1
|
Klačić T, Jugl A, Pekař M, Kovačević D. High-Resolution Ultrasonic Spectroscopy: Looking at the Interpolyelectrolyte Neutralization from a Different Perspective. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Tin Klačić
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Adam Jugl
- Institute of Physical and Applied Chemistry & Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-61200 Brno, Czech Republic
| | - Miloslav Pekař
- Institute of Physical and Applied Chemistry & Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-61200 Brno, Czech Republic
| | - Davor Kovačević
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| |
Collapse
|
2
|
Lynch R, Buckin V. ‘Determination of Lactose in Milk by High Resolution Ultrasonic Spectroscopy’. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Papoutsidakis GI, Buckin V. Real-time monitoring of enzymatic hydrolysis of 1,3(4)-β-glucan with high-resolution ultrasonic spectroscopy. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Lynch R, Buckin V. Ultrasonic analysis of effects of varying temperature, pH, and proteolytic enzymes on hydrolysis of lactose by neutral lactase formulations in infant milk and in the infant digestive system. Food Res Int 2022; 157:111004. [DOI: 10.1016/j.foodres.2022.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
|
5
|
Development of NIR-HSI and chemometrics process analytical technology for drying of beef jerky. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Dizon M, Tatarko M, Hianik T. Advances in Analysis of Milk Proteases Activity at Surfaces and in a Volume by Acoustic Methods. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5594. [PMID: 33003538 PMCID: PMC7582251 DOI: 10.3390/s20195594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
This review is focused on the application of surface and volume-sensitive acoustic methods for the detection of milk proteases such as trypsin and plasmin. While trypsin is an important protein of human milk, plasmin is a protease that plays an important role in the quality of bovine, sheep and goat milks. The increased activity of plasmin can cause an extensive cleavage of β-casein and, thus, affect the milk gelation and taste. The basic principles of surface-sensitive acoustic methods, as well as high-resolution ultrasonic spectroscopy (HR-US), are presented. The current state-of-the-art examples of the application of acoustic sensors for protease detection in real time are discussed. The application of the HR-US method for studying the kinetics of the enzyme reaction is demonstrated. The sensitivity of the acoustics biosensors and HR-US methods for protease detection are compared.
Collapse
Affiliation(s)
- Mark Dizon
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Marek Tatarko
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia;
| |
Collapse
|
7
|
Melikishvili S, Dizon M, Hianik T. Application of high-resolution ultrasonic spectroscopy for real-time monitoring of trypsin activity in β-casein solution. Food Chem 2020; 337:127759. [PMID: 32777568 DOI: 10.1016/j.foodchem.2020.127759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 11/29/2022]
Abstract
High-resolution ultrasonic spectroscopy (HR-US) was applied for real-time monitoring of β-casein hydrolysis by trypsin at various conditions for the first time. The technique is based on the precision measurement of hydration changes proportional to the number of peptide bond hydrolyzed. As HR-US exhibits ultrasonic transparency for most solution, the analysis did not require optical transparency like for 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay. Appropriate enzymatic models were fitted with degree of hydrolysis (dh) profiles to provide kinetic and mechanistic description of proteolysis in terms of initial hydrolysis rate, r0, and rate constant of hydrolysis, kh, and enzyme inactivation, kd. Maximal r0 and dh were obtained at 45 °C and pH 8. The exponential dependence of kinetic parameters allowed determination of the activation (EA = 50.3 ± 7 kJ/mol) and deactivation (ED = 62.23 ± 3 kJ/mol) energies of hydrolysis. The ultrasonic assay provided rapid detection of trypsin activity even at sub-nanomolar concentration.
Collapse
Affiliation(s)
- Sopio Melikishvili
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia
| | - Mark Dizon
- School of Chemistry and Chemical Biology, University College of Dublin, Belfield, Dublin 4, Ireland
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia.
