- Aix Marseille University; CNRS (Centre National de la Recherche Scientifique) Institut de Chimie Radicalaire; 13397 Marseille Cedex 20 France
| | - Thierry Fouquet
- National Institute of Advanced Industrial Science and Technology; Research Institute for Sustainable Chemistry; 1-1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Hiroaki Sato
- National Institute of Advanced Industrial Science and Technology; Research Institute for Sustainable Chemistry; 1-1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Jean-François Lutz
- CNRS, UPR (Unité Propre de Recherche), Institut Charles Sadron; Université de Strasbourg; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Laurence Charles
- Aix Marseille University; CNRS (Centre National de la Recherche Scientifique) Institut de Chimie Radicalaire; 13397 Marseille Cedex 20 France
| |
Collapse
|
32
|
|
33
|
Cavallo G, Poyer S, Amalian J, Dufour F, Burel A, Carapito C, Charles L, Lutz J. Cleavable Binary Dyads: Simplifying Data Extraction and Increasing Storage Density in Digital Polymers. Angew Chem Int Ed Engl 2018; 57:6266-6269. [DOI: 10.1002/anie.201803027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Gianni Cavallo
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Salomé Poyer
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Jean‐Arthur Amalian
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Florent Dufour
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Alexandre Burel
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Christine Carapito
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Laurence Charles
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Jean‐François Lutz
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
34
|
Cavallo G, Poyer S, Amalian J, Dufour F, Burel A, Carapito C, Charles L, Lutz J. Cleavable Binary Dyads: Simplifying Data Extraction and Increasing Storage Density in Digital Polymers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gianni Cavallo
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Salomé Poyer
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Jean‐Arthur Amalian
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Florent Dufour
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Alexandre Burel
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Christine Carapito
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Laurence Charles
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Jean‐François Lutz
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
35
|
Szymański JK, Abul-Haija YM, Cronin L. Exploring Strategies To Bias Sequence in Natural and Synthetic Oligomers and Polymers. Acc Chem Res 2018; 51:649-658. [PMID: 29493212 DOI: 10.1021/acs.accounts.7b00495] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Millions of years of biological evolution have driven the development of highly sophisticated molecular machinery found within living systems. These systems produce polymers such as proteins and nucleic acids with incredible fidelity and function. In nature, the precise molecular sequence is the factor that determines the function of these macromolecules. Given that the ability to precisely define sequence emerges naturally, the fact that biology achieves unprecedented control over the unit sequence of the monomers through evolved enzymatic catalysis is incredible. Indeed, the ability to engineer systems that allow polymer synthesis with precise sequence control is a feat that technology is yet to replicate in artificial synthetic systems. This is the case because, without access to evolutionary control for finely tuned biological catalysts, the inability to correct errors or harness multiple competing processes means that the prospects for digital control of polymerization have been firmly bootstrapped to biological systems or limited to stepwise synthetic protocols. In this Account, we give an overview of strategies that have been used over the last 5 years in efforts to program polymer synthesis with sequence control in the laboratory. We also briefly explore how the use of robotics, algorithms, and stochastic chemical processes might lead to new understanding, mechanisms, and strategies to achieve full digital control. The aim is to see whether it is possible to go beyond bootstrapping to biological polymers or stepwise chemical synthesis. We start by describing nonenzymatic techniques used to obtain sequence-controlled natural polymers, a field that lends itself to direct application of insights gleaned from biology. We discuss major advances, such as the use of rotaxane-based molecular machines and templated approaches, including the utilization of biological polymers as templates for purely synthetic chains. We then discuss synthetic polymer chemistry, whose array of techniques allows the production of polymers with enormous structural and functional diversity, but so far with only limited control over the unit sequence itself. Synthetic polymers can be subdivided into multiple classes depending on the nature of processes used to synthesize them, such as by addition or condensation. Consequently, varied approaches for sequence control have been demonstrated in the area, including but not limited to click reactions, iterative solid-phase chemistry, and exploiting the chemical affinity of the monomers themselves. In addition to those, we highlight the importance of environmental bias in possible control of polymerization at the single-unit level, such as using catalyst switching or external stimuli. Even the most successful experimental sequence control approach needs appropriate tools to verify its scope and validity; therefore, we devote part of the present Account to possible analytical approaches to sequence readout, starting with well-established tandem mass spectrometry techniques and touching on those more applicable to specific classes of processes, such as diffusion-ordered NMR spectroscopy. Finally, we discuss progress in modeling and automation of sequence-controlled polymers. We postulate that developments in analytical chemistry, bioinformatics, and computer modeling will lead to new ways of exploring the development of new strategies for the realization of sequence control by means of sequence bias. This is the case because treating the assembly of polymers as a network of chemical reactions will enable the development of control strategies that can bias the outcome of the polymer assembly. The grand aim would be the synthesis of complex polymers in one step with a precisely defined digital sequence.
