1
|
Bahuguna G, Patolsky F. Universal Approach to Direct Spatiotemporal Dynamic In Situ Optical Visualization of On-Catalyst Water Splitting Electrochemical Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401258. [PMID: 38650122 PMCID: PMC11199991 DOI: 10.1002/advs.202401258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Electrochemical reactions are the unrivaled backbone of next-generation energy storage, energy conversion, and healthcare devices. However, the real-time visualization of electrochemical reactions remains the bottleneck for fully exploiting their intrinsic potential. Herein, for the first time, a universal approach to direct spatiotemporal-dynamic in situ optical visualization of pH-based as well as specific byproduct-based electrochemical reactions is performed. As a highly relevant and impactful example, in-operando optical visualization of on-catalyst water splitting processes is performed in neutral water/seawater. HPTS (8-hydroxypyrene-1,3,6-trisulfonicacid), known for its exceptional optical capability of detecting even the tiniest pH changes allows the unprecedented "spatiotemporal" real-time visualization at the electrodes. As a result, it is unprecedentedly revealed that at a critical cathode-to-anode distance, the bulk-electrolyte "self-neutralization" phenomenon can be achieved during the water splitting process, leading to the practical realization of enhanced additive-free neutral water splitting. Furthermore, it is experimentally unveiled that at increasing electrolyte flow rates, a swift and severe inhibition of the concomitantly forming acidic and basic 'fronts', developed at anode and cathode compartments are observed, thus acting as a "buffering" mechanism. To demonstrate the universal applicability of this elegant strategy which is not limited to pH changes, the technique is extended to visualization of hypochlorite/ chlorine at the anode during electrolysis of sea water using N-(4-butanoic acid) dansylsulfonamide (BADS). Thus, a unique experimental tool that allows real-time spatiotemporal visualization and simultaneous mechanistic investigation of complex electrochemical processes is developed that can be universally extended to various fields of research.
Collapse
Affiliation(s)
- Gaurav Bahuguna
- School of ChemistryFaculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Fernando Patolsky
- School of ChemistryFaculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
- Department of Materials Science and Engineeringthe Iby and Aladar Fleischman Faculty of EngineeringTel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
2
|
Linfield S, Gawinkowski S, Nogala W. Toward the Detection Limit of Electrochemistry: Studying Anodic Processes with a Fluorogenic Reporting Reaction. Anal Chem 2023; 95:11227-11235. [PMID: 37461137 PMCID: PMC10398625 DOI: 10.1021/acs.analchem.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Recently, shot noise has been shown to be an inherent part of all charge-transfer processes, leading to a practical limit of quantification of 2100 electrons (≈0.34 fC) [ Curr. Opin. Electrochem. 2020, 22, 170-177]. Attainable limits of quantification are made much larger by greater background currents and insufficient instrumentation, which restricts progress in sensing and single-entity applications. This limitation can be overcome by converting electrochemical charges into photons, which can be detected with much greater sensitivity, even down to a single-photon level. In this work, we demonstrate the use of fluorescence, induced through a closed bipolar setup, to monitor charge-transfer processes below the detection limit of electrochemical workstations. During this process, the oxidation of ferrocenemethanol (FcMeOH) in one cell is used to concurrently drive the oxidation of Amplex Red (AR), a fluorogenic redox molecule, in another cell. The spectroelectrochemistry of AR is investigated and new insights on the commonplace practice of using deprotonated glucose to limit AR photooxidation are presented. The closed bipolar setup is used to produce fluorescence signals corresponding to the steady-state voltammetry of FcMeOH on a microelectrode. Chronopotentiometry is then used to show a linear relationship between the charge passed through FcMeOH oxidation and the integrated AR fluorescence signal. The sensitivity of the measurements obtained at different timescales varies between 2200 and 500 electrons per detected photon. The electrochemical detection limit is approached using a diluted FcMeOH solution in which no faradaic current signal is observed. Nevertheless, a fluorescence signal corresponding to FcMeOH oxidation is still seen, and the detection of charges down to 300 fC is demonstrated.
Collapse
Affiliation(s)
- Steven Linfield
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sylwester Gawinkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Belotti M, El-Tahawy MMT, Garavelli M, Coote ML, Iyer KS, Ciampi S. Separating Convective from Diffusive Mass Transport Mechanisms in Ionic Liquids by Redox Pro-fluorescence Microscopy. Anal Chem 2023. [PMID: 37339015 DOI: 10.1021/acs.analchem.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The study of electrochemical reactivity requires analytical techniques capable of probing the diffusion of reactants and products to and from electrified interfaces. Information on diffusion coefficients is often obtained indirectly by modeling current transients and cyclic voltammetry data, but such measurements lack spatial resolution and are accurate only if mass transport by convection is negligible. Detecting and accounting for adventitious convection in viscous and wet solvents, such as ionic liquids, is technically challenging. We have developed a direct, spatiotemporally resolved optical tracking of diffusion fronts which can detect and resolve convective disturbances to linear diffusion. By tracking the movement of an electrode-generated fluorophore, we demonstrate that parasitic gas evolving reactions lead to 10-fold overestimates of macroscopic diffusion coefficients. A hypothesis is put forward linking large barriers to inner-sphere redox reactions, such as hydrogen gas evolution, to the formation of cation-rich overscreening and crowding double layer structures in imidazolium-based ionic liquids.
