1
|
Alibekova Long M, Benman WKJ, Petrikas N, Bugaj LJ, Hughes AJ. Enhancing Single-Cell Western Blotting Sensitivity Using Diffusive Analyte Blotting and Antibody Conjugate Amplification. Anal Chem 2023; 95:17894-17902. [PMID: 37974303 DOI: 10.1021/acs.analchem.3c04130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
While there are many techniques to achieve highly sensitive, multiplex detection of RNA and DNA from single cells, detecting protein content often suffers from low limits of detection and throughput. Miniaturized, high-sensitivity Western blots on single cells (scWesterns) are attractive because they do not require advanced instrumentation. By physically separating analytes, scWesterns also uniquely mitigate limitations to target protein multiplexing posed by the affinity reagent performance. However, a fundamental limitation of scWesterns is their limited sensitivity for detecting low-abundance proteins, which arises from transport barriers posed by the separation gel against detection species. Here we address the sensitivity by decoupling the electrophoretic separation medium from the detection medium. We transfer scWestern separations to a nitrocellulose blotting medium with distinct mass transfer advantages over traditional in-gel probing, yielding a 5.9-fold improvement in the limit of detection. We next amplify probing of blotted proteins with enzyme-antibody conjugates, which are incompatible with traditional in-gel probing to achieve further improvement in the limit of detection to 1000 molecules, a 120-fold improvement. This enables us to detect 100% of cells in an EGFP-expressing population using fluorescently tagged and enzyme-conjugated antibodies compared to 84.5% of cells using in-gel detection. These results suggest the compatibility of nitrocellulose-immobilized scWesterns with a variety of affinity reagents─not previously accessible for in-gel use─for further signal amplification and detection of low-abundance targets.
Collapse
Affiliation(s)
- Mariia Alibekova Long
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William K J Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| | - Nathan Petrikas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Liu D, Wu H, Cui S, Zhao Q. Comprehensive Optimization of Western Blotting. Gels 2023; 9:652. [PMID: 37623107 PMCID: PMC10453944 DOI: 10.3390/gels9080652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Western blotting is one of the most extensively used techniques in the biomedical field. However, it is criticized by many researchers due to its considerable time consumption, multiple steps, and low method results. Therefore, we modified the steps of gel preparation, electrophoresis, electrotransfer, blocking, and gel cutting. First, we simplified the gel preparation step by premixing various reagents and varying the amounts of catalysts or radical generators, which shortened the entire process to 10 min. Second, we shortened the electrophoresis process to 35 min by modifying the formula of the electrophoresis running buffer. Then, we removed the hazard of methanol vapor by replacing methanol with ethanol in the electrotransfer buffer. Finally, the use of polyvinylpyrrolidone-40 shortened the blocking procedure to 10 min. Our modifications shortened the time, improved the experimental productivity, and minimized the experimental cost without hindering compatibility with most existing equipment. The entire experiment up to primary antibody incubation can be completed within 80 min.
Collapse
Affiliation(s)
- Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.L.); (H.W.); (S.C.)
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Haoliang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.L.); (H.W.); (S.C.)
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.L.); (H.W.); (S.C.)
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.L.); (H.W.); (S.C.)
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
3
|
Desire CT, Arrua RD, Strudwick XL, Kopecki Z, Cowin AJ, Hilder EF. The development of microfluidic-based western blotting: Technical advances and future perspectives. J Chromatogr A 2023; 1691:463813. [PMID: 36709548 DOI: 10.1016/j.chroma.2023.463813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Over the past two decades significant technical advancement in the field of western blotting has been made possible through the utilization of microfluidic technologies. In this review we provide a critical overview of these advancements, highlighting the advantages and disadvantages of each approach. Particular attention is paid to the development of now commercially available systems, including those for single cell analysis. This review also discusses more recent developments, including algorithms for automation and/or improved quantitation, the utilization of different materials/chemistries, use of projection electrophoresis, and the development of triBlots. Finally, the review includes commentary on future advances in the field based on current developments, and the potential of these systems for use as point-of-care devices in healthcare.
Collapse
Affiliation(s)
- Christopher T Desire
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
4
|
Zhang D, Yu Z, Hu S, Liu X, Zeng B, Gao W, Qin H, Ma X, He Y. Genome-wide identification of members of the Skp1 family in almond ( Prunus dulcis), cloning and expression characterization of PsdSSK1. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:35-49. [PMID: 36733834 PMCID: PMC9886703 DOI: 10.1007/s12298-023-01278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Skp1 (S-phase kinase-associated protein 1) is the core gene of SCF ubiquitin ligase, which mediates protein degradation, thereby regulating biological processes such as cell cycle progression, transcriptional regulation, and signal transduction. A variety of plant Skp1 gene family studies have been reported. However, the almond Skp1 gene family has not yet been studied. In this study, we identified 18 members of the Prunus dulcis PdSkp1 family that were unevenly distributed across six chromosomes of the almond genome. Phylogenetic tree analysis revealed that the PdSkp1 members can be divided into three groups: I, II, and III. PdSkp1 members in each subfamily have relatively conserved motif types and exon/intron numbers. There were three pairs of fragment duplication genes and one pair of tandem repeat genes, and their functions were highly evolutionarily conserved. Transcriptome data showed that PdSkp1 is expressed in almond flower tissues, and that its expression shows significant change during cross-pollination. Fluorescence quantitative results showed that eight PdSkp1 genes had different expression levels in five tissues of almond, i.e., branches, leaves, flower buds, flesh, and cores. In addition, we cloned a PsdSSK1 gene based on PdSkp1. The cloned PsdSSK1 showed the same protein sequence as PdSkp1-12. Results of qPCR and western blot analysis showed high expression of PsdSSK1 in almond pollen. In conclusion, we report the first clone of the key gene SSK1 that controls self-incompatibility in almonds. Our research lays a foundation for future functional research on PdSkp1 members, especially for exploring the mechanism of almond self-incompatibility. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01278-9.
