1
|
Volta TT, Walters SN, Martin CR. Potentiometric Studies on Ion-Transport Selectivity in Charged Gold Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1209. [PMID: 39057885 PMCID: PMC11280230 DOI: 10.3390/nano14141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Under ideal conditions, nanotubes with a fixed negative tube-wall charge will reject anions and transport-only cations. Because many proposed nanofluidic devices are optimized in this ideally cation-permselective state, it is important to know the experimental conditions that produce ideal responses. A parameter called Ccrit, the highest salt concentration in a contacting solution that still produces ideal cation permselectivity, is of particular importance. Pioneering potentiometric studies on gold nanotubes were interpreted using an electrostatic model that states that Ccrit should occur when the Debye length in the contacting salt solution becomes equivalent to the tube radius. Since this "double-layer overlap model" (DLOM), treats all same-charge ions as identical point charges, it predicts that all same-charged cations should produce the same Ccrit. However, the effect of cation on Ccrit in gold nanotubes was never investigated. This knowledge gap has become important because recent studies with a polymeric cation-permselective nanopore membrane showed that DLOM failed for every cation studied. To resolve this issue, we conducted potentiometric studies on the effect of salt cation on Ccrit for a 10 nm diameter gold nanotube membrane. Ccrit for all cations studied were, within experimental error, the same and identical, with values predicted by DLOM. The reason DLOM prevailed for the gold nanotubes but failed for the polymeric nanopores stems from the chemical difference between the fixed negative charges of these two membranes.
Collapse
Affiliation(s)
| | | | - Charles R. Martin
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
2
|
Volta TT, Walters SN, Martin CR. Effect of Organic Cation Adsorption on Ion-Transport Selectivity in a Cation-Permselective Nanopore Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10825-10833. [PMID: 38700247 DOI: 10.1021/acs.langmuir.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A key knowledge gap in the emerging field of nanofluidics concerns how the ionic composition and ion-transport properties of a nanoconfined solution differ from those of a contacting bulk solution. We and others have been using potentiometric concentration cells, where a nanopore or nanotube membrane separates salt solutions of differing concentrations to explore this issue. The membranes studied contained a fixed pore/tube wall anionic charge, which ideally would prohibit anions and salt from entering the pore/tube-confined solution. We have been investigating experimental conditions that allow for this ideally permselective cation state to be achieved. Results of potentiometric investigations of a polymeric nanopore membrane (10 ± 2 nm-diameter pores) with anionic charge due to carbonate are presented here. While studies of this type have been reported using alkaline metal and alkaline earth cations, there have been no analogous studies using organic cations. This paper uses a homologous series of tetraalkylammonium ions to address this knowledge gap. The key result is that, in contrast to the inorganic cations, the ideal cation-permselective state could not be obtained under any experimental conditions for the organic cations. We propose that this is because these hydrophobic cations adsorb onto the polymeric pore walls. This makes ideality impossible because each adsorbed alkylammonium must bring a charge-balancing anion, Cl-, with it into the nanopore solution. The alkylammonium adsorption that occurred was confirmed and quantified by using surface contact angle measurements.
Collapse
Affiliation(s)
- Thomas T Volta
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Stevie N Walters
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Charles R Martin
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
3
|
He P, Shao Y, Yu Z, Liang X, Liu J, Bian Y, Zhu Z, Li M, Pereira CM, Shao Y. Electrostatic-Gated Kinetics of Rapid Ion Transfers at a Nano-liquid/Liquid Interface. Anal Chem 2022; 94:9801-9810. [PMID: 35766488 DOI: 10.1021/acs.analchem.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charge (ion and electron)-transfer reactions at a liquid/liquid interface are critical processes in many important biological and chemical systems. An ion-transfer (IT) process is usually very fast, making it difficult to accurately measure its kinetic parameters. Nano-liquid/liquid interfaces supported at nanopipettes are advantageous approaches to study the kinetics of such ultrafast IT processes due to their high mass transport rate. However, correct measurements of IT kinetic parameters at nanointerfaces supported at nanopipettes are inhibited by a lack of knowledge of the nanometer-sized interface geometry, influence of the electric double layer, wall charge polarity, etc. Herein, we propose a new electrochemical characterization equation for nanopipettes and make a suggestion on the shape of a nano-water/1,2-dichloroethane (nano-W/DCE) interface based on the characterization and calculation results. A theoretical model based on the Poisson-Nernst-Planck equation was applied to systematically study how the electric double layer influences the IT process of cations (TMA+, TEA+, TPrA+, ACh+) and anions (ClO4-, SCN-, PF6-, BF4-) at the nano-W/DCE interface. The relationships between the wall charge conditions and distribution of concentration and potential inside the nanopipette revealed that the measured standard rate constant (k0) was enhanced when the polarity of the ionic species was opposite to the pipette wall charge and reduced when the same. This work lays the right foundation to obtain the kinetics at the nano-liquid/liquid interfaces.