Collapse
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mohsen M T El-Tahawy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna, Emilia Romagna 40136, Italy
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna, Emilia Romagna 40136, Italy
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
4
|
Dong H, Zhao L, Wang T, Chen Y, Hao W, Zhang Z, Hao Y, Zhang C, Wei X, Zhang Y, Zhou Y, Xu M. Dual-Mode Ratiometric Electrochemical and Turn-On Fluorescent Detection of Butyrylcholinesterase Utilizing a Single Probe for the Diagnosis of Alzheimer's Disease. Anal Chem 2023; 95:8340-8347. [PMID: 37192372 DOI: 10.1021/acs.analchem.3c00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biomarkers detection in blood with high accuracy is crucial for the diagnosis and treatment of many diseases. In this study, the proof-of-concept fabrication of a dual-mode sensor based on a single probe (Re-BChE) using a dual-signaling electrochemical ratiometric strategy and a "turn-on" fluorescent method is presented. The probe Re-BChE was synthesized in a single step and demonstrated dual mode response toward butyrylcholinesterase (BChE), a promising biomarker of Alzheimer's disease (AD). Due to the specific hydrolysis reaction, the probe Re-BChE demonstrated a turn-on current response for BChE at -0.28 V, followed by a turn-off current response at -0.18 V, while the fluorescence spectrum demonstrated a turn-on response with an emission wavelength of 600 nm. The developed ratiometric electrochemical sensor and fluorescence detection demonstrated high sensitivity with BChE concentrations with a low detection limit of 0.08 μg mL-1 and 0.05 μg mL-1, respectively. Importantly, the dual-mode sensor presents the following advantages: (1) dual-mode readout can correct the impact of systematic or background error, thereby achieving more accurate results; (2) the responses of dual-mode readout originate from two distinct mechanisms and relatively independent signal transduction, in which there is no interference between two signaling routes. Additionally, compared with the reported single-signal electrochemical assays for BChE, both redox potential signals were detected in the absence of biological interference within a negative potential window. Furthermore, it was discovered that the outcomes of direct dual-mode electrochemical and fluorescence quantifications of the level of BChE in serum were in agreement with those obtained from the use of commercially available assay kits for BChE sensing. This method has the potential to serve as a useful point-of-care tool for the early detection of AD.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Le Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Tao Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yanan Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Wanqing Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Ziyi Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yizhao Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Cunliang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| |
Collapse
|
5
|
Toor R, Hourdin L, Shanmugathasan S, Lefrançois P, Arbault S, Lapeyre V, Bouffier L, Douliez JP, Ravaine V, Perro A. Enzymatic cascade reaction in simple-coacervates. J Colloid Interface Sci 2023; 629:46-54. [PMID: 36152580 DOI: 10.1016/j.jcis.2022.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
The design of enzymatic droplet-sized reactors constitutes an important challenge with many potential applications such as medical diagnostics, water purification, bioengineering, or food industry. Coacervates, which are all-aqueous droplets, afford a simple model for the investigation of enzymatic cascade reaction since the reactions occur in all-aqueous media, which preserve the enzymes integrity. However, the question relative to how the sequestration and the proximity of enzymes within the coacervates might affect their activity remains open. Herein, we report the construction of enzymatic reactors exploiting the simple coacervation of ampholyte polymer chains, stabilized with agar. We demonstrate that these coacervates have the ability to sequester enzymes such as glucose oxidase and catalase and preserve their catalytic activity. The study is carried out by analyzing the color variation induced by the reduction of resazurin. Usually, phenoxazine molecules acting as electron acceptors are used to characterize glucose oxidase activity. Resazurin (pink) undergoes a first reduction to resorufin (salmon) and then to dihydroresorufin (transparent) in presence of glucose oxidase and glucose. We have observed that resorufin is partially regenerated in the presence of catalase, which demonstrates the enzymatic cascade reaction. Studying this enzymatic cascade reaction within coacervates as reactors provide new insights into the role of the proximity, confinement towards enzymatic activity.
Collapse
Affiliation(s)
- Ritu Toor
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Lysandre Hourdin
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Sharvina Shanmugathasan
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Pauline Lefrançois
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Véronique Lapeyre
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Jean-Paul Douliez
- UMR 1332, Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre de Bordeaux, 33883 Villenave d'Ornon, France
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Adeline Perro
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France.