Collapse
Affiliation(s)
- Jan K. Szymański
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | | | - Leroy Cronin
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
36
|
Lutz JF. Defining the Field of Sequence-Controlled Polymers. Macromol Rapid Commun 2017; 38. [PMID: 29160615 DOI: 10.1002/marc.201700582] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/13/2017] [Indexed: 12/31/2022]
Abstract
Over the last ten years, the development of synthetic polymers containing controlled monomer sequences has become a prominent topic in fundamental and applied polymer science. This emerging area is particularly broad and combines classical polymer chemistry tools with techniques imported from other domains such as biology, biochemistry, organic synthesis, engineering, and bioanalytics. Consequently, it also generates new structures, terminologies, and applications that are not within the traditional scope of polymer science. The term "sequence-controlled polymers" (SCPs) was recently proposed as a generic name to describe all these recent trends. However, since the field of SCPs has been growing very rapidly in recent literature, it is urgent to accurately define its scientific frontiers. In this important context, this review is an attempt to define, rationalize, and classify the field of SCPs. In particular, all synthetic approaches that have been reported for the synthesis of SCPs are discussed and categorized. In addition, the characterization tools, properties, and potential applications of these new polymers are described herein. Overall, this review serves as a reference guide for understanding the burgeoning field of SCPs.
Collapse
Affiliation(s)
- Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| |
Collapse
|
37
|
Amalian JA, Al Ouahabi A, Cavallo G, König NF, Poyer S, Lutz JF, Charles L. Controlling the structure of sequence-defined poly(phosphodiester)s for optimal MS/MS reading of digital information. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:788-798. [PMID: 28482377 DOI: 10.1002/jms.3947] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Digital polymers are monodisperse chains with a controlled sequence of co-monomers, defined as letters of an alphabet, and are used to store information at the molecular level. Reading such messages is hence a sequencing task that can be efficiently achieved by tandem mass spectrometry. To improve their readability, structure of sequence-controlled synthetic polymers can be optimized, based on considerations regarding their fragmentation behavior. This strategy is described here for poly(phosphodiester)s, which were synthesized as monodisperse chains with more than 100 units but exhibited extremely complex dissociation spectra. In these polymers, two repeating units that differ by a simple H/CH3 variation were defined as the 0 and 1 bit of the ASCII code and spaced by a phosphate moiety. They were readily ionized in negative ion mode electrospray but dissociated via cleavage at all phosphate bonds upon collisional activation. Although allowing a complete sequence coverage of digital poly(phosphodiester)s, this fragmentation behavior was not efficient for macromolecules with more than 50 co-monomers, and data interpretation was very tedious. The structure of these polymers was then modified by introducing alkoxyamine linkages at appropriate location throughout the chain. A first design consisted of placing these low dissociation energy bonds between each monomeric bit: while cleavage of this sole bond greatly simplified MS/MS spectra, efficient sequencing was limited to chains with up to about 50 units. In contrast, introduction of alkoxyamine bonds between each byte (i.e. a set of eight co-monomers) was a more successful strategy. Long messages (so far, up to 8 bytes) could be read in MS3 experiments, where single-byte containing fragments released during the first activation stage were further dissociated for sequencing. The whole sequence of such byte-truncated poly(phosphodiester)s could be easily re-constructed based on a mass tagging system which permits to determine the original location of each byte in the chain. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- J-A Amalian
- Aix Marseille Univ, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13397 Marseille Cedex 20, France
| | - A Al Ouahabi
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - G Cavallo
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - N F König
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - S Poyer
- Aix Marseille Univ, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13397 Marseille Cedex 20, France
| | - J-F Lutz
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - L Charles
