1
|
Wang L, Zhang Y, Zeng DP, Zhu Y, Ling Z, Wang Y, Yang J, Wang H, Xu ZL, Tian Y, Sun Y, Shen YD. Development of an Open Droplet Microchannel-Based Magnetosensor for Immunofluorometric Assay of Trimethoprim in Chicken and Pork Samples with a Wide Linear Range. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6772-6780. [PMID: 38478886 DOI: 10.1021/acs.jafc.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Trimethoprim (TMP), functioning as a synergistic antibacterial agent, is utilized in diagnosing and treating diseases affecting livestock and poultry. Human consumption of the medication indirectly may lead to its drug accumulation in the body and increase drug resistance due to its prolonged metabolic duration in livestock and poultry, presenting significant health hazards. Most reported immunoassay techniques, such as ELISA and immunochromatographic assay (ICA), find it challenging to achieve the dual advantages of high sensitivity, simplicity of operation, and a wide detection range. Consequently, an open droplet microchannel-based magnetosensor for immunofluorometric assay (OMM-IFA) of trimethoprim was created, featuring a gel imager to provide a signal output derived from the highly specific antibody (Ab) targeting trimethoprim. The method exhibited high sensitivity in chicken and pork samples, with LODs of 0.300 and 0.017 ng/mL, respectively, and a wide linear range, covering trimethoprim's total maximum residue limits (MRLs). Additionally, the spiked recoveries in chicken and pork specimens varied between 81.6% and 107.9%, maintaining an acceptable variation coefficient below 15%, aligning well with the findings from the ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique. The developed method achieved a much wider linear range of about 5 orders of magnitude of 10-2-103 levels with grayscale signals as the output signal, which exhibited high sensitivity, excellent applicability and simple operability based on magnetic automation.
Collapse
Affiliation(s)
- Lei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongyi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Dao-Ping Zeng
- Wens Institute, Wens Foodstuff Groups Co., Ltd., Yunfu 527499, China
| | - Yuxian Zhu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhizhou Ling
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou 510410, China
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Lan Y, Zhou Y, Wu M, Jia C, Zhao J. Microfluidic based single cell or droplet manipulation: Methods and applications. Talanta 2023; 265:124776. [PMID: 37348357 DOI: 10.1016/j.talanta.2023.124776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The isolation of single cell or droplet is first and crucial step to single-cell analysis, which is important for cancer research and diagnostic methods. This review provides an overview of technologies that are currently used or in development to realize the isolation. Microfluidic based manipulation is an emerging technology with the distinct advantages of miniaturization and low cost. Therefore, recent developments in microfluidic isolated methods have attracted extensive attention. We introduced herein five strategies based on microfluid: trap, microfluidic discrete manipulation, bioprinter, capillary and inertial force. For every technology, their basic principles and features were discussed firstly. Then some modified approaches and applications were listed as the extension. Finally, we compared the advantages and drawbacks of these methods, and analyzed the trend of the manipulation based on microfluidics.
Collapse
Affiliation(s)
- Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Huang Y, Huang J, Yin W, Xie F, Coleman B, Cao Y, Aya S, Zhu W, Yang Z, Jiang L. Encoding Coacervate Droplets with Paramagnetism for Dynamical Reconfigurability and Spatial Addressability. ACS NANO 2023; 17:6234-6246. [PMID: 36951305 DOI: 10.1021/acsnano.2c09617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is an ongoing endeavor in chemistry and materials science to regulate coacervate droplets on a physiologically relevant spatiotemporal scale to ultimately match or even surpass living cells' precision, complexity, and functionality. Herein, we develop a magnetic strategy orthogonal to the thermal, pH, light, or chemical counterparts that are commonly employed by biotic or artificial systems; its successful implementation thus adds a missing piece to the current arsenal of manipulative methodologies. Specifically, we paramagnetize the otherwise diamagnetic coacervate droplets by cooperatively combining paramagnetic ingredients (including organic radicals, metal ions, and Fe3O4 nanoparticles) and coacervate ingredients to obtain "MagCoa" droplets. A simple model is derived theoretically to account for migration and division of MagCoa droplets in an uneven magnetic field. Experimentally, we produce an array of compartmentalized and monodispersed droplets using microfluidics and magnetically steer them with uniformity and synchronicity. We design and fabricate spatial magnetic modulators to engineer the landscape of a magnetic field that, in turn, directs the MagCoa droplets into predesigned patterns in a reconfigurable fashion. These programmable liquid patterns can be potentially extended to dynamic assembly and information encryption. We envision that the toolbox established here is of generality and multitudes to serve as a practical guide to control droplets magnetically.