| |
Collapse
|
6
|
Ma T, Grzȩdowski AJ, Doneux T, Bizzotto D. Redox-Controlled Energy Transfer Quenching of Fluorophore-Labeled DNA SAMs Enables In Situ Study of These Complex Electrochemical Interfaces. J Am Chem Soc 2022; 144:23428-23437. [PMID: 36516982 DOI: 10.1021/jacs.2c09474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interfaces modified by a molecular monolayer can be challenging to study, particularly in situ, requiring novel approaches. Coupling electrochemical and optical approaches can be useful when signals are correlated. Here we detail a methodology that uses redox electrochemistry to control surface-based fluorescence intensity for detecting DNA hybridization and studying the uniformity of the surface response. A mixed composition single-strand DNA SAM was prepared using potential-assisted thiol exchange with two alkylthiol-modified ssDNAs that were either labeled with a fluorophore (AlexaFluor488) or a methylene blue (MB) redox tag. A significant change in fluorescence was observed when reducing MB to colorless leuco-MB. In situ fluorescence microscopy on a single-crystal gold bead electrode showed that fluorescence intensity depended on (1) the potential controlling the oxidation state of MB, (2) the surface density of DNA, (3) the MB:AlexFluor488 ratio in the DNA SAM, and (4) the local environment around the DNA SAM. MB efficiently quenched AlexaFluor488 fluorescence. Reduction of MB showed a significant increase in fluorescence resulting from a decrease in quenching or energy transfer efficiency. Hybridization of DNA SAMs with its unlabeled complement showed a large increase in fluorescence due to MB reduction for surfaces with sufficient DNA coverage. Comparing electrochemical-fluorescence measurements to electrochemical (SWV) measurements showed an improvement in detection of a small fraction of hybridized DNA SAM for surfaces with optimal DNA SAM composition and coverage. Additionally, this coupled electrochemical redox-fluorescence microscopy method can measure the spatial heterogeneity of electron-transfer kinetics and the influence of the local interfacial environment.
Collapse
Affiliation(s)
- Tianxiao Ma
- AMPEL and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, CanadaV6T1Z4
| | - Adrian Jan Grzȩdowski
- AMPEL and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, CanadaV6T1Z4
| | - Thomas Doneux
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe 2, CP 255, B-1050Bruxelles, Belgium
| | - Dan Bizzotto
- AMPEL and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, CanadaV6T1Z4
| |
Collapse
|
7
|
Pham NS, Nguyen BN, Nguyen AQK. Electrochemiluminescence signal amplification of resorufin by hydrogen peroxide and potassium persulfate as dual co-reactant. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Electrochemistry and Electrochemiluminescence of Resorufin Dye: Synergetic Reductive-Oxidation Boosted by Hydrogen Peroxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Tian Z, Qin X, Shao F, Li X, Wang Z, Liu S, Wu Y. Electrofluorochromic imaging analysis of dopamine release from living PC12 cells with bipolar nanoelectrodes array. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Wang K, Behdani B, Silvera Batista CA. Visualization of Concentration Gradients and Colloidal Dynamics under Electrodiffusiophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5663-5673. [PMID: 35467877 DOI: 10.1021/acs.langmuir.2c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we present an experimental study of the dynamics of charged colloids under direct currents and gradients of chemical species (electrodiffusiophoresis). In our approach, we simultaneously visualize the development of concentration polarization and the ensuing dynamics of charged colloids near electrodes. With the aid of confocal microscopy and fluorescent probes, we show that the passage of current through water confined between electrodes, separated about a hundred microns, results in significant pH gradients. Depending on the current density and initial conditions, steep pH gradients develop, thus becoming a significant factor in the behavior of charged colloids. Furthermore, we show that steep pH gradients induce the focusing of charged colloids away from both electrodes. Our results provide the experimental basis for further development of models of electrodiffusiophoresis and the design of non-equilibrium strategies for the fabrication of advanced materials.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Behrouz Behdani
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Carlos A Silvera Batista
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
11
|
Abstract
Chemistry in confined volumes, such as aqueous droplets, is different from bulk, continuous water. However, few techniques are available to probe interfacial reactivity in complex, multiphase environments. Here, we demonstrate preferential electroreduction at the oil|water|conductor (three-phase) interface. Electrodeposition of cobalt and nickel results in ringlike structures that can be characterized with tens of nanometers precision in scanning electron microscopy and energy dispersive X-ray spectroscopy. To demonstrate the generalizability of these observations, we show that electroreduction of resazurin to fluorescent resorufin occurs preferentially at the three-phase boundary. The preferential electroreduction does not depend on droplet geometry. These results, grounded in three-phase boundary reactivity, are highly important across all fields of chemistry and biology because they highlight how the interface can change chemistry in unexpected ways.
Collapse
Affiliation(s)
- Thomas B. Clarke
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC USA 27599
| | - Jeffrey E. Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC USA 27599
- Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC US 27599
| |
Collapse
|
12
|
Encapsulation within a coordination cage modulates the reactivity of redox-active dyes. Commun Chem 2022; 5:44. [PMID: 36697669 PMCID: PMC9814915 DOI: 10.1038/s42004-022-00658-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/18/2022] [Indexed: 02/08/2023] Open
Abstract
Confining molecules within well-defined nanosized spaces can profoundly alter their physicochemical characteristics. For example, the controlled aggregation of chromophores into discrete oligomers has been shown to tune their optical properties whereas encapsulation of reactive species within molecular hosts can increase their stability. The resazurin/resorufin pair has been widely used for detecting redox processes in biological settings; yet, how tight confinement affects the properties of these two dyes remains to be explored. Here, we show that a flexible PdII6L4 coordination cage can efficiently encapsulate both resorufin and resazurin in the form of dimers, dramatically modulating their optical properties. Furthermore, binding within the cage significantly decreases the reduction rate of resazurin to resorufin, and the rate of the subsequent reduction of resorufin to dihydroresorufin. During our studies, we also found that upon dilution, the PdII6L4 cage disassembles to afford PdII2L2 species, which lacks the ability to form inclusion complexes - a process that can be reversed upon the addition of the strongly binding resorufin/resazurin guests. We expect that the herein disclosed ability of a water-soluble cage to reversibly modulate the optical and chemical properties of a molecular redox probe will expand the versatility of synthetic fluorescent probes in biologically relevant environments.