Collapse
Affiliation(s)
- Dongdong Zhang
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Zhenfan Yu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Shaobo Hu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xingyue Liu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
- GuangZhou Institute of Forestry and Landscape Architecture, GuangZhou, China
| | - Bin Zeng
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Wenwen Gao
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - HuanXue Qin
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xintong Ma
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Yawen He
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| |
Collapse
|
5
|
Stutz H. Advances and applications of electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review. J Pharm Biomed Anal 2022; 222:115089. [DOI: 10.1016/j.jpba.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
6
|
Bhimwal R, Rustandi RR, Payne A, Dawod M. Recent advances in capillary gel electrophoresis for the analysis of proteins. J Chromatogr A 2022; 1682:463453. [DOI: 10.1016/j.chroma.2022.463453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
|
7
|
Booth PPM, Lamb DT, Anderson JP, Furtaw MD, Kennedy RT. Capillary electrophoresis Western blot using inkjet transfer to membrane. J Chromatogr A 2022; 1679:463389. [PMID: 35933772 DOI: 10.1016/j.chroma.2022.463389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
Traditional Western blots are commonly used to separate and assay proteins; however, they have limitations including a long, cumbersome process and large sample requirements. Here, we describe a system for Western blotting where capillary gel electrophoresis is used to separate sodium dodecyl sulfate-protein complexes. The capillary outlet is threaded into a piezoelectric inkjetting head that deposits the separated proteins in a quasi-continuous stream of <100 pL droplets onto a moving membrane. Through separations at 400 V/cm and protein capture on a membrane moving at 2 mm/min, we are able to detect actin with a limit of detection at 8 pM, or an estimated 5 fg injected. Separation and membrane capture of sample containing 10 proteins ranging in molecular weights from 11 - 250 kDa was achieved in 15 min. The system was demonstrated with Western blots for actin, β-tubulin, ERK1/2, and STAT3 in human A431 epidermoid carcinoma cell lysate.
Collapse
|
8
|
Abstract
Western blotting (WB), also known as immunoblotting, is a well-known molecular biology method that biologists often use to investigate many features of the protein, ranging from basic protein analysis to disease detection. WB is simple, unique, rapid, widely used routine tool with easy interpretation and definite results. It is being used in various fields of science, research and development, diagnostic labs and hospitals. The principle of WB is to accomplish the separation of proteins based on molecular weight and charge. This review addresses in detail the individual steps involved in the WB technique, its troubleshooting, internal loading controls, total protein staining and its diverse applications in scientific research and clinical settings, along with its future perspectives.
Collapse
|
9
|
Xie H, Ding X. The Intriguing Landscape of Single-Cell Protein Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105932. [PMID: 35199955 PMCID: PMC9036017 DOI: 10.1002/advs.202105932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Profiling protein expression at single-cell resolution is essential for fundamental biological research (such as cell differentiation and tumor microenvironmental examination) and clinical precision medicine where only a limited number of primary cells are permitted. With the recent advances in engineering, chemistry, and biology, single-cell protein analysis methods are developed rapidly, which enable high-throughput and multiplexed protein measurements in thousands of individual cells. In combination with single cell RNA sequencing and mass spectrometry, single-cell multi-omics analysis can simultaneously measure multiple modalities including mRNAs, proteins, and metabolites in single cells, and obtain a more comprehensive exploration of cellular signaling processes, such as DNA modifications, chromatin accessibility, protein abundance, and gene perturbation. Here, the recent progress and applications of single-cell protein analysis technologies in the last decade are summarized. Current limitations, challenges, and possible future directions in this field are also discussed.