Collapse
Affiliation(s)
- Peng He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xu Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yixuan Bian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Carlos M Pereira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto 4099-002, Portugal
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Ma K, Zheng Y, An L, Liu J. Ultrasensitive Immunosensor for Prostate-Specific Antigen Based on Enhanced Electrochemiluminescence by Vertically Ordered Mesoporous Silica-Nanochannel Film. Front Chem 2022; 10:851178. [PMID: 35308795 PMCID: PMC8927089 DOI: 10.3389/fchem.2022.851178] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/08/2022] [Indexed: 01/12/2023] Open
Abstract
Ultrasensitive and specific detection of prostate-specific antigen (PSA) in complex biological samples is crucial for early diagnosis and treatment of prostate-related diseases. Immunoassay with a simple sensing interface and ultrahigh sensitivity is highly desirable. Herein, a novel electroluminescence (ECL) immunosensing platform is demonstrated based on the equipment of vertically ordered mesoporous silica-nanochannel films (VMSFs) with PSA antibody, which is able to realize ultrasensitive detection of PSA in human serum. Through the electrochemically assisted self-assembly (EASA) method, the VMSF is easily grown on an indium tin oxide (ITO) electrode in a few seconds. Owing to a large surface area and the negatively charged surface, VMSF nanochannels display strong electrostatic attraction to the positively charged ECL luminophores (tris(2,2-bipyridyl) dichlororuthenium (II), (Ru(bpy)32+), leading to two orders-of-magnitude enhancement of ECL emission compared with that of the bare ITO electrode. The outer surface of the VMSF is functionalized with reactive epoxy groups, which further allows covalent attachment of PSA antibody (Ab) on the entry of nanochannels. As the combination of PSA with Ab decreases the ECL signal by hindering the mass transfer of ECL luminophores and coreactant, the developed immunosensor can achieve ultrasensitive detection of PSA ranging from 1 pg ml−1 to 100 ng ml−1 with a limit of detection (LOD) of 0.1 pg ml−1. Considering the antifouling ability of the VMSF, sensitive detection of PSA in human serum is also realized. The proposed nanochannel-based immunosensor may open up a new way for the facile development of the universal immunosensing platform for rapid and ultrasensitive detection of disease markers.
Collapse
Affiliation(s)
- Kai Ma
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University, Beijing, China
| | - Yanyan Zheng
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lizhe An
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University, Beijing, China
| | - Jiyang Liu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Jiyang Liu, ,
| |
Collapse
|
5
|
Ion-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Ma Y, Liu C, Wang L. Defined Ion-Transfer Voltammetry of a Single Microdroplet at a Polarized Liquid/Liquid Interface. Anal Chem 2022; 94:1850-1858. [PMID: 35023726 DOI: 10.1021/acs.analchem.1c04809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy for the fast analysis of ion transfer/facilitated ion transfer toward a tiny (femtoliter) water-in-oil droplet has been established. This scenario is embodied by the fusion of a w/o microdroplet at the micro liquid/liquid (L/L) interface, with the use of Fourier transform fast-scan cyclic voltammetry (FT-FSCV) to express the apparent half-wave potentials of anions or cations encapsulated inside the w/o microdroplet. First, the half-wave potential is in strict accordance with the transfer Gibbs free energy of either cations or anions. Second, the half-wave potential has been found to be positively proportional to the logarithmic concentration of ions, shedding thermodynamic insight into ion transfer. Third, as an instance of multivalent biopolymers, the transfer of protamine inside the single w/o microdroplet has been investigated. Obvious discrepancies in the behaviors of the fusion impacts at different pH, as well as in the absence and presence of the cationic surfactant DNNS-, are revealed. The internal mechanism of protamine transfer has been thoroughly investigated. This work proposes a strategy to sensitively and quickly determine the transfer Gibbs energy and the concentration of ions encapsulated in a single microdroplet, and it provides the possibility of analyzing the interfacial transfer properties of trace biomacromolecules inside an aqueous micro- or nanoscale droplet.
Collapse
Affiliation(s)
- Yamin Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cheng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.,School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Al Nasser HA, Bissett MA, Dryfe RAW. The Modified Liquid‐Liquid Interface: The Effect of an Interfacial Layer of MoS
2
on Ion Transfer. ChemElectroChem 2021. [DOI: 10.1002/celc.202100820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hussain A. Al Nasser
- Department of Chemistry The University of Manchester Oxford Road Manchester U.K. M13 9PL
| | - Mark A. Bissett
- Department of Materials The University of Manchester Oxford Road Manchester U.K. M13 9PL
- Henry Royce Institute The University of Manchester Oxford Road Manchester U.K. M13 9PL
| | - Robert A. W. Dryfe
- Department of Chemistry The University of Manchester Oxford Road Manchester U.K. M13 9PL
- Henry Royce Institute The University of Manchester Oxford Road Manchester U.K. M13 9PL
| |
Collapse
|
8
|
Gong J, Tang H, Luo X, Zhou H, Lin X, Wang K, Yan F, Xi F, Liu J. Vertically Ordered Mesoporous Silica-Nanochannel Film-Equipped Three-Dimensional Macroporous Graphene as Sensitive Electrochemiluminescence Platform. Front Chem 2021; 9:770512. [PMID: 34881226 PMCID: PMC8645553 DOI: 10.3389/fchem.2021.770512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Three-dimensional (3D) electrochemiluminescence (ECL) platform with high sensitivity and good anti-fouling is highly desirable for direct and sensitive analysis of complex samples. Herein, a novel ECL-sensing platform is demonstrated based on the equipment of vertically ordered mesoporous silica-nanochannel films (VMSF) on monolithic and macroporous 3D graphene (3DG). Through electrografting of 3-aminopropyltriethoxysilane (APTES) onto 3DG as molecular glue, VMSF grown by electrochemically assisted self-assembly (EASA) method fully covers 3DG surface and displays high stability. The developed VMSF/APTES/3DG sensor exhibits highly sensitized ECL response of tris(2,2'-bipyridyl) ruthenium (Ru (bpy)3 2+) taking advantages of the unique characteristics of 3DG (high active area and conductivity) and VMSF nanochannels (strong electrostatic enrichment). The VMSF/APTES/3DG sensor is applied to sensitively detect an important environmental pollutant (4-chlorophenol, with limit of detection or LOD of 30.3 nM) in term of its quenching effect (ECL signal-off mode) toward ECL of Ru (bpy)3 2+/tri-n-propylamine (TPrA). The VMSF/APTES/3DG sensor can also sensitively detect the most effective antihistamines chlorpheniramine (with LOD of 430 nM) using ECL signal-on mode because it acts as co-reactant to promote the ECL of Ru (bpy)3 2+. Combined with the excellent antifouling ability of VMSF, the sensor can also realize the analysis of actual environmental (lake water) and pharmaceutical (pharmacy tablet) samples. The proposed 3D ECL sensor may open new avenues to develop highly sensitive ECL-sensing platform.
Collapse
Affiliation(s)
- Jiawei Gong
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongliang Tang
- Affiliated Fangchenggang Hospital, Guangxi University of Chinese Medicine, Fangchenggang, China
| | - Xuan Luo
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huaxu Zhou
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xueting Lin
- The First Clinical Faculty of Guangxi University of Chinese Medicine, Nanning, China
| | - Kailong Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Fei Yan
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fengna Xi
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiyang Liu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
9
|
Liang R, Jiang J, Zheng Y, Sailjoi A, Chen J, Liu J, Li H. Vertically oriented mesoporous silica film modified fluorine-doped tin oxide electrode for enhanced electrochemiluminescence detection of lidocaine in serum. RSC Adv 2021; 11:34669-34675. [PMID: 35494748 PMCID: PMC9042675 DOI: 10.1039/d1ra06375h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022] Open
Abstract
Owing to a nanochannel-based enrichment effect and anti-fouling ability, highly ordered and vertically oriented mesoporous silica thin film (VMSF) modified electrodes have demonstrated their great potential in direct and highly sensitive analysis of complex samples. In this work, a VMSF modified fluorine-doped tin oxide (FTO) electrode (VMSF/FTO) is fabricated for enhanced electrochemiluminescence (ECL) analysis of lidocaine in serum. VMSF with good integrity and mechanical stability can be rapidly and conveniently grown on FTO in a few seconds at room temperature using an electrochemically assisted self-assembly (EASA) method. Due to the strong electrostatic attraction between the cationic ECL probe and negatively charged nanochannel, the VMSF/FTO electrode shows significant enrichment of tris(2,2-bipyridine) ruthenium(ii) (Ru(bpy)3 2+), leading to ∼10 times enhancement of its ECL signal in comparison to the bare FTO electrode. Lidocaine, an anesthetic and antiarrhythmic drug, can act as the co-reactant of Ru(bpy)3 2+ and promote its ECL signal. Sensitive ECL detection of lidocaine is achieved by the sensor in a wide linear range from 10 nM to 50 μM with a low limit-of-detection (LOD) of 8 nM. Combined with the antifouling ability of VMSF, the VMSF/FTO electrode also realizes the accurate and rapid analysis of lidocaine in real serum samples.
Collapse
Affiliation(s)
- Renchuan Liang
- Guangxi Medical University Cancer Hospital, Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| | - Jinghang Jiang
- Guangxi Medical University Cancer Hospital, Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| | - Yanyan Zheng
- Department of Chemistry, Zhejiang Sci-Tech University 928 Second Avenue, Xiasha Higher Education Zone Hangzhou 310018 PR China
| | - Ajabkhan Sailjoi
- Department of Chemistry, Zhejiang Sci-Tech University 928 Second Avenue, Xiasha Higher Education Zone Hangzhou 310018 PR China
| | - Jie Chen
- Guangxi Medical University Cancer Hospital, Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| | - Jiyang Liu
- Department of Chemistry, Zhejiang Sci-Tech University 928 Second Avenue, Xiasha Higher Education Zone Hangzhou 310018 PR China
| | - Hongxue Li
- Guangxi Medical University Cancer Hospital, Guangxi Medical University 71 Hedi Road Nanning 530021 PR China
| |
Collapse
|
10
|
Borgul P, Rudnicki K, Chu L, Leniart A, Skrzypek S, Sudhölter EJ, Poltorak L. Layer-by-layer (LbL) assembly of polyelectrolytes at the surface of a fiberglass membrane used as a support of the polarized liquid–liquid interface. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Shi L, Cao F, Zhang L, Tian Y. I-motif Formed at Physiological pH Triggered by Spatial Confinement of Nanochannels: An Electrochemical Platform for pH Monitoring in Brain Microdialysates. Anal Chem 2020; 92:4535-4540. [PMID: 32052626 DOI: 10.1021/acs.analchem.9b05732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of switches responding to specific pH changes was particularly useful in wide application fields. Owing to flexible switches simulated by pH, i-motif DNAs are widely used as a pH sensor. But its character of structure transition strongly dependent on acidic pH severely hampers the application of i-motif DNA in physiological media. Herein, we report the stable i-motif structure formed at a physiological pH triggered by spatial confinement of silica nanochannels. Three classic DNA chains containing 21-mer i-motif domain base-pairs and a single-stranded multiply (T)n spacer, 5'-COOH-(T)n-CCCTAACCCTAACCCTAACCC-3', were employed to evaluate the enhanced stability of i-motif structure. Compared to their free states in a dilute solution, the transition pH of all i-motif DNAs decorated in nanochannels remarkably shifts toward a neutral pH. Moreover, the transition midpoint can be tuned sensitively over the physiologically relevant pH range through slightly varying the length of T base spacer. Density functional theory (DFT) calculations validate that the increased proton density in a nanochannel triggers the formation of an i-motif structure under a neutral pH. Finally, this i-motif DNA based nanochannels electrode was successfully employed to monitor pH in brain microdialysates followed by cerebral ischemia. The present approach is not limited by fundamental investigation for DNA conformation but may extend toward the manipulation of i-motif based structures for artificial molecular machines and signaling systems.
Collapse
Affiliation(s)
- Lu Shi
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Feifei Cao
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Limin Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
12
|
Zhou P, Yao L, Chen K, Su B. Silica Nanochannel Membranes for Electrochemical Analysis and Molecular Sieving: A Comprehensive Review. Crit Rev Anal Chem 2019; 50:424-444. [DOI: 10.1080/10408347.2019.1642735] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Lina Yao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kexin Chen
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Yang Q, Su B, Wang Y, Wu W. Low-voltage efficient electroosmotic pumps with ultrathin silica nanoporous membrane. Electrophoresis 2019; 40:2149-2156. [PMID: 30916400 DOI: 10.1002/elps.201800533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 11/10/2022]
Abstract
In this work, an efficient electroosmotic pump (EOP) based on the ultrathin silica nanoporous membrane (u-SNM), which can drive the motion of fluid under the operating voltage as low as 0.2 V, has been fabricated. Thanks to the ultrathin thickness of u-SNM (∼75 nm), the effective electric field strength across u-SNM could be as high as 8.27 × 105 V m-1 in 0.4 M KCl when 1.0 V of voltage was applied. The maximum normalized electroosmotic flow (EOF) rate was as high as 172.90 mL/min/cm2 /V, which was larger than most of other nanoporous membrane based EOPs. In addition to the ultrathin thickness, the high porosity of this membrane (with a pore density of 4 × 1012 cm-2 , corresponding to a porosity of 16.7%) also contribute to such a high EOF rate. Moreover, the EOF rate was found to be proportional to both the applied voltage and the electrolyte concentration. Because of small electrokinetic radius of u-SNM arising from its ultrasmall pore size (ca. 2.3 nm in diameter), the EOF rate increased with increasing the electrolyte concentration and reached the maximum at a concentration of 0.4 M. This dependence was rationalized by the variations of both zeta potential and electrokinetic radius with the electrolyte concentration.
Collapse
Affiliation(s)
- Qian Yang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Yafeng Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Wanhao Wu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
14
|
Li S, Zhang D, Liu J, Cheng C, Zhu L, Li C, Lu Y, Low SS, Su B, Liu Q. Electrochemiluminescence on smartphone with silica nanopores membrane modified electrodes for nitroaromatic explosives detection. Biosens Bioelectron 2019; 129:284-291. [DOI: 10.1016/j.bios.2018.09.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 02/03/2023]
|
15
|
ZHONG LJ, GAO LF, LI FH, GAN SY, NIU L. Neurotransmitter Biomolecule Transfers Across Liquid/Liquid Interface Through A Thick Organic Membrane-Modified Electrode. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(18)61137-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Collins MC, Hébrant M, Herzog G. Ion transfer at polarised liquid-liquid interfaces modified with adsorbed silica nanoparticles. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Wu W, Yang Q, Su B. Centimeter-scale continuous silica isoporous membranes for molecular sieving. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Zhang S, Li M, Su B, Shao Y. Fabrication and Use of Nanopipettes in Chemical Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:265-286. [PMID: 29894227 DOI: 10.1146/annurev-anchem-061417-125840] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This review summarizes progress in the fabrication, modification, characterization, and applications of nanopipettes since 2010. A brief history of nanopipettes is introduced, and the details of fabrication, modification, and characterization of nanopipettes are provided. Applications of nanopipettes in chemical analysis are the focus in several cases, including recent progress in imaging; in the study of single molecules, single nanoparticles, and single cells; in fundamental investigations of charge transfer (ion and electron) reactions at liquid/liquid interfaces; and as hyphenated techniques combined with other methods to study the mechanisms of complicated electrochemical reactions and to conduct bioanalysis.
Collapse
Affiliation(s)
- Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| |
Collapse
|
19
|
Xiao K, Chen L, Xie G, Li P, Kong XY, Wen L, Jiang L. A bio-inspired dumbbell-shaped nanochannel with a controllable structure and ionic rectification. NANOSCALE 2018; 10:6850-6854. [PMID: 29616269 DOI: 10.1039/c8nr01191e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inspired by the potassium ion channel, here, we firstly report a structure-tailorable dumbbell-shaped nanochannel with controllable ionic rectification. This system creates an ideal experimental and theoretical platform for the precision transportation of ions, which have potential applications in analytical sciences.
Collapse
Affiliation(s)
- Kai Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Sun Q, Yan F, Su B. Label-free electrochemical biosensors based on 3,3',5,5'-tetramethylbenzidine responsive isoporous silica-micelle membrane. Biosens Bioelectron 2018; 105:129-136. [PMID: 29412936 DOI: 10.1016/j.bios.2018.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/21/2017] [Accepted: 01/12/2018] [Indexed: 12/18/2022]
Abstract
3,3',5,5'-Tetramethylbenzidine (TMB) has been frequently used as an indicator in G-quadruplex/hemin DNAzyme (G4zyme)-based chemical and biochemical analysis, and its oxidation products are usually monitored by electrochemical or optical methods to quantify G4zyme formation-related analytes. Herein we report a simple electrochemical approach based on isoporous silica-micelle membrane (iSMM) to measure TMB, instead of its oxidation products, in G4zyme-based detection of specific analytes. The iSMM was grown on the indium tin oxide (ITO) electrode, which was composed of highly ordered, vertically oriented silica nanochannels and cylindrical micelles of cetyltrimethylammonium. The iSMM-ITO electrode was selectively responsive to neutral TMB but not its oxidation products, thanks to the sieving and pre-concentration capacity of micellar structures in terms of molecular charge and lipophilicity. In other words, only TMB could be extracted and enriched into micelles and subsequently oxidized at the underlying ITO electrode surface (namely the micelle/ITO interface), generating an amplified anodic current. Since the depletion of TMB was catalyzed by G4zymes formed in the presence of specific analyte, the decrease of this anodic current enabled the quantitative detection of this analyte. The current variation relative to its initial value ((j0-j)/j0), termed as the current attenuation ratio, showed the obvious dependence on the analyte concentration. As proof-of-concept experiments, four substances, i.e., potassium cation (K+), adenosine triphosphate, thrombin and nucleic acid, were detected in aqueous media and the analysis of K+ in pre-treated human serum was also performed.
Collapse
Affiliation(s)
- Qinqin Sun
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fei Yan
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Holzinger A, Neusser G, Austen BJJ, Gamero-Quijano A, Herzog G, Arrigan DWM, Ziegler A, Walther P, Kranz C. Investigation of modified nanopore arrays using FIB/SEM tomography. Faraday Discuss 2018; 210:113-130. [DOI: 10.1039/c8fd00019k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
FIB/SEM tomography and energy dispersive X-ray (EDX) spectroscopy are employed to study the interface between two immiscible electrolyte solutions at nanopore arrays, which were electrochemically modified by silica.
Collapse
Affiliation(s)
- Angelika Holzinger
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - Gregor Neusser
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - Benjamin J. J. Austen
- Curtin Institute for Functional Molecules and Interfaces
- Curtin University
- Perth
- Australia
| | - Alonso Gamero-Quijano
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environment (LCPME)
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-les-Nancy
- France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environment (LCPME)
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-les-Nancy
- France
| | - Damien W. M. Arrigan
- Curtin Institute for Functional Molecules and Interfaces
- Curtin University
- Perth
- Australia
| | - Andreas Ziegler
- Zentrale Einrichtung Elektronenmikroskopie
- Ulm University
- 89081 Ulm
- Germany
| | - Paul Walther
- Zentrale Einrichtung Elektronenmikroskopie
- Ulm University
- 89081 Ulm
- Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| |
Collapse
|
22
|
Xie L, Huang X, Su B. Portable Sensor for the Detection of Choline and Its Derivatives Based on Silica Isoporous Membrane and Gellified Nanointerfaces. ACS Sens 2017; 2:803-809. [PMID: 28723110 DOI: 10.1021/acssensors.7b00166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A portable amperometric ion sensor was fabricated by integrating silica isoporous membrane (SIM) and organogel composed of polyvinyl chloride and 1,2-dichloroethane (PVC-DCE) on a 3D-printed polymer chip. The detection of ionic species in aqueous samples could be accomplished by adding a microliter of sample droplet to the sensor and by identifying the ion-transfer potential and current magnitude at the water/organogel interface array templated by SIM. Thanks to the ultrasmall channel size (2-3 nm in diameter), high channel density (4 × 108 μm-2), and ultrathin thickness (80 nm) of SIM, the ensemble of nanoscopic water/organogel (nano-W/Gel) interface array behaved like a microinterface with two back-to-back hemispherical mass diffusion zones. So, the heterogeneous ion-transfer across the nano-W/Gel interface array generated a steady-state sigmoidal current wave. The detection of choline (Ch) and its derivatives, including acetylcholine (ACh), benzoylcholine (BCh), and atropine (AP), in aqueous samples was examined with this portable sensor. Using differential pulse stripping voltammetry (DPSV), the quantification of these analytes was achieved with a limit of detection (LOD) down to 1 μM. Moreover, the portable ion sensor was insensitive to various potential interferents that might coexist in vivo, owing to size-/charge-based selectivity and antifouling capacity of SIM. With this priority, the portable ion sensor was able to quantitatively determine Ch and its derivatives in diluted urine and blood samples. The LODs for Ch, ACh, AP, and BCh in urine were 1.12, 1.30, 1.08, and 0.99 μM, and those for blood samples were 3.61, 3.38, 2.32, and 1.81 μM, respectively.