Collapse
|
13
|
Ashaju A, Otten V, Wood JA, Lammertink RGH. Electrocatalytic Reaction Driven Flow: Role of pH in Flow Reversal. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:24876-24886. [PMID: 34824659 PMCID: PMC8607504 DOI: 10.1021/acs.jpcc.1c06458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/13/2021] [Indexed: 05/20/2023]
Abstract
Immobilized bimetallic structures generate fluid flow during electrocatalytic reactions with hydrogen peroxide, which is typically driven from the anodic metal to the cathodic metal similar to an electroosmotic flow. However, under low reactive regimes, the generated flow becomes fully reversed, which cannot be explained by the classical electroosmotic theory. This work aims at unraveling the origin and dynamics of this flow hysteresis through a combined experimental and numerical approach. The key electrocatalytic parameters that contribute to flow reversal are analyzed experimentally and numerically under low reactive regimes induced by bulk pH variations. The proton gradient that initiates chemomechanical actuation is probed with the use of fluorescence lifetime imaging. The fluid flow dynamics under reactive regimes are visualized by the use of particle tracking. Our numerical simulations elucidate the role of pH variations and additional ionic species (counterions) toward flow reversal. The combination of these techniques highlights the interplay between electrocatalytic and electrokinetic phenomena on the occurrence of flow reversal.
Collapse
Affiliation(s)
- Abimbola
A. Ashaju
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, 7522NB Enschede, The Netherlands
| | - Veerle Otten
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, 7522NB Enschede, The Netherlands
| | - Jeffery A. Wood
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, 7522NB Enschede, The Netherlands
| | - Rob G. H. Lammertink
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, 7522NB Enschede, The Netherlands
| |
Collapse
|
14
|
Djoumer R, Chovin A, Demaille C, Dejous C, Hallil H. Real‐time Conversion of Electrochemical Currents into Fluorescence Signals Using 8‐Hydroxypyrene‐1,3,6‐trisulfonic Acid (HPTS) and Amplex Red as Fluorogenic Reporters. ChemElectroChem 2021. [DOI: 10.1002/celc.202100517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rabia Djoumer
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS UMR 7591 75006 Paris France
| | - Arnaud Chovin
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS UMR 7591 75006 Paris France
| | - Christophe Demaille
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS UMR 7591 75006 Paris France
| | - Corinne Dejous
- Laboratoire IMS Université de Bordeaux Bordeaux INP CNRS UMR5218 33405 Talence France
| | - Hamida Hallil
- Laboratoire IMS Université de Bordeaux Bordeaux INP CNRS UMR5218 33405 Talence France
| |
Collapse
|
15
|
Tian Z, Wu Y, Shao F, Tang D, Qin X, Wang C, Liu S. Electrofluorochromic Imaging Analysis of Glycan Expression on Living Single Cell with Bipolar Electrode Arrays. Anal Chem 2021; 93:5114-5122. [PMID: 33749243 DOI: 10.1021/acs.analchem.0c04785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The in situ glycan profiling of a single tumor cell plays an important role in personalized cancer treatment. Herein, an integrated microfluidic system was designed for living single-cell trapping and real-time monitoring of galactosyl expression on the surface, combining closed bipolar electrode (BPE) arrays and electrofluorochromic (EFC) imaging. Galactosyl groups on human liver cancer HepG2 cells were used as the model analysts, galactose oxidase (GAO) could selectively oxidize hydroxyl sites of galactosyl groups on the cell surface to aldehydes, and then biotin hydrazide (BH) was used to label the aldehydes by aniline-catalyzed hydrazone ligation. With the biotin-avidin system, nanoprobes were finally introduced to the galactosyl groups on the cell surface with avidin as a bridge, which was prepared by simultaneously assembling ferrocene-DNA (Fc-DNA) and biotin-DNA (Bio-DNA) on gold nanoparticles (AuNPs) due to their large surface area and excellent electrical conductivity. After a labeled single cell was captured in the anodic microchannel, the Fc groups attached on the cell surface were oxidized under suitable potential, and the nonfluorescent resazurin on the cathode was correspondingly reduced to produce highly fluorescent resorufin, collected by fluorescence confocal microscope. The combination of EFC imaging and BPE realized monitoring galactosyl group expression of 5.0 × 108 molecules per cell. Furthermore, the proposed platform had the ability to distinguish a single cancer cell from a normal cell according to the expression level of galactosyl groups and to dynamically monitor the galactosyl group variation on the cell surface, providing a simple and accessible method for the single-cell analysis.
Collapse
Affiliation(s)
- Zhaoyan Tian
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fengying Shao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dezhi Tang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
16
|
Guille-Collignon M, Delacotte J, Lemaître F, Labbé E, Buriez O. Electrochemical Fluorescence Switch of Organic Fluorescent or Fluorogenic Molecules. CHEM REC 2021; 21:2193-2202. [PMID: 33656794 DOI: 10.1002/tcr.202100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
This short review is aimed at emphasizing the most prominent recent works devoted to the fluorescence modulation of organic fluorescent or fluorogenic molecules by electrochemistry. This still expanding research field not only addresses the smart uses of known molecules or the design of new ones, but also investigates the development of instrumentation providing time- and space-resolved information at the molecular level. Important considerations including fluorescent/fluorogenic probes, reversible/irreversible fluorescence switch, direct/indirect fluorescence modulation, or environment properties are especially scrutinized in recent works dealing with bioanalysis perspectives.
Collapse
Affiliation(s)
- Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
17
|
Stefano JS, Conzuelo F, Masa J, Munoz RA, Schuhmann W. Coupling electrochemistry with a fluorescence reporting reaction enabled by bipolar electrochemistry. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Ma J, Yang M, Batchelor-McAuley C, Compton RG. Visualising electrochemical reaction layers: mediated vs. direct oxidation. Phys Chem Chem Phys 2020; 22:12422-12433. [PMID: 32459226 DOI: 10.1039/d0cp01904f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical treatments are widely used for 'clean up' in which toxic metals and organic compounds are removed using direct or mediated electrolysis. Herein we report novel studies offering proof of concept that spectrofluorometric electrochemistry can provide important mechanistic detail into these processes. A thin layer opto-electrochemical cell, with a carbon fibre (radius 3.5 μm) working electrode, is used to visualise the optical responses of the oxidative destruction of a fluorophore either directly, on an electrode, or via the indirect reaction of the analyte with an electrochemically formed species which 'mediates' the destruction. The optical responses of these two reaction mechanisms are first predicted by numerical simulation followed by experimental validation of each using two fluorescent probes, a redox inactive (in the electrochemical window) 1,3,6,8-pyrenetetrasulfonic acid and the redox-active derivative 8-hydroxypyrene-1,3,6-trisulfonic acid. In the vicinity of a carbon electrode held at different oxidative potentials, the contrast between indirect electro-destruction, chlorination, and direct oxidation is very obvious. Excellent agreement is seen between the numerically predicted fluorescence intensity profiles and experiment.
Collapse
Affiliation(s)
- Junling Ma
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Minjun Yang
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
19
|
Tassy B, Dauphin AL, Man HM, Le Guenno H, Lojou E, Bouffier L, de Poulpiquet A. In Situ Fluorescence Tomography Enables a 3D Mapping of Enzymatic O 2 Reduction at the Electrochemical Interface. Anal Chem 2020; 92:7249-7256. [PMID: 32298094 DOI: 10.1021/acs.analchem.0c00844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Getting information about the fate of immobilized enzymes and the evolution of their environment during turnover is a mandatory step toward bioelectrode optimization for effective use in biodevices. We demonstrate here the proof-of-principle visual characterization of the reactivity at an enzymatic electrode thanks to fluorescence confocal laser scanning microscopy (FCLSM) implemented in situ during the electrochemical experiment. The enzymatic O2 reduction involves proton-coupled electron transfers. Therefore, fluorescence variation of a pH-dependent fluorescent dye in the electrode vicinity enables reaction visualization. Simultaneous collection of electrochemical and fluorescence signals gives valuable space- and time-resolved information. Once the technical challenges of such a coupling are overcome, in situ FCLSM affords a unique way to explore reactivity at the electrode surface and in the electrolyte volume. Unexpected features are observed, especially the pH evolution of the enzyme environment, which is also indicated by a characteristic concentration profile within the diffusion layer. This coupled approach also gives access to a cartography of the electrode surface response (i.e., heterogeneity), which cannot be obtained solely by an electrochemical means.
Collapse
Affiliation(s)
- Bastien Tassy
- Aix-Marseille Univ., CNRS, UMR 7281, Bioenergetics and Protein Engineering, 13402 Marseille, France
| | - Alice L Dauphin
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5255, Institute of Molecular Sciences, F-33400 Talence, France
| | - Hiu Mun Man
- Aix-Marseille Univ., CNRS, UMR 7281, Bioenergetics and Protein Engineering, 13402 Marseille, France
| | - Hugo Le Guenno
- Microscopy Facility, CNRS, FR 3479, Mediterranean Institute of Microbiology, 13402 Marseille, France
| | - Elisabeth Lojou
- Aix-Marseille Univ., CNRS, UMR 7281, Bioenergetics and Protein Engineering, 13402 Marseille, France
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5255, Institute of Molecular Sciences, F-33400 Talence, France
| | - Anne de Poulpiquet
- Aix-Marseille Univ., CNRS, UMR 7281, Bioenergetics and Protein Engineering, 13402 Marseille, France
| |
Collapse
|
20
|
Fuladpanjeh‐Hojaghan B, Elsutohy MM, Kabanov V, Heyne B, Trifkovic M, Roberts EPL. In‐Operando Mapping of pH Distribution in Electrochemical Processes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Vladimir Kabanov
- Department of ChemistryUniversity of Calgary 2500 University Drive NW Calgary AB Canada
| | - Belinda Heyne
- Department of ChemistryUniversity of Calgary 2500 University Drive NW Calgary AB Canada
| | | | | |
Collapse
|
21
|
Fuladpanjeh‐Hojaghan B, Elsutohy MM, Kabanov V, Heyne B, Trifkovic M, Roberts EPL. In‐Operando Mapping of pH Distribution in Electrochemical Processes. Angew Chem Int Ed Engl 2019; 58:16815-16819. [DOI: 10.1002/anie.201909238] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Vladimir Kabanov
- Department of ChemistryUniversity of Calgary 2500 University Drive NW Calgary AB Canada
| | - Belinda Heyne
- Department of ChemistryUniversity of Calgary 2500 University Drive NW Calgary AB Canada
| | | | | |
Collapse
|
22
|
Tian Z, Mi L, Wu Y, Shao F, Zou M, Zhou Z, Liu S. Visual Electrofluorochromic Detection of Cancer Cell Surface Glycoprotein on a Closed Bipolar Electrode Chip. Anal Chem 2019; 91:7902-7910. [PMID: 31135138 DOI: 10.1021/acs.analchem.9b01760] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work reports an electrofluorochromic strategy on the basis of electric field control of fluorescent signal generation on bipolar electrodes (BPEs) for visualizing cancer cell surface glycoprotein (mucin 1). The device included two separate cells: anodic sensing cell and cathodic reporting cell, which were connected by a screen-printing electrode patterned on poly(ethylene terephthalate) (PET) membrane. In the sensing cell, anti-MUC1 antibody immobilized on a chitosan-multiwalled carbon nanotube (CS-MWCNT)-modified anodic BPE channel was used for capturing mucin-1 (MUC1) or MCF-7 cancer cells. Then ferrocene (Fc)-labeled mucin 1 aptamers were introduced through hybridization. Under an applied voltage, the ferrocene was oxidized and the electroactive molecules of 1,4-benzoquinone (BQ) in the cathodic reporting cell were reduced according to electroneutrality. This produced a strongly basic 1,4-benzoquinone anion radical (BQ•-), which turned on the fluorescence of pH-responsive fluorescent molecules of (2-(2-(4-hydroxystyryl)-6-methyl-4 H-pyran-4-ylidene)malononitrile) (SPM) coexisting in the cathode reporting cell for both spectrophotometric detection and imaging. This strategy allowed sensitive detection of MUC1 at a concentration down to 10 fM and was capable of detecting a minimum of three MCF-7 cells. Furthermore, the amount of MUC1 on MCF-7 cells was calculated to be 6.02 × 104 molecules/cell. Our strategy also had the advantages of high temporal and spatial resolution, short response time, and high luminous contrast and is of great significance for human health and the promotion of life science development.
Collapse
Affiliation(s)
- Zhaoyan Tian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Li Mi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Yafeng Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Fengying Shao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ) , No. A3, Gaobeidian Road, Chaoyang District , Beijing 100123 , China
| | - Zhenxian Zhou
- Nanjing Second Hospital , No. 121, Jiangjiayuan, Gulou District , Nanjing , Jiangsu , China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China
| |
Collapse
|
23
|
Djoumer R, Anne A, Chovin A, Demaille C, Dejous C, Hallil H, Lachaud JL. Converting Any Faradaic Current Generated at an Electrode under Potentiostatic Control into a Remote Fluorescence Signal. Anal Chem 2019; 91:6775-6782. [PMID: 31034205 DOI: 10.1021/acs.analchem.9b00851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the development of an original faradaic current-to-fluorescence conversion scheme. The proposed instrumental strategy consists of coupling the electrochemical reaction of any species at an electrode under potentiostatic control with the fluorescence emission of a species produced at the counter electrode. In order to experimentally validate this scheme, the fluorogenic species resazurin is chosen as a fluorescent reporter molecule, and its complex reduction mechanism is first studied in unprecedented detail. This kinetic study is carried out by recording simultaneous cyclic voltammograms and voltfluorograms at the same electrode. Numerical simulations are used to account for the experimental current and fluorescence signals, to analyze their degree of correlation, and to decipher their relation to resazurin reduction kinetics. It is then shown that, provided that the reduction of resazurin takes place at a micrometer-sized electrode, the fluorescence emission perfectly tracks the faradaic current. By implementing this ideal configuration at the counter electrode of a potentiostatic setup, it is finally demonstrated that the oxidation reaction of a nonfluorescent species at the working electrode can be quantitatively transduced into simultaneous emission of fluorescence.
Collapse
Affiliation(s)
- Rabia Djoumer
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS , Université Paris Diderot , Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf , Paris F-75205 Cedex 13 , France
| | - Agnès Anne
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS , Université Paris Diderot , Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf , Paris F-75205 Cedex 13 , France
| | - Arnaud Chovin
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS , Université Paris Diderot , Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf , Paris F-75205 Cedex 13 , France
| | - Christophe Demaille
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS , Université Paris Diderot , Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf , Paris F-75205 Cedex 13 , France
| | - Corinne Dejous
- Université de Bordeaux , Bordeaux INP, IMS, UMR 5218 CNRS , Talence F-33405 , France
| | - Hamida Hallil
- Université de Bordeaux , Bordeaux INP, IMS, UMR 5218 CNRS , Talence F-33405 , France
| | - Jean-Luc Lachaud
- Université de Bordeaux , Bordeaux INP, IMS, UMR 5218 CNRS , Talence F-33405 , France
| |
Collapse
|
24
|
Guerret-Legras L, Audibert J, Ojeda IG, Dubacheva G, Miomandre F. Combined SECM-fluorescence microscopy using a water-soluble electrofluorochromic dye as the redox mediator. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Fan Y, Hao R, Han C, Zhang B. Counting Single Redox Molecules in a Nanoscale Electrochemical Cell. Anal Chem 2018; 90:13837-13841. [DOI: 10.1021/acs.analchem.8b04659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yunshan Fan
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Rui Hao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Chu Han
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
26
|
de Poulpiquet A, Goudeau B, Garrigue P, Sojic N, Arbault S, Doneux T, Bouffier L. A snapshot of the electrochemical reaction layer by using 3 dimensionally resolved fluorescence mapping. Chem Sci 2018; 9:6622-6628. [PMID: 30310594 PMCID: PMC6115633 DOI: 10.1039/c8sc02011f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/15/2018] [Indexed: 01/12/2023] Open
Abstract
Fluorescence confocal laser scanning microscopy under electrochemical control allows imaging of various reaction layers revealing heterogeneous versus homogeneous reactions.
The coupling between electrochemistry and fluorescence confocal laser scanning microscopy (FCLSM) allows deciphering the electrochemical and/or redox reactivity of electroactive fluorophores. This is demonstrated with phenoxazine electrofluorogenic species frequently used in bioassays by mapping the variation of fluorescence intensity with respect to the distance from the electrode. The electrochemical conversion of resorufin dye (RF) to non-fluorescent dihydroresorufin (DH) leads to a sharp decrease of the fluorescence signal in the vicinity of the electrode. In contrast, the direct reduction of resazurin (RZ) to DH leads to an unexpected maximum fluorescence intensity localized further away from the surface. This observation indicates that the initial electron transfer (heterogeneous) is followed by a chemical comproportionation step (homogeneous), leading to the formation of RF within the diffusion layer with a characteristic concentration profile. Therefore, in situ FCLSM affords a direct way to monitor such chemical reactivity in space and to decipher a new redox pathway that cannot be resolved solely by electrochemical means.
Collapse
Affiliation(s)
- Anne de Poulpiquet
- Univ. Bordeaux , CNRS , Bordeaux INP , ISM , UMR 5255 , F-33400 Talence , France .
| | - Bertrand Goudeau
- Univ. Bordeaux , CNRS , Bordeaux INP , ISM , UMR 5255 , F-33400 Talence , France .
| | - Patrick Garrigue
- Univ. Bordeaux , CNRS , Bordeaux INP , ISM , UMR 5255 , F-33400 Talence , France .
| | - Neso Sojic
- Univ. Bordeaux , CNRS , Bordeaux INP , ISM , UMR 5255 , F-33400 Talence , France .
| | - Stéphane Arbault
- Univ. Bordeaux , CNRS , Bordeaux INP , ISM , UMR 5255 , F-33400 Talence , France .
| | - Thomas Doneux
- CHANI , Faculté des Sciences , Université libre de Bruxelles (ULB) , CP 255 , B-1050 Bruxelles , Belgium .
| | - Laurent Bouffier
- Univ. Bordeaux , CNRS , Bordeaux INP , ISM , UMR 5255 , F-33400 Talence , France .