Collapse
Affiliation(s)
- Haiyang Xie
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
10
|
Abstract
Hydrogels are important structural and operative components of microfluidic systems, finding diverse utility in biological sample preparation and interrogation. One inherent challenge for integrating hydrogels into microfluidic tools is thermodynamic molecular partitioning, which reduces the in-gel concentration of molecular solutes (e.g., biomolecular regents), as compared to the solute concentration in an applied solution. Consequently, biomolecular reagent access to in-gel scaffolded biological samples (e.g., encapsulated cells, microbial cultures, target analytes) is adversely impacted in hydrogels. Further, biomolecular reagents are typically introduced to the hydrogel via diffusion. This passive process requires long incubation periods compared to active biomolecular delivery techniques. Electrotransfer is an active technique used in Western blots and other gel-based immunoassays that overcomes limitations of size exclusion (increasing the total probe mass delivered into gel) and expedites probe delivery, even in millimeter-thick slab gels. While compatible with conventional slab gels, electrotransfer has not been adapted to thin gels (50-250 μm thick), which are of great interest as components of open microfluidic devices (vs enclosed microchannel-based devices). Mechanically delicate, thin gels are often mounted on rigid support substrates (glass, plastic) that are electrically insulating. Consequently, to adapt electrotransfer to thin-gel devices, we replace rigid insulating support substrates with novel, mechanically robust, yet electrically conductive nanoporous membranes. We describe grafting nanoporous membranes to thin-polyacrylamide-gel layers via silanization, characterize the electrical conductivity of silane-treated nanoporous membranes, and report the dependence of in-gel immunoprobe concentration on transfer duration for passive diffusion and active electrotransfer. Alternative microdevice component layers─including the mechanically robust, electrically conductive nanoporous membranes reported here─provide new functionality for integration into an increasing array of open microfluidic systems.
Collapse
Affiliation(s)
- Andoni P Mourdoukoutas
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, California 94720, United States
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Singh KK, Gupta A, Bharti C, Sharma H. Emerging techniques of western blotting for purification and analysis of protein. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00386-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Western blotting is frequently employed in molecular techniques like Proteomics and Biology. Because it is a sequential framework, differences and inaccuracies could even take place at any stage, decreasing this particular method's reproducibility and reliability.
Main text
New approaches, like automated microfluid western blotting, DigiWest, single cell resolution, microchip electrophoresis, and capillary electrophoresis, were all implemented to reduce the future conflicts linked with the western blot analysis approach. Discovery of new in devices and higher susceptibility for western blots gives innovative opportunities to expand Western blot’s clinical relevance. The advancements in various region of west blotting included in this analysis of transfer of protein and validation of antibody are described.
Conclusion
This paper describes another very developed strategy available as well as demonstrated the correlation among Western blotting techniques of the next generation and their clinical implications. In this review, the different techniques of western blotting and their improvement in different stages have been discussed.
Collapse
|
12
|
Hennig S, Shu Z, Gutzweiler L, Koltay P, von Stetten F, Zengerle R, Früh SM. Paper-based open microfluidic platform for protein electrophoresis and immunoprobing. Electrophoresis 2021; 43:621-631. [PMID: 34902175 DOI: 10.1002/elps.202100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/10/2022]
Abstract
Protein electrophoresis and immunoblotting are indispensable analytical tools for the characterization of proteins and posttranslational modifications in complex sample matrices. Owing to the lack of automation, commonly employed slab-gel systems suffer from high time demand, significant sample/antibody consumption, and limited reproducibility. To overcome these limitations, we developed a paper-based open microfluidic platform for electrophoretic protein separation and subsequent transfer to protein-binding membranes for immunoprobing. Electrophoresis microstructures were digitally printed into cellulose acetate membranes that provide mechanical stability while maintaining full accessibility of the microstructures for consecutive immunological analysis. As a proof-of-concept, we demonstrate separation of fluorescently labeled marker proteins in a wide molecular weight range (15-120 kDa) within only 15 min, reducing the time demand for the entire workflow (from sample preparation to immunoassay) to approximately one hour. Sample consumption was reduced 10- to 150-fold compared to slab-gel systems, owing to system miniaturization. Moreover, we successfully applied the paper-based approach to complex samples such as crude bacterial cell extracts. We envisage that this platform will find its use in protein analysis workflows for scarce and precious samples, providing a unique opportunity to extract profound immunological information from limited sample amounts in a fast fashion with minimal hands-on time.
Collapse
Affiliation(s)
| | - Zhe Shu
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | | | - Peter Koltay
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Susanna M Früh
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Vlassakis J, Yamauchi KA, Herr AE. Summit: Automated Analysis of Arrayed Single-Cell Gel Electrophoresis. SLAS Technol 2021; 26:637-649. [PMID: 34474610 DOI: 10.1177/24726303211036869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
New pipelines are required to automate the quantitation of emerging high-throughput electrophoretic (EP) assessment of DNA damage, or proteoform expression in single cells. EP cytometry consists of thousands of Western blots performed on a microscope slide-sized gel microwell array for single cells. Thus, EP cytometry images pose an analysis challenge that blends requirements for accurate and reproducible analysis encountered for both standard Western blots and protein microarrays. Here, we introduce the Summit algorithm to automate array segmentation, peak background subtraction, and Gaussian fitting for EP cytometry. The data structure storage of parameters allows users to perform quality control on identically processed data, yielding a ~6.5% difference in coefficient of quartile variation (CQV) of protein peak area under the curve (AUC) distributions measured by four users. Further, inspired by investigations of background subtraction methods to reduce technical variation in protein microarray measurements, we aimed to understand the trade-offs between EP cytometry analysis throughput and variation. We found an 11%-50% increase in protein peaks that passed quality control with a subtraction method similar to microarray "average on-boundary" versus an axial subtraction method. The background subtraction method only mildly influences AUC CQV, which varies between 1% and 4.5%. Finally, we determined that the narrow confidence interval for peak location and peak width parameters from Gaussian fitting yield minimal uncertainty in protein sizing. The AUC CQV differed by only ~1%-2% when summed over the peak width bounds versus the 95% peak width confidence interval. We expect Summit to be broadly applicable to other arrayed EP separations, or traditional Western blot analysis.