Collapse
Affiliation(s)
- Yangkun Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jinpeng Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wenxiang Yin
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fei Xie
- Institute of Information Technology, Handan University, Handan 056005, China
| | - Benjamin Coleman
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Yaoyu Cao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Satoshi Aya
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Dong Y, Li J, Janiak C, Yang XY. Interfacial design for detection of a few molecules. Chem Soc Rev 2023; 52:779-794. [PMID: 36541179 DOI: 10.1039/d2cs00770c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Major advances in molecular detection are being driven by goals associated with the development of methods that are amenable to miniaturization and automation, and that have high sensitivity and low interference. The new detection methods are confronted by many interfacial issues, which when properly addressed can lead to improved performance. One interfacial property, special wettability, can facilitate precise delivery and local enrichment of molecules to sensing elements. This review summarizes applications of unique features of special wettability in molecular detection including (1) chemical and electrochemical reactions in anchored microdroplets on superwetting surfaces, (2) enrichment of analytes and active materials at low contact areas between droplets and superwetting surfaces, (3) complete opposite affinities of superwetting surfaces toward nonpolar/polar solutes and oil/water phases, and (4) directional droplet transportation on asymmetric superwetting surfaces. The challenges and opportunities that exist in design and applications of special wettability in interfacial delivery and enrichment for detection of a few molecules are also discussed.
Collapse
Affiliation(s)
- Ying Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Nanshan District, Shenzhen 518000, China
| | - Jing Li
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China.
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China. .,School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
5
|
Deb R, Sarma B, Dalal A. Magnetowetting dynamics of sessile ferrofluid droplets: a review. SOFT MATTER 2022; 18:2287-2324. [PMID: 35244655 DOI: 10.1039/d1sm01569a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fascinating behavior of ferrofluids in a magnetic field has been intriguing researchers for many years. With the advancement in digital microfluidics, ferrofluid droplets have been extensively used in different applications ranging from biomedical to mechanical systems. Notably, the magnetic field can change the wetting dynamics of sessile ferrofluid droplets, leading to a plethora of interesting hydrodynamic phenomena. In the recent past, the spatiotemporal evolution of the droplet shape and contact line dynamics of a ferrofluid droplet in different magnetowetting scenarios has been explored widely. The relevant studies elucidate several critical aspects, such as the role of magnetic nanoparticles, carrier fluid, and the interaction of the magnetic fluid with the solid surface, among many others. Hence a systematic review of the progress made in understanding the fundamental and practical aspects of magnetowetting in the past decade (2010-2020) would be a helpful resource to the scientific community in the near future. Drawn by this motivation, an honest effort has been made in this Review to highlight the significant scientific findings concerning the sessile droplet magnetowetting phenomena within the timeline of interest. Several cutting-edge applications developed from the scientific findings in the purview of magnetowetting have also been discussed before outlining the conclusions and future areas of scope.
Collapse
Affiliation(s)
- Rupresha Deb
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781 039, India.
| | - Bhaskarjyoti Sarma
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781 039, India.
| | - Amaresh Dalal
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781 039, India.
| |
Collapse
|
6
|
Application of Gold Nanoparticle-Based Materials in Cancer Therapy and Diagnostics. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5040069] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several metal nanoparticles have been developed for medical application. While all have their benefits, gold nanoparticles (AuNPs) are ideal in cancer therapy and diagnosis as they are chemically inert and minimally toxic. Several studies have shown the potential of AuNPs in the therapeutic field, as photosensitizing agents in sonochemical and photothermal therapy and as drug delivery, as well as in diagnostics and theranostics. Although there is a significant number of reviews on the application of AuNPs in cancer medicine, there is no comprehensive review on their application both in therapy and diagnostics. Therefore, considering the high number of studies on AuNPs’ applications, this review summarizes data on the application of AuNPs in cancer therapy and diagnostics. In addition, we looked at the influence of AuNPs’ shape and size on their biological properties. We also present the potential use of hybrid materials based on AuNPs in sonochemical and photothermal therapy and the possibility of their use in diagnostics. Despite their potential, the use of AuNPs and derivatives in cancer medicine still has some limitations. In this review, we provide an overview of the biological, physicochemical, and legal constraints on using AuNPs in cancer medicine.
Collapse
|
7
|
Mandal C, Banerjee U, Sen AK. Transