1
|
Chen L, Zhong Z, Wu R, Lin Q, Gong Z, Yuan D. On-site monitoring of dissolved Sb species in natural waters by an automatic system using flow injection coupled with hydride generation atomic fluorescence spectrometer. Talanta 2024; 274:126037. [PMID: 38604046 DOI: 10.1016/j.talanta.2024.126037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Antimony (Sb) is a toxic and potentially carcinogenic element in the environment. The toxicity of Sb(III) is ten times that of Sb(V). Therefore, on-site monitoring technique for dissolved Sb species is crucial for the study of Sb environmental processes. In this study, an automated, portable, and cost-effective system was developed for field simultaneous analysis of Sb(III) and Sb(III + V) in natural waters. The system comprised a portable atomic fluorescence spectrometer equipped with a built-in electrochemical H2 generator to reduce the consumption of acid/borohydride solution and make the atomizer more stable for on-site analysis. Flow injection technique was also used to achieve on-line pretreatment of water samples, including filtration, acidification, pre-reduction, and hydride generation procedures. Under the optimal conditions, the limits of detection (3σ, n = 11) of the developed method were 0.015 μg/L and the linear ranges were 0.05-5.0 μg/L for both Sb(III) and Sb(III + V). The relative standard deviations (n = 11) of the spiked samples of Sb(V) were 3.2% (0.05 μg/L), 3.3% (0.2 μg/L), and 1.7% (0.5 μg/L), respectively. The spiked recoveries of lake water, treated wastewater, and seawater ranged from 97.0% to 108.5%. The novel system of flow injection coupled with hydride generation atomic fluorescence spectrometer (FI-HG-AFS) was applied to carry out an 18-h fixed-point monitoring at a secondary settling tank of a wastewater treatment facility in Xiamen University, and a 6-h real-time underway analysis in the surface seawater of Dongshan Bay, China, proving that the system was capable of long-term monitoring in the field.
Collapse
Affiliation(s)
- Luodan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Ziyun Zhong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China
| | - Rongkun Wu
- Tairui Science and Technology Co., Ltd., Quanzhou, 362000, PR China
| | - Qinglin Lin
- Tairui Science and Technology Co., Ltd., Quanzhou, 362000, PR China
| | - Zhenbin Gong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China.
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
2
|
Yang W, Ye L, Wu Y, Wang X, Ye S, Deng Y, Huang K, Luo H, Zhang J, Zheng C. Arsenic field test kits based on solid-phase fluorescence filter effect induced by silver nanoparticle formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134038. [PMID: 38552392 DOI: 10.1016/j.jhazmat.2024.134038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
Millions of people worldwide are affected by naturally occurring arsenic in groundwater. The development of a low-cost, highly sensitive, portable assay for rapid field detection of arsenic in water is important to identify areas for safe wells and to help prioritize testing. Herein, a novel paper-based fluorescence assay was developed for the on-site analysis of arsenic, which was constructed by the solid-phase fluorescence filter effect (SPFFE) of AsH3-induced the generation of silver nanoparticles (AgNPs) toward carbon dots. The proposed SPFFE-based assay achieves a low arsenic detection limit of 0.36 μg/L due to the efficient reduction of Ag+ by AsH3 and the high molar extinction coefficient of AgNPs. In conjunction with a smartphone and an integrated sample processing and sensing platform, field-sensitive detection of arsenic could be achieved. The accuracy of the portable assay was validated by successfully analyzing surface and groundwater samples, with no significant difference from the results obtained through mass spectrometry. Compared to other methods for arsenic analysis, this developed system offers excellent sensitivity, portability, and low cost. It holds promising potential for on-site analysis of arsenic in groundwater to identify safe well locations and quickly obtain output from the global map of groundwater arsenic.
Collapse
Affiliation(s)
- Wenhui Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Liqing Ye
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuke Wu
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Wang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Simin Ye
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Yurong Deng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ke Huang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hong Luo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
3
|
Soni GK, Wangoo N, Cokca C, Peneva K, Sharma RK. Ultrasensitive aptasensor for arsenic detection using quantum dots and guanylated Poly(methacrylamide). Anal Chim Acta 2022; 1209:339854. [DOI: 10.1016/j.aca.2022.339854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022]
|
4
|
Zhang X, Liu S, Wei X, Yu YL, Wang JH. A Novel Pretreatment Device Integrating Magnetic-Assisted Dispersive Extraction and Ultrasonic Spray Separation for Speciation Analysis of Arsenic in Whole Blood by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry. Anal Chem 2021; 93:10577-10583. [PMID: 34283582 DOI: 10.1021/acs.analchem.1c01745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Speciation analysis of arsenic in blood is essential for identifying and quantifying the exposure of arsenic and studying the metabolism and toxicity of arsenic. Herein, a novel pretreatment device is rationally designed and used for speciation analysis of arsenic in whole blood by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). The sample centrifuge tubes containing blood, reagents, and a magnetic stir bar are placed on the fidget spinner of the pretreatment device. When flicking the fidget spinner rotation with the finger, the magnetic stir bar in the tube rotates in three dimensions under the magnetic field, thereby assisting dispersive extraction of arsenic species by the mixing of blood with reagents. Afterward, the arsenic extract is separated in situ from the blood matrix using an ultrasonic spray sheet covered with a filter and ultrafiltration membrane, which is directly used for subsequent IC-ICP-MS analysis. For 100 μL of blood, the whole pretreatment operation can be completed within 10 min. With As(III), As(V), MMA, and DMA in blood as analytes, the use of the present pretreatment device will hardly lead to the loss and transformation of arsenic species, and the extraction efficiency of the total arsenic is more than 96%. When the pretreatment device is coupled to IC-ICP-MS, the detection limits of four arsenic species in whole blood are 0.017-0.023 μg L-1, and precisions are within 2.3-4.2%. This pretreatment device provides a simple, fast, efficient, and low-cost tool for extraction and separation of arsenic species in whole blood, opening a new idea for the pretreatment of complex samples.
Collapse
Affiliation(s)
- Xiao Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuang Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
5
|
Vyhnanovský J, Yildiz D, Štádlerová B, Musil S. Efficient photochemical vapor generation of bismuth using a coiled Teflon reactor: Effect of metal sensitizers and analytical performance with flame-in-gas-shield atomizer and atomic fluorescence spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Matoušek T, Kratzer J, Sturgeon RE, Mester Z, Musil S. A mass spectrometric study of hydride generated arsenic species identified by direct analysis in real time (DART) following cryotrapping. Anal Bioanal Chem 2021; 413:3443-3453. [PMID: 33755769 DOI: 10.1007/s00216-021-03289-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
Hydride generation (HG) coupled to cryotrapping was employed to introduce, separately and with high selectivity, four gaseous arsanes into a direct analysis in real time source for high-resolution mass spectrometry (DART-HR-MS). The arsanes, i.e., arsane (AsH3), methylarsane (CH3AsH2), dimethylarsane ((CH3)2AsH), and trimethylarsane ((CH3)3As), were formed under HG conditions that were close to those typically used for analytical purposes. Arsenic containing ion species formed during ambient ionization in the DART were examined both in the positive and negative ion modes. It was clearly demonstrated that numerous arsenic ion species originated in the DART source that did not accurately reflect their origin. Pronounced oxidation, hydride abstraction, methyl group(s) loss, and formation of oligomer ions complicate the identification of the original species in both modes of detection, leading to potential misinterpretation. Suitability of the use of the DART source for identification of arsenic species in multiphase reaction systems comprising HG is discussed.
Collapse
Affiliation(s)
- Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Jan Kratzer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Ralph E Sturgeon
- Metrology, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
| | - Zoltán Mester
- Metrology, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
| | - Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Mercury volatile species generation from HCl and TRIS buffer media: Quantification of generation efficiency and characterization of severe changes in speciation information due to de-alkylation. Anal Chim Acta 2020; 1119:68-76. [DOI: 10.1016/j.aca.2020.04.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/17/2022]
|
8
|
Recent developments in determination and speciation of arsenic in environmental and biological samples by atomic spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Sultan S, Shah A, Khan B, Nisar J, Shah MR, Ashiq MN, Akhter MS, Shah AH. Calix[4]arene Derivative-Modified Glassy Carbon Electrode: A New Sensing Platform for Rapid, Simultaneous, and Picomolar Detection of Zn(II), Pb(II), As(III), and Hg(II). ACS OMEGA 2019; 4:16860-16866. [PMID: 31646232 PMCID: PMC6796916 DOI: 10.1021/acsomega.9b01869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The glassy carbon electrode was fabricated with multifunctional bis-triazole-appended calix[4]arene and then used for the simultaneous detection of Zn(II), Pb(II), As(III), and Hg(II). Before applying the square-wave anodic stripping voltammetry, the sensitivity and precision of the modified electrode was assured by optimizing various conditions such as the modifier concentration, pH of the solution, deposition potential, accumulation time, and supporting electrolytes. The modified glassy carbon electrode was found to be responsive up to picomolar limits for the aforementioned heavy metal ions, which is a concentration limit much lower than the threshold level permitted by the World Health Organization. Importantly, the designed sensing platform showed anti-interference ability, good stability, repeatability, reproducibility, and applicability for the detection of multiple metal ions. The detection limits obtained for Zn(II), Pb(II), As(III), and Hg(II) are 66.3, 14.6, 71.9, and 28.9 pM, respectively.
Collapse
Affiliation(s)
- Sundus Sultan
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Burhan Khan
- H.E.J Research Institute of Chemistry, International
Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Jan Nisar
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Raza Shah
- H.E.J Research Institute of Chemistry, International
Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Naeem Ashiq
- Institute
of Chemical Sciences, Bahauddin Zakaryia
University, Multan 6100, Pakistan
| | - Mohammad Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Aamir Hassan Shah
- CAS Laboratory of Nanosystem
and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
10
|
Marschner K, Pétursdóttir ÁH, Bücker P, Raab A, Feldmann J, Mester Z, Matoušek T, Musil S. Validation and inter-laboratory study of selective hydride generation for fast screening of inorganic arsenic in seafood. Anal Chim Acta 2018; 1049:20-28. [PMID: 30612652 DOI: 10.1016/j.aca.2018.11.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
It is advisable to monitor and regulate inorganic arsenic (iAs) in food and feedstuff. This work describes an update and validation of a method of selective hydride generation (HG) with inductively coupled plasma mass spectrometry (ICP-MS) for high-throughput screening of iAs content in seafood samples after microwave-assisted extraction with diluted nitric acid and hydrogen peroxide. High concentration of HCl (8 M) for HG along with hydrogen peroxide in samples of a same concentration as used for extraction leads to a selective conversion of iAs to volatile arsine that is released and transported to the detector. A minor contribution from methylarsonate (≈20% to iAs) was found, while HG from dimethylarsinate, trimethylarsine oxide is substantially suppressed (less than 1% to iAs). Methodology was applied to Certified Reference Materials (CRMs) TORT-3, DORM-3, DORM-4, DOLT-4, DOLT-5, PRON-1, SQID-1 and ERM-CE278k, in some of them iAs has been determined for the first time, and to various seaweed samples from a local store. The results were always compared with a reference method and selectivity of iAs determination was evaluated. An inter-laboratory reproducibility was tested by comparative analyses of six fish and four seaweed samples in three European laboratories, with good agreement of the results. The method of HG-ICP-MS is sensitive (limit of detection 2 μg kg-1 iAs), well suited for screening of large number of samples and selective at iAs concentration levels at which maximum limits are expected to be set into EU legislation for marine samples.
Collapse
Affiliation(s)
- Karel Marschner
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | | | - Patrick Bücker
- TESLA-Trace Element Speciation Laboratory, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Andrea Raab
- TESLA-Trace Element Speciation Laboratory, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Jörg Feldmann
- TESLA-Trace Element Speciation Laboratory, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Zoltán Mester
- National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic.
| |
Collapse
|
11
|
Šoukal J, Sturgeon RE, Musil S. Efficient Photochemical Vapor Generation of Molybdenum for ICPMS Detection. Anal Chem 2018; 90:11688-11695. [DOI: 10.1021/acs.analchem.8b03354] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jakub Šoukal
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
- Charles University, Faculty of Science, Department of Analytical Chemistry, Albertov 6, 128 43 Prague, Czech Republic
| | - Ralph E. Sturgeon
- National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| |
Collapse
|
12
|
Marschner K, Musil S, Mikšík I, Dědina J. Investigation of hydride generation from arsenosugars - Is it feasible for speciation analysis? Anal Chim Acta 2018; 1008:8-17. [DOI: 10.1016/j.aca.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
13
|
Chen P, Yang P, Zhou R, Yang X, Chen J, Hou X. Selective reduction-based, highly sensitive and homogeneous detection of iodide and melamine using chemical vapour generation-atomic fluorescence spectrometry. Chem Commun (Camb) 2018; 54:4696-4699. [PMID: 29676429 DOI: 10.1039/c8cc01186a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A selective reduction-based method was proposed for the sensitive detection of iodide and melamine using chemical vapour generation (CVG) coupled with atomic fluorescence spectrometry (AFS).
Collapse
Affiliation(s)
- Piaopiao Chen
- Key Lab of Green Chem & Tech of MOE, and College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Peng Yang
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Rongxing Zhou
- Biliary Surgical Department
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Xi Yang
- Key Lab of Green Chem & Tech of MOE, and College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Junbo Chen
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Xiandeng Hou
- Key Lab of Green Chem & Tech of MOE, and College of Chemistry
- Sichuan University
- Chengdu 610064
- China
- Analytical & Testing Center
| |
Collapse
|
14
|
Vyhnanovský J, Kratzer J, Benada O, Matoušek T, Mester Z, Sturgeon RE, Dědina J, Musil S. Diethyldithiocarbamate enhanced chemical generation of volatile palladium species, their characterization by AAS, ICP-MS, TEM and DART-MS and proposed mechanism of action. Anal Chim Acta 2017; 1005:16-26. [PMID: 29389315 DOI: 10.1016/j.aca.2017.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/27/2022]
Abstract
Comprehensive investigation of chemical generation of volatile species (VSG) of palladium for detection by analytical atomic and mass spectrometry and, specifically, the mechanistic aspects of their formation and tentative identification are presented. VSG was achieved in a flow injection mode using a generator that permitted rapid mixing of acidified sample with NaBH4 reductant. Atomization in a diffusion flame with detection by atomic absorption spectrometry was exclusively used for optimization of generation conditions while inductively coupled plasma mass spectrometry was utilized to investigate overall system efficiency and analytical metrics of the VSG system for potential ultratrace analysis. Sodium diethyldithiocarbamate (DDTC) served as a crucial reaction modifier, enhancing overall system efficiency 9-fold. Combinations of modifiers, Triton X-100 and Antifoam B surfactants provided a synergistic effect to yield a further 2-fold enhancement of VSG. The overall system efficiency was in the range 16-22%, with higher efficiencies correlating with higher Pd concentrations. The contribution of co-generated aerosol to the overall system efficiency, determined by means of concurrent measurement of added Cs, was negligible - less than 0.1%. The nature of the volatile species was investigated using several approaches, but principally by transmission electron microscopy (TEM) after their collection on a grid, and by direct analysis in real time (DART) using high resolution orbitrap mass spectrometry. These experiments suggest a parallel but dual-route mechanism of VSG of Pd, one attributed to generation of a volatile DDTC chelate of Pd and a second to nanoparticle formation.
Collapse
Affiliation(s)
- Jaromír Vyhnanovský
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic; Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague, Czech Republic
| | - Jan Kratzer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Zoltán Mester
- National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Ralph E Sturgeon
- National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Jiří Dědina
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.
| |
Collapse
|
15
|
Chemical generation of volatile species of copper – Optimization, efficiency and investigation of volatile species nature. Anal Chim Acta 2017; 977:10-19. [DOI: 10.1016/j.aca.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
|
16
|
Yang XA, Lu XP, Liu L, Chi MB, Hu HH, Zhang WB. Selective determination of four arsenic species in rice and water samples by modified graphite electrode-based electrolytic hydride generation coupled with atomic fluorescence spectrometry. Talanta 2016; 159:127-136. [DOI: 10.1016/j.talanta.2016.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/29/2016] [Accepted: 06/05/2016] [Indexed: 01/19/2023]
|
17
|
Marschner K, Musil S, Dědina J. Demethylation of Methylated Arsenic Species during Generation of Arsanes with Tetrahydridoborate(1−) in Acidic Media. Anal Chem 2016; 88:6366-73. [DOI: 10.1021/acs.analchem.6b00735] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karel Marschner
- Institute
of Analytical
Chemistry of the CAS, v. v. i., Veveří
97, 602 00 Brno, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Charles University in Prague, Albertov 8, 128 43 Prague, Czech Republic
| | - Stanislav Musil
- Institute
of Analytical
Chemistry of the CAS, v. v. i., Veveří
97, 602 00 Brno, Czech Republic
| | - Jiří Dědina
- Institute
of Analytical
Chemistry of the CAS, v. v. i., Veveří
97, 602 00 Brno, Czech Republic
| |
Collapse
|