Collapse
Affiliation(s)
- Julea Vlassakis
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Kevin A Yamauchi
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.,The Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
14
|
Shi Y, Ye P, Yang K, Meng J, Guo J, Pan Z, Bayin Q, Zhao W. Application of Microfluidics in Immunoassay: Recent Advancements. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2959843. [PMID: 34326976 PMCID: PMC8302407 DOI: 10.1155/2021/2959843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
In recent years, point-of-care testing has played an important role in immunoassay, biochemical analysis, and molecular diagnosis, especially in low-resource settings. Among various point-of-care-testing platforms, microfluidic chips have many outstanding advantages. Microfluidic chip applies the technology of miniaturizing conventional laboratory which enables the whole biochemical process including reagent loading, reaction, separation, and detection on the microchip. As a result, microfluidic platform has become a hotspot of research in the fields of food safety, health care, and environmental monitoring in the past few decades. Here, the state-of-the-art application of microfluidics in immunoassay in the past decade will be reviewed. According to different driving forces of fluid, microfluidic platform is divided into two parts: passive manipulation and active manipulation. In passive manipulation, we focus on the capillary-driven microfluidics, while in active manipulation, we introduce pressure microfluidics, centrifugal microfluidics, electric microfluidics, optofluidics, magnetic microfluidics, and digital microfluidics. Additionally, within the introduction of each platform, innovation of the methods used and their corresponding performance improvement will be discussed. Ultimately, the shortcomings of different platforms and approaches for improvement will be proposed.
Collapse
Affiliation(s)
- Yuxing Shi
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Ye
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kuojun Yang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jie Meng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhixiang Pan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiaoge Bayin
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
15
|
Vitorino R, Guedes S, da Costa JP, Kašička V. Microfluidics for Peptidomics, Proteomics, and Cell Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1118. [PMID: 33925983 PMCID: PMC8145566 DOI: 10.3390/nano11051118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Microfluidics is the advanced microtechnology of fluid manipulation in channels with at least one dimension in the range of 1-100 microns. Microfluidic technology offers a growing number of tools for manipulating small volumes of fluid to control chemical, biological, and physical processes relevant to separation, analysis, and detection. Currently, microfluidic devices play an important role in many biological, chemical, physical, biotechnological and engineering applications. There are numerous ways to fabricate the necessary microchannels and integrate them into microfluidic platforms. In peptidomics and proteomics, microfluidics is often used in combination with mass spectrometric (MS) analysis. This review provides an overview of using microfluidic systems for peptidomics, proteomics and cell analysis. The application of microfluidics in combination with MS detection and other novel techniques to answer clinical questions is also discussed in the context of disease diagnosis and therapy. Recent developments and applications of capillary and microchip (electro)separation methods in proteomic and peptidomic analysis are summarized. The state of the art of microchip platforms for cell sorting and single-cell analysis is also discussed. Advances in detection methods are reported, and new applications in proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices and determination of their physicochemical parameters are highlighted.
Collapse
Affiliation(s)
- Rui Vitorino
- UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4785-999 Porto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 00351234 Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - João Pinto da Costa
- Department of Chemistry & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 00351234 Aveiro, Portugal;
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemigovo n. 542/2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
16
|
Kawai T. Recent Advances in Trace Bioanalysis by Capillary Electrophoresis. ANAL SCI 2021; 37:27-36. [PMID: 33041311 DOI: 10.2116/analsci.20sar12] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 07/25/2024]
Abstract
Recently, single cell analysis is becoming more and more important to elucidate cellular heterogeneity. Except for nucleic acid that can be amplified by PCR, the required technical level for single cell analysis is extremely high and the appropriate design of sample preparation and a sensitive analytical system is necessary. Capillary/microchip electrophoresis (CE/MCE) can separate biomolecules in nL-scale solution with high resolution, and it is highly compatible with trace samples like a single cell. Coupled with highly sensitive detectors such as laser-induced fluorescence and nano-electrospray ionization-mass spectrometry, zmol level analytes can be detected. For further enhancing sensitivity, online sample preconcentration techniques can be employed. By integrating these high-sensitive techniques, single cell analysis of metabolites, proteins, and lipids have been achieved. This review paper highlights successful research on CE/MCE-based trace bioanalysis in recent 10 years. Firstly, an overview of basic knowledge on CE/MCE including sensitivity enhancement techniques is provided. Applications to trace bioanalysis are then introduced with discussion on current issues and future prospects.
Collapse
Affiliation(s)
- Takayuki Kawai
- RIKEN Center for Biosystems Dynamics Research
- Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
17
|
Grist SM, Mourdoukoutas AP, Herr AE. 3D projection electrophoresis for single-cell immunoblotting. Nat Commun 2020; 11:6237. [PMID: 33277486 PMCID: PMC7718224 DOI: 10.1038/s41467-020-19738-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Immunoassays and mass spectrometry are powerful single-cell protein analysis tools; however, interfacing and throughput bottlenecks remain. Here, we introduce three-dimensional single-cell immunoblots to detect both cytosolic and nuclear proteins. The 3D microfluidic device is a photoactive polyacrylamide gel with a microwell array-patterned face (xy) for cell isolation and lysis. Single-cell lysate in each microwell is "electrophoretically projected" into the 3rd dimension (z-axis), separated by size, and photo-captured in the gel for immunoprobing and confocal/light-sheet imaging. Design and analysis are informed by the physics of 3D diffusion. Electrophoresis throughput is > 2.5 cells/s (70× faster than published serial sampling), with 25 immunoblots/mm2 device area (>10× increase over previous immunoblots). The 3D microdevice design synchronizes analyses of hundreds of cells, compared to status quo serial analyses that impart hours-long delay between the first and last cells. Here, we introduce projection electrophoresis to augment the heavily genomic and transcriptomic single-cell atlases with protein-level profiling.
Collapse
Affiliation(s)
- Samantha M Grist
- Department of Bioengineering, University of California, Berkeley, USA
| | - Andoni P Mourdoukoutas
- Department of Bioengineering, University of California, Berkeley, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, USA.
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Mourdoukoutas AP, Grist SM, Herr AE. Rapid electrotransfer probing for improved detection sensitivity in in-gel immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4638-4648. [PMID: 33030469 PMCID: PMC7552878 DOI: 10.1039/d0ay01203c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein electrotransfer in conventional western blotting facilitates detection of size-separated proteins by diffusive immunoprobing, as analytes are transferred from a small-pore sizing gel to a blotting membrane for detection. This additional transfer step can, however, impair detection sensitivity through protein losses and confound protein localization. To overcome challenges associated with protein transfer, in-gel immunoassays immobilize target proteins to the hydrogel matrix for subsequent in-gel immunoprobing. Yet, detection sensitivity in diffusive immunoprobing of hydrogels is determined by the gel pore size relative to the probe size, and in-gel immunoprobing results in (i) reduced in-gel probe concentration compared to surrounding free-solution, and (ii) slow in-gel probe transfer compared to immunocomplex dissociation. Here, we demonstrate electrotransfer probing for effective and rapid immunoprobing of in-gel immunoassays. Critically, probe (rather than target protein) is electrotransferred from an inert, large-pore 'loading gel' to a small-pore protein sizing gel. Electric field is used as a tuneable parameter for electromigration velocity, providing electrotransfer probing with a fundamental advantage over diffusive probing. Using electrotransfer probing, we observe 6.5 ± 0.1× greater probe concentration loaded in-gel in ∼82× time reduction, and 2.7 ± 0.4× less probe concentration remaining in-gel after unloading in ∼180× time reduction (compared to diffusive probing). We then apply electrotransfer probing to detect OVA immobilized in-gel and achieve 4.1 ± 3.4× greater signal-to-noise ratio and 30× reduction in total immunoprobing duration compared to diffusive probing. We demonstrate electrotransfer probing as a substantially faster immunoprobing method for improved detection sensitivity of protein sizing in-gel immunoassays.
Collapse
Affiliation(s)
- Andoni P Mourdoukoutas
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
19
|
Arvin NE, Dawod M, Lamb DT, Anderson JP, Furtaw MD, Kennedy RT. Fast Immunoassay for Microfluidic Western Blotting by Direct Deposition of Reagents onto Capture Membrane. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:1606-1616. [PMID: 32661464 PMCID: PMC7357712 DOI: 10.1039/d0ay00207k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Western blotting is a widely used protein assay platform, but the technique requires long analysis times and multiple manual steps. Microfluidic systems are currently being explored for increased automation and reduction of analysis times, sample volumes, and reagent consumption for western blots. Previous work has demonstrated that proteins separated by microchip electrophoresis can be captured on membranes by dragging the microchip outlet across the membrane. This process reduces the separation and transfer time of a western blot to a few minutes. To further improve the speed and miniaturization of a complete western blot, a microscale immunoassay with direct deposition of immunoassay reagents has been developed. Flow deposition of antibodies is used to overcome diffusion limited binding kinetics so that the entire immunoassay can be completed in 1 h with detection sensitivity comparable to incubation steps requiring 20 h. The use of low microliter/min flow rates with antibody reagents applied directly and locally to the membrane where the target proteins have been captured, reduced antibody consumption ~30-fold. The complete western blot was applied to the detection of GAPDH and β-Tubulin from A431 cell lysate.
Collapse
Affiliation(s)
- Natalie E. Arvin
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
- Vaccine Analytical R&D, Merck Research Laboratories, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Don T. Lamb
- LI-COR Biosciences, 4647 Superior St., Lincoln, Nebraska 68504, United States
| | - Jon P. Anderson
- LI-COR Biosciences, 4647 Superior St., Lincoln, Nebraska 68504, United States
| | - Michael D. Furtaw
- LI-COR Biosciences, 4647 Superior St., Lincoln, Nebraska 68504, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109, United States
- Corresponding author: Robert T. Kennedy, , Tel: 734-615-4363, Fax: 745-615-6462
| |
Collapse
|
20
|
Shimizu H, Takeda S, Mawatari K, Kitamori T. Ultrasensitive detection of nonlabelled bovine serum albumin using photothermal optical phase shift detection with UV excitation. Analyst 2020; 145:2580-2585. [PMID: 32195506 DOI: 10.1039/d0an00037j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ultrasensitive detection of nonlabelled bovine serum albumin is performed in micro/nanofluidic chips using a photothermal optical phase shift (POPS) detection system. Currently, micro- and nanofluidics allow the analysis of various single cells, and their targets of interest are shifting from nucleic acids to proteins. Previously, our group developed photothermal detection techniques for the sensitive detection of nonfluorescent molecules. For example, we developed a thermal lens microscope (TLM) with ultrahigh sensitivity at the single-molecule level and a POPS detector that is applicable to nanochannels smaller than the wavelength of light. The POPS detector also realized the detection of nonlabelled proteins in nanochannels, although its detection sensitivity is less than that of the TLM in microchannels due to insufficient background light reduction. To overcome this problem, we developed a new POPS detector using relay optics for further reduction of the background light. In addition, heat transfer from the sample solution to the nanochannel wall was thoroughly investigated to achieve ultrahigh sensitivity. The limit of detection (LOD) obtained with the new POPS detector is 30 molecules in 1.0 fL. Considering this LOD, the performance of the new POPS detector is comparable with that of the TLM. Owing to the applicability of the POPS detector for sensitive detection even in nanochannels or single-μm channels, which cannot be realized with the TLM, combinations of the POPS detector and separation techniques employing unique nanochannel properties will contribute to advances in single-cell proteomics in the future.
Collapse
Affiliation(s)
- Hisashi Shimizu
- International Research Center for Neurointelligence, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
21
|
Shlyapnikov YM, Kanev IL, Shlyapnikova EA. Rapid Ultrasensitive Gel-Free Immunoblotting with Magnetic Labels. Anal Chem 2020; 92:4146-4153. [PMID: 32023039 DOI: 10.1021/acs.analchem.0c00314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunoblotting is widely used for the detection of proteins using specific antibodies. We present here a new immunoblotting method, which is characterized by exceptional sensitivity, rapidness, and low consumption of antibodies. A thin conductive layer between touching hydrophilic cellulose membranes instead of polyacrylamide gel is used for the electrophoretic separation of proteins. Contrary to common Western blotting, the separation occurs in nondenaturing conditions. The membrane surface is smoothed by deposition of the cellulose layer and modified with azidophenyl groups, allowing for the photochemical in situ immobilization of proteins, which are carried out after the electrophoresis. Thus, the additional step of transferring the protein from the gel onto the membrane is eliminated. Specific protein bands are then visualized by decoration with magnetic beads. The limit of detection of interleukin IL-1β reaches 0.3 fg or ∼104 molecules, whereas the total blotting time is about 5 min. The application of the technique is demonstrated by the detection of IL-1β, total IgA, and IgA specific to Mycobacterium tuberculosis antigen in the exhaled breath samples, obtained from healthy subjects and tuberculosis patients.
Collapse
Affiliation(s)
- Yuri M Shlyapnikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Igor L Kanev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Elena A Shlyapnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| |
Collapse
|
22
|
|
23
|
Pillai-Kastoori L, Heaton S, Shiflett SD, Roberts AC, Solache A, Schutz-Geschwender AR. Antibody validation for Western blot: By the user, for the user. J Biol Chem 2019; 295:926-939. [PMID: 31819006 PMCID: PMC6983856 DOI: 10.1074/jbc.ra119.010472] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Well-characterized antibody reagents play a key role in the reproducibility of research findings, and inconsistent antibody performance leads to variability in Western blotting and other immunoassays. The current lack of clear, accepted standards for antibody validation and reporting of experimental details contributes to this problem. Because the performance of primary antibodies is strongly influenced by assay context, recommendations for validation and usage are unique to each type of immunoassay. Practical strategies are proposed for the validation of primary antibody specificity, selectivity, and reproducibility using Western blot analysis. The antibody should produce reproducible results within and between Western blotting experiments and the observed effect confirmed with a complementary or orthogonal method. Routine implementation of standardized antibody validation and reporting in immunoassays such as Western blotting may promote improved reproducibility across the global life sciences community.
Collapse
Affiliation(s)
| | - Sam Heaton
- Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, United Kingdom
| | | | - Annabelle C Roberts
- Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, United Kingdom
| | - Alejandra Solache
- Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, United Kingdom
| | | |
Collapse
|
24
|
Novel electrochemical nanoswitch biosensor based on self-assembled pH-sensitive continuous circular DNA. Biosens Bioelectron 2019; 131:274-279. [DOI: 10.1016/j.bios.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
|
25
|
Yang ZZ, Wen ZB, Peng X, Chai YQ, Liang WB, Yuan R. A novel fluorescent assay for the ultrasensitive detection of miRNA-21 with the use of G-quadruplex structures as an immobilization material for a signal indicator. Chem Commun (Camb) 2019; 55:6453-6456. [DOI: 10.1039/c9cc01850f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A fluorescent assay for the ultrasensitive detection of miRNA-21 is based on immobilization of PPIX as signal indicators in massive G-quadruplex structures obtained by target recycling, three-dimensional DNA walker and RCA coupled cascade nucleic acid amplification.
Collapse
Affiliation(s)
- Ze-Zhou Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Zhi-Bin Wen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xin Peng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ya-Qin Chai
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Wen-Bin Liang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
26
|
Pan Q, Yamauchi KA, Herr AE. Controlling Dispersion during Single-Cell Polyacrylamide-Gel Electrophoresis in Open Microfluidic Devices. Anal Chem 2018; 90:13419-13426. [PMID: 30346747 PMCID: PMC6777840 DOI: 10.1021/acs.analchem.8b03233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New tools for measuring protein expression in individual cells complement single-cell genomics and transcriptomics. To characterize a population of individual mammalian cells, hundreds to thousands of microwells are arrayed on a polyacrylamide-gel-coated glass microscope slide. In this "open" fluidic device format, we explore the feasibility of mitigating diffusional losses during lysis and polyacrylamide-gel electrophoresis (PAGE) through spatial control of the pore-size of the gel layer. To reduce in-plane diffusion-driven dilution of each single-cell lysate during in-microwell chemical lysis, we photopattern and characterize microwells with small-pore-size sidewalls ringing the microwell except at the injection region. To reduce out-of-plane-diffusion-driven-dilution-caused signal loss during both lysis and single-cell PAGE, we scrutinize a selectively permeable agarose lid layer. To reduce injection dispersion, we photopattern and study a stacking-gel feature at the head of each <1 mm separation axis. Lastly, we explore a semienclosed device design that reduces the cross-sectional area of the chip, thus reducing Joule-heating-induced dispersion during single-cell PAGE. As a result, we observed a 3-fold increase in separation resolution during a 30 s separation and a >2-fold enhancement of the signal-to-noise ratio. We present well-integrated strategies for enhancing overall single-cell-PAGE performance.
Collapse
Affiliation(s)
- Qiong Pan
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Kevin A. Yamauchi
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Amy E. Herr
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
27
|
Zhang Y, Li X, Xu Z, Chai Y, Wang H, Yuan R. An ultrasensitive electrochemiluminescence biosensor for multiple detection of microRNAs based on a novel dual circuit catalyzed hairpin assembly. Chem Commun (Camb) 2018; 54:10148-10151. [DOI: 10.1039/c8cc06102e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel double-hairpin DNA inducing a dual circuit catalyzed hairpin assembly (DC-CHA) strategy was proposed to fabricate electrochemiluminescence (ECL) biosensors for multiple target (microRNA-21 and microRNA-155) ultrasensitive detection.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xue Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ziqi Xu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yaqin Chai
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Haijun Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
28
|
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2017; 143:60-80. [PMID: 29170786 PMCID: PMC5839671 DOI: 10.1039/c7an01346a] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inherent heterogeneity in cell populations has become of great interest and importance as analytical techniques have improved over the past decades. With the advent of personalized medicine, understanding the impact of this heterogeneity has become an important challenge for the research community. Many different microfluidic approaches with varying levels of throughput and resolution exist to study single cell activity. In this review, we take a broad view of the recent microfluidic developments in single cell analysis based on microwell, microchamber, and droplet platforms. We cover physical, chemical, and molecular biology approaches for cellular and molecular analysis including newly emerging genome-wide analysis.
Collapse
Affiliation(s)
- Travis W Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
29
|
Rodríguez-Ruiz I, Babenko V, Martínez-Rodríguez S, Gavira JA. Protein separation under a microfluidic regime. Analyst 2017; 143:606-619. [PMID: 29214270 DOI: 10.1039/c7an01568b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lab-on-a-Chip (LoC), or micro-Total Analysis Systems (μTAS), is recognized as a powerful analytical technology with high capabilities, though end-user products for protein purification are still far from being available on the market. Remarkable progress has been achieved in the separation of nucleic acids and proteins using electrophoretic microfluidic devices, while pintsize devices have been developed for protein isolation according to miniaturized chromatography principles (size, charge, affinity, etc.). In this work, we review the latest advances in the fabrication of components, detection methods and commercial implementation for the separation of biological macromolecules based on microfluidic systems, with some critical remarks on the perspectives of their future development towards standardized microfluidic systems and protocols. An outlook on the current needs and future applications is also presented.
Collapse
Affiliation(s)
| | - V Babenko
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| | - S Martínez-Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology. University of Granada, Granada, Spain
| | - J A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| |
Collapse
|
30
|
Vlassakis J, Herr AE. Joule Heating-Induced Dispersion in Open Microfluidic Electrophoretic Cytometry. Anal Chem 2017; 89:12787-12796. [PMID: 29110464 DOI: 10.1021/acs.analchem.7b03096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
While protein electrophoresis conducted in capillaries and microchannels offers high-resolution separations, such formats can be cumbersome to parallelize for single-cell analysis. One approach for realizing large numbers of concurrent separations is open microfluidics (i.e., no microchannels). In an open microfluidic device adapted for single-cell electrophoresis, we perform 100s to 1000s of simultaneous separations of endogenous proteins. The microscope slide-sized device contains cells isolated in microwells located in a ∼40 μm polyacrylamide gel. The gel supports protein electrophoresis after concurrent in situ chemical lysis of each isolated cell. During electrophoresis, Joule (or resistive) heating degrades separation performance. Joule heating effects are expected to be acute in open microfluidic devices, where a single, high-conductivity buffer expedites the transition from cell lysis to protein electrophoresis. Here, we test three key assertions. First, Joule heating substantially impacts analytical sensitivity due to diffusive losses of protein out of the open microfluidic electrophoretic (EP) cytometry device. Second, increased analyte diffusivity due to autothermal runaway Joule heating is a dominant mechanism that reduces separation resolution in EP cytometry. Finally, buffer exchange reduces diffusive losses and band broadening, even when handling single-cell lysate protein concentrations in an open device. We develop numerical simulations of Joule heating-enhanced diffusion during electrophoresis and observe ∼50% protein loss out of the gel, which is reduced using the buffer exchange. Informed by analytical model predictions of separation resolution (with Joule heating), we empirically demonstrate nearly fully resolved separations of proteins with molecular mass differences of just 4 kDa or 12% (GAPDH, 36 kDa; PS6, 32 kDa) in each of 129 single cells. The attained separation performance with buffer exchange is relevant to detection of currently unmeasurable protein isoforms responsible for cancer progression.
Collapse
Affiliation(s)
- Julea Vlassakis
- Department of Bioengineering and ‡The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| | - Amy E Herr
- Department of Bioengineering and ‡The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
31
|
Mishra M, Tiwari S, Gomes AV. Protein purification and analysis: next generation Western blotting techniques. Expert Rev Proteomics 2017; 14:1037-1053. [PMID: 28974114 DOI: 10.1080/14789450.2017.1388167] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Western blotting is one of the most commonly used techniques in molecular biology and proteomics. Since western blotting is a multistep protocol, variations and errors can occur at any step reducing the reliability and reproducibility of this technique. Recent reports suggest that a few key steps, such as the sample preparation method, the amount and source of primary antibody used, as well as the normalization method utilized, are critical for reproducible western blot results. Areas covered: In this review, improvements in different areas of western blotting, including protein transfer and antibody validation, are summarized. The review discusses the most advanced western blotting techniques available and highlights the relationship between next generation western blotting techniques and its clinical relevance. Expert commentary: Over the last decade significant improvements have been made in creating more sensitive, automated, and advanced techniques by optimizing various aspects of the western blot protocol. New methods such as single cell-resolution western blot, capillary electrophoresis, DigiWest, automated microfluid western blotting and microchip electrophoresis have all been developed to reduce potential problems associated with the western blotting technique. Innovative developments in instrumentation and increased sensitivity for western blots offer novel possibilities for increasing the clinical implications of western blot.
Collapse
Affiliation(s)
- Manish Mishra
- a Department of Physiology , University of Saskatchewan College of Medicine , Saskatoon , SK , Canada
| | - Shuchita Tiwari
- b Department of Neurobiology, Physiology, and Behavior , University of California , Davis , CA , USA
| | - Aldrin V Gomes
- b Department of Neurobiology, Physiology, and Behavior , University of California , Davis , CA , USA.,c Department of Physiology and Membrane Biology , University of California , Davis , CA , USA
| |
Collapse
|
32
|
Xu Z, Liao L, Chai Y, Wang H, Yuan R. Ultrasensitive Electrochemiluminescence Biosensor for MicroRNA Detection by 3D DNA Walking Machine Based Target Conversion and Distance-Controllable Signal Quenching and Enhancing. Anal Chem 2017; 89:8282-8287. [DOI: 10.1021/acs.analchem.7b01409] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ziqi Xu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Linli Liao
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Haijun Wang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
33
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
34
|
Zhang CX, Meagher MM. Sample Stacking Provides Three Orders of Magnitude Sensitivity Enhancement in SDS Capillary Gel Electrophoresis of Adeno-Associated Virus Capsid Proteins. Anal Chem 2017; 89:3285-3292. [DOI: 10.1021/acs.analchem.6b02933] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chao-Xuan Zhang
- Department of Therapeutics
Production and Quality, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Michael M. Meagher
- Department of Therapeutics
Production and Quality, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
35
|
Sanders BJ, Kim DC, Dunn RC. Recent Advances in Microscale Western Blotting. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:7002-7013. [PMID: 28392839 PMCID: PMC5383213 DOI: 10.1039/c6ay01947a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Western blotting is a ubiquitous tool used extensively in the clinical and research settings to identify proteins and characterize their levels. It has rapidly become a mainstay in research laboratories due to its specificity, low cost, and ease of use. The specificity arises from the orthogonal processes used to identify proteins. Samples are first separated based on size and then probed with antibodies specific for the protein of interest. This confirmatory approach helps avoid pitfalls associated with antibody cross-reactivity and specificity issues. While the technique has evolved since its inception, the last decade has witnessed a paradigm shift in Western blotting technology. The introduction of capillary and microfluidic platforms has significantly decreased time and sample requirements while enabling high-throughput capabilities. These advances have enabled Western analysis down to the single cell level in highly parallel formats, opening vast new opportunities for studying cellular heterogeneity. Recent innovations in microscale Western blotting are surveyed, and the potential for enhancing detection using advances in label-free biosensing is briefly discussed.
Collapse
Affiliation(s)
- Brittany J Sanders
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| | - Daniel C Kim
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| | - Robert C Dunn
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| |
Collapse
|