Collapse
Affiliation(s)
- Lisiqi Xie
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiao Huang
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Xie L, Huang X, Lin X, Su B. Nanoscopic liquid/liquid interface arrays supported by silica isoporous membranes: Trans-membrane resistance and ion transfer reactions. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Huang X, Xie L, Lin X, Su B. Detection of Metoprolol in Human Biofluids and Pharmaceuticals via Ion-Transfer Voltammetry at the Nanoscopic Liquid/Liquid Interface Array. Anal Chem 2016; 89:945-951. [PMID: 27958719 DOI: 10.1021/acs.analchem.6b04099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metoprolol (MTP) is one of the most widely used antihypertensive drugs yet banned to use in sport competition. Therefore, there has been an increasing demand for developing simple, rapid, and sensitive methods suited to the identification and quantification of MTP in human biofluids. In this work, ultrathin silica nanochannel membrane (SNM) with perforated channels was employed to support nanoscale liquid/liquid interface (nano-ITIES) array for investigation of the ion-transfer voltammetric behavior of MTP and for its detection in multiple human biofluids and pharmaceutical formulation. Several potential interfering substances, including small molecules, d-glucose, urea, ascorbic acid, glycine, magnesium chloride, sodium sulfate and large molecules, bovine serum albumin (BSA), were chosen as models of biological interferences to examine their influence on the ion-transfer current signal of MTP. The results confirmed that the steady-state current wave barely changed in the presence of small molecules. Although BSA displayed an apparent blockade on the transfer of MTP, the accurate determination of MTP in multiple human biofluids (i.e., urine, serum and whole blood) and pharmaceutical formulation were still feasible, thanks to the molecular sieving and antifouling abilities of SNM. A limit of detection (LOD) within the physiological level of MTP during therapy could be achieved for all cases, i.e., 0.5 and 1.1 μM for 100 times diluted urine and serum, respectively, and 2.2 μM for 1000 times diluted blood samples. These results demonstrated that the nano-ITIES array behaved as a simplified and integrated detection platform for ionizable drug analysis in complex media.
Collapse
Affiliation(s)
- Xiao Huang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University , Hangzhou 310058, China
| | - Lisiqi Xie
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University , Hangzhou 310058, China
| | - Xingyu Lin
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University , Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University , Hangzhou 310058, China
| |
Collapse
|
25
|
Huang X, Xuan Y, Xie L, Su B. Unraveling the Phase-Transfer Catalysis Mechanism of Oxygen Reduction Catalyzed by Iron(III)meso-tetra-(4-N-Methyl-pyridyl) Porphine at the Liquid/Liquid Interface. ChemElectroChem 2016. [DOI: 10.1002/celc.201600480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiao Huang
- Institute of Analytical Chemistry; Department of Chemistry; Zhejiang University; Hangzhou 310058 China), Fax: (+86)571-88273572
| | - Yaofang Xuan
- Institute of Analytical Chemistry; Department of Chemistry; Zhejiang University; Hangzhou 310058 China), Fax: (+86)571-88273572
| | - Lisiqi Xie
- Institute of Analytical Chemistry; Department of Chemistry; Zhejiang University; Hangzhou 310058 China), Fax: (+86)571-88273572
| | - Bin Su
- Institute of Analytical Chemistry; Department of Chemistry; Zhejiang University; Hangzhou 310058 China), Fax: (+86)571-88273572
| |
Collapse
|