| |
Collapse
|
8
|
Lynch R, Burke A, Byrne J, Buckin V. Osmolality and molar mass of oligosaccharides in breast milks and infant formula during hydrolysis of lactose. Application of high-resolution ultrasonic spectroscopy. Food Chem 2020; 322:126645. [DOI: 10.1016/j.foodchem.2020.126645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
|
9
|
A multi-pumping flow analysis system for β-galactosidase activity assays. Food Chem 2019; 294:231-237. [DOI: 10.1016/j.foodchem.2019.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 11/18/2022]
|
10
|
Mukhin N, Kutia M, Oseev A, Steinmann U, Palis S, Lucklum R. Narrow Band Solid-Liquid Composite Arrangements: Alternative Solutions for Phononic Crystal-Based Liquid Sensors. SENSORS 2019; 19:s19173743. [PMID: 31470651 PMCID: PMC6749299 DOI: 10.3390/s19173743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/30/2022]
Abstract
Periodic elastic composite structures attract great attention. They offer the ability to design artificial properties to advance the control over the propagation of elastic/acoustic waves. In previous work, we drew attention to composite periodic structures comprising liquids. It was shown that the transmission spectrum of the structure, specifically a well-isolated peak, follows the material properties of liquid constituent in a distinct manner. This idea was realized in several liquid sensor concepts that launched the field of phononic crystal liquid sensors. In this work we introduce a novel concept—narrow band solid-liquid composite arrangements. We demonstrate two different concepts to design narrow band structures, and show the results of theoretical studies and results of experimental investigations that confirm the theoretical predictions. This work extends prior studies in the field of phononic crystal liquid sensors with novel concepts and results that have a high potential in a field of volumetric liquid properties evaluation.
Collapse
Affiliation(s)
- Nikolay Mukhin
- Institute for Micro and Sensor Systems, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany.
- Department of Photonics, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg 197376, Russia.
| | - Mykhailo Kutia
- Institute for Automation Engineering, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany
| | - Aleksandr Oseev
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, 15B, Av des Montboucons, 25030 Besançon, France
- Institute for Micro and Sensor Systems, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany
| | - Ulrike Steinmann
- Institute for Automation Engineering, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany
| | - Stefan Palis
- Institute for Automation Engineering, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany
| | - Ralf Lucklum
- Institute for Micro and Sensor Systems, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
11
|
Abstract
The state of oxygen in aqueous supersaturated solutions prepared by different methods was studied using high-resolution ultrasonic spectroscopy in combination with other techniques. This allowed for nondestructive evaluation of the properties of oxygen solute particles, composed of oxygen molecules and surrounding (coordinating) molecules of water, at equilibrium, supersaturated conditions, and different temperatures and concentrations of O2. The results were compared with the behaviors of other types of solutes in water, including H2O2, which has similar molecular size and mass to O2 but is characterized by a significantly different type of interaction with water molecules. Additionally, theoretical modeling was performed to assess the ultrasonic characteristics of dispersions of oxygen nanobubbles stabilized by a surface electrical charge. The obtained data indicate a clathrate-like organization of water in the coordination shells of single molecules of O2. We did not find any signs of formation of clusters of oxygen molecules in supersaturated solutions. No quantifiable presence of oxygen nanobubbles in the solutions was detected. The state of O2 molecules was not affected by supersaturation within the analyzed concentration range of oxygen. The results also demonstrated the potential of the ultrasonic technique in precision real-time nondestructive monitoring of oxygen solubilization and outgassing processes.
Collapse
Affiliation(s)
- Yuelong Li
- School of Chemistry, College of Life Science , University College Dublin , Belfield Campus , Dublin 4 , Ireland
| | - Vitaly Buckin
- School of Chemistry, College of Life Science , University College Dublin , Belfield Campus , Dublin 4 , Ireland
| |
Collapse
|
12
|
Abstract
The rapidly growing field of chemical catalysis is dependent on analytical methods for non-destructive real-time monitoring of chemical reactions in complex systems such as emulsions, suspensions and gels, where most analytical techniques are limited in their applicability, especially if the media is opaque, or if the reactants/products do not possess optical activity. High-resolution ultrasonic spectroscopy is one of the novel technologies based on measurements of parameters of ultrasonic waves propagating through analyzed samples, which can be utilized for real-time non-invasive monitoring of chemical reactions. It does not require optical transparency, optical markers and is applicable for monitoring of reactions in continuous media and in micro/nano bioreactors (e.g., nanodroplets of microemulsions). The technology enables measurements of concentrations of substrates and products over the whole course of reaction, analysis of time profiles of the degree of polymerization and molar mass of polymers and oligomers, evolutions of reaction rates, evaluation of kinetic mechanisms, measurements of kinetic and equilibrium constants and reaction Gibbs energy. It also provides tools for assessments of various aspects of performance of catalysts/enzymes including inhibition effects, reversible and irreversible thermal deactivation. In addition, ultrasonic scattering effects in dispersions allow real-time monitoring of structural changes in the medium accompanying chemical reactions.
Collapse
|