- Aix Marseille Univ, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13397 Marseille Cedex 20, France
| |
Collapse
|
38
|
Burel A, Carapito C, Lutz JF, Charles L. MS-DECODER: Milliseconds Sequencing of Coded Polymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01737] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Burel
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, CNRS
UMR7178, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Christine Carapito
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, CNRS
UMR7178, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Jean-François Lutz
- Institut
Charles Sadron UPR22, CNRS, Université de Strasbourg, 23 rue
du Loess, 67034 Cedex 2 Strasbourg, France
| | - Laurence Charles
- Aix
Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397 Marseille Cedex 20, France
| |
Collapse
|
39
|
Solleder SC, Martens S, Espeel P, Du Prez F, Meier MAR. Combining Two Methods of Sequence Definition in a Convergent Approach: Scalable Synthesis of Highly Defined and Multifunctionalized Macromolecules. Chemistry 2017; 23:13906-13909. [DOI: 10.1002/chem.201703877] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Susanne C. Solleder
- Institute of Organic Chemistry; Karlsruhe Institute of Technology (KIT); Straße am Forum 7 76131 Karlsruhe Germany
| | - Steven Martens
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4bis 9000 Ghent Belgium
| | - Pieter Espeel
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4bis 9000 Ghent Belgium
| | - Filip Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4bis 9000 Ghent Belgium
| | - Michael A. R. Meier
- Institute of Organic Chemistry; Karlsruhe Institute of Technology (KIT); Straße am Forum 7 76131 Karlsruhe Germany
| |
Collapse
|
40
|
Karamessini D, Poyer S, Charles L, Lutz JF. 2D Sequence-Coded Oligourethane Barcodes for Plastic Materials Labeling. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700426] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/17/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Denise Karamessini
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Salomé Poyer
- Aix Marseille Univ, CNRS, UMR 7273; Institute of Radical Chemistry; 13397 Marseille Cedex 20 France
| | - Laurence Charles
- Aix Marseille Univ, CNRS, UMR 7273; Institute of Radical Chemistry; 13397 Marseille Cedex 20 France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
41
|
Charles L, Cavallo G, Monnier V, Oswald L, Szweda R, Lutz JF. MS/MS-Assisted Design of Sequence-Controlled Synthetic Polymers for Improved Reading of Encoded Information. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1149-1159. [PMID: 27914016 DOI: 10.1007/s13361-016-1543-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
In order to improve their MS/MS sequencing, structure of sequence-controlled synthetic polymers can be optimized based on considerations regarding their fragmentation behavior in collision-induced dissociation conditions, as demonstrated here for two digitally encoded polymer families. In poly(triazole amide)s, the main dissociation route proceeded via cleavage of the amide bond in each monomer, hence allowing the chains to be safely sequenced. However, a competitive cleavage of an ether bond in a tri(ethylene glycol) spacer placed between each coding moiety complicated MS/MS spectra while not bringing new structural information. Changing the tri(ethylene glycol) spacer to an alkyl group of the same size allowed this unwanted fragmentation pathway to be avoided, hence greatly simplifying the MS/MS reading step for such undecyl-based poly(triazole amide)s. In poly(alkoxyamine phosphodiester)s, a single dissociation pathway was achieved with repeating units containing an alkoxyamine linkage, which, by very low dissociation energy, made any other chemical bonds MS/MS-silent. Structure of these polymers was further tailored to enhance the stability of those precursor ions with a negatively charged phosphate group per monomer in order to improve their MS/MS readability. Increasing the size of both the alkyl coding moiety and the nitroxide spacer allowed sufficient distance between phosphate groups for all of them to be deprotonated simultaneously. Because the charge state of product ions increased with their polymerization degree, MS/MS spectra typically exhibited groups of fragments at one or the other side of the precursor ion depending on the original α or ω end-group they contain, allowing sequence reconstruction in a straightforward manner. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Laurence Charles
- Aix Marseille University, CNRS, ICR Institut de Chimie Radicalaire, Marseille, France.