| |
Collapse
|
27
|
Bizzotto D, Burgess IJ, Doneux T, Sagara T, Yu HZ. Beyond Simple Cartoons: Challenges in Characterizing Electrochemical Biosensor Interfaces. ACS Sens 2018; 3:5-12. [PMID: 29282982 DOI: 10.1021/acssensors.7b00840] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Design and development of surface-based biosensors is challenging given the multidisciplinary nature of this enterprise, which is certainly the case for electrochemical biosensors. Self-assembly approaches are used to modify the surface with capture probes along with electrochemical methods for detection. Complex surface structures are created to improve the probe-target interaction. These multicomponent surface structures are usually idealized in schematic representations. Many rely on the analytical performance of the sensor surface as an indication of the quality of the surface modification strategy. While directly linked to the eventual device, arguments for pursuing a more extensive characterization of the molecular environments at the surface are presented as a path to understanding how to make electrochemical sensors that are more robust, reliable with improved sensitivity. This is a complex task that is most often accomplished using methods that only report the average characteristics of the surface. Less often applied are methods that are sensitive to the probe (or adsorbate) present in nonideal configurations (e.g., aggregates, clusters, nonspecifically adsorbed). Though these structures may compose a small fraction of the overall modified surface, they have an uncertain impact on sensor performance and reliability. Addressing this issue requires application of imaging methods over a variety of length scales (e.g., optical microscopy and/or scanning probe microscopy) that provide valuable insight into the diversity of surface structures and molecular environments present at the sensing interface. Furthermore, using in situ analytical methods, while complex, can be more relevant to the sensing environment. Reliable measurements of the nature and extent of these features are required to assess the impact of these nonideal configurations on the sensing process. The development and use of methods that can characterize complex surface based biosensors is arguably required, highlighting the need for a multidisciplinary approach toward the preparation and analysis of the biosensor surface. In many ways, representing the surface without reliance on overly simplified cartoons will highlight these important considerations for improving sensor characteristics.
Collapse
Affiliation(s)
- Dan Bizzotto
- Department
of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ian J. Burgess
- Department
of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Thomas Doneux
- Chimie
Analytique et Chimie des Interfaces, Faculté des Sciences, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | - Takamasa Sagara
- Division
of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Nagasaki, Nagasaki 852-8131, Japan
| | - Hua-Zhong Yu
- Department
of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
28
|
Yang M, Batchelor-McAuley C, Kätelhön E, Compton RG. Reaction Layer Imaging Using Fluorescence Electrochemical Microscopy. Anal Chem 2017; 89:6870-6877. [PMID: 28520391 DOI: 10.1021/acs.analchem.7b01360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chemical confinement of a pH sensitive fluorophore to a thin-reaction layer adjacent to an electrode surface is explored as a potentially innovative route to improving the spatial resolution of fluorescence electrochemical microscopy. A thin layer opto-electrochemical cell is designed, facilitating the visualization of a carbon fiber (diameter 7.0 μm) electrochemical interface. Proton consumption is driven at the interface by the reduction of benzoquinone to hydroquinone and the resulting interfacial pH change is revealed using the fluorophore 8-hydoxypyrene-1,3,6-trisulfonic acid. It is demonstrated that the proton depletion zone may be constrained and controlled by the addition of a finite acid concentration to the system. Simulation of the resulting fluorescence intensity profiles is achieved on the basis of a finite difference model, with excellent agreement between the theoretical and experimental results.
Collapse
Affiliation(s)
- Minjun Yang
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Enno Kätelhön
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
29
|
Perez Jimenez AI, Challier L, Aït-Yahiatène E, Delacotte J, Labbé E, Buriez O. Selective Electrochemical Bleaching of the Outer Leaflet of Fluorescently Labeled Giant Liposomes. Chemistry 2017; 23:6781-6787. [DOI: 10.1002/chem.201605786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Ana Isabel Perez Jimenez
- Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS; Département de Chimie, PASTEUR; 24 rue Lhomond 75005 Paris France
| | - Lylian Challier
- Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS; Département de Chimie, PASTEUR; 24 rue Lhomond 75005 Paris France
| | - Eric Aït-Yahiatène
- Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS; Département de Chimie, PASTEUR; 24 rue Lhomond 75005 Paris France
| | - Jérôme Delacotte
- Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS; Département de Chimie, PASTEUR; 24 rue Lhomond 75005 Paris France
| | - Eric Labbé
- Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS; Département de Chimie, PASTEUR; 24 rue Lhomond 75005 Paris France
| | - Olivier Buriez
- Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS; Département de Chimie, PASTEUR; 24 rue Lhomond 75005 Paris France
| |
Collapse
|
30
|
Batchelor-McAuley C, Little CA, Sokolov SV, Kätelhön E, Zampardi G, Compton RG. Fluorescence Monitored Voltammetry of Single Attoliter Droplets. Anal Chem 2016; 88:11213-11221. [DOI: 10.1021/acs.analchem.6b03524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christopher Batchelor-McAuley
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Christopher A. Little
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Stanislav V. Sokolov
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Enno Kätelhön
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Giorgia Zampardi
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Richard G. Compton
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| |
Collapse
|
31
|
Lefrançois P, Vajrala VSR, Arredondo IB, Goudeau B, Doneux T, Bouffier L, Arbault S. Direct oxidative pathway from amplex red to resorufin revealed by in situ confocal imaging. Phys Chem Chem Phys 2016; 18:25817-22. [DOI: 10.1039/c6cp04438g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The conversion of Amplex Red (AR) to the fluorescent dye resorufin (RS) is employed in many biochemical assays. Here, direct generation of RS from AR at a mild oxidation potential is proven by a series of in situ electrochemical techniques.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Doneux
- Chimie Analytique et Chimie des Interfaces
- Faculté des Sciences
- Université Libre de Bruxelles (ULB)
- B-1050 Bruxelles
- Belgium
| | | | | |
Collapse
|