| | - Gianni Cavallo
- Precision Macromolecular Chemistry, Institut Charles Sadron, UPR22-CNRS, Strasbourg, France
| | - Valérie Monnier
- Aix Marseille University, CNRS, Fédération des Sciences Chimiques de Marseille, Marseille, France
| | - Laurence Oswald
- Precision Macromolecular Chemistry, Institut Charles Sadron, UPR22-CNRS, Strasbourg, France
| | - Roza Szweda
- Precision Macromolecular Chemistry, Institut Charles Sadron, UPR22-CNRS, Strasbourg, France
| | - Jean-François Lutz
- Precision Macromolecular Chemistry, Institut Charles Sadron, UPR22-CNRS, Strasbourg, France.
| |
Collapse
|
42
|
Solleder SC, Schneider RV, Wetzel KS, Boukis AC, Meier MAR. Recent Progress in the Design of Monodisperse, Sequence-Defined Macromolecules. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600711] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/25/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Susanne C. Solleder
- Karlsruhe Institute of Technology (KIT); Institute of Organic Chemistry (IOC); Materialwissenschaftliches Zentrum für Energiesysteme (MZE); Geb. 30.48, Straße am Forum 7 76131 Karlsruhe Germany
| | - Rebekka V. Schneider
- Karlsruhe Institute of Technology (KIT); Institute of Organic Chemistry (IOC); Materialwissenschaftliches Zentrum für Energiesysteme (MZE); Geb. 30.48, Straße am Forum 7 76131 Karlsruhe Germany
| | - Katharina S. Wetzel
- Karlsruhe Institute of Technology (KIT); Institute of Organic Chemistry (IOC); Materialwissenschaftliches Zentrum für Energiesysteme (MZE); Geb. 30.48, Straße am Forum 7 76131 Karlsruhe Germany
| | - Andreas C. Boukis
- Karlsruhe Institute of Technology (KIT); Institute of Organic Chemistry (IOC); Materialwissenschaftliches Zentrum für Energiesysteme (MZE); Geb. 30.48, Straße am Forum 7 76131 Karlsruhe Germany
| | - Michael A. R. Meier
- Karlsruhe Institute of Technology (KIT); Institute of Organic Chemistry (IOC); Materialwissenschaftliches Zentrum für Energiesysteme (MZE); Geb. 30.48, Straße am Forum 7 76131 Karlsruhe Germany
| |
Collapse
|
43
|
Wesdemiotis C. Multidimensional Mass Spectrometry of Synthetic Polymers and Advanced Materials. Angew Chem Int Ed Engl 2017; 56:1452-1464. [PMID: 27712048 DOI: 10.1002/anie.201607003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/02/2016] [Indexed: 01/06/2023]
Abstract
Multidimensional mass spectrometry interfaces a suitable ionization technique and mass analysis (MS) with fragmentation by tandem mass spectrometry (MS2 ) and an orthogonal online separation method. Separation choices include liquid chromatography (LC) and ion-mobility spectrometry (IMS), in which separation takes place pre-ionization in the solution state or post-ionization in the gas phase, respectively. The MS step provides elemental composition information, while MS2 exploits differences in the bond stabilities of a polymer, yielding connectivity and sequence information. LC conditions can be tuned to separate by polarity, end-group functionality, or hydrodynamic volume, whereas IMS adds selectivity by macromolecular shape and architecture. This Minireview discusses how selected combinations of the MS, MS2 , LC, and IMS dimensions can be applied, together with the appropriate ionization method, to determine the constituents, structures, end groups, sequences, and architectures of a wide variety of homo- and copolymeric materials, including multicomponent blends, supramolecular assemblies, novel hybrid materials, and large cross-linked or nonionizable polymers.
Collapse
Affiliation(s)
- Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
44
|
Wesdemiotis C. Mehrdimensionale Massenspektrometrie von synthetischen Polymeren und modernen Materialien. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chrys Wesdemiotis
- Department of Chemistry; The University of Akron; Akron OH 44325 USA
| |
Collapse
|
45
|
Weiss RM, Li J, Liu HH, Washington MA, Giesen JA, Grayson SM, Meyer TY. Determining Sequence Fidelity in Repeating Sequence Poly(lactic-co-glycolic acid)s. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ryan M. Weiss
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jian Li
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Han H. Liu
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Michael A. Washington
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Joseph A. Giesen
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Tara Y. Meyer
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
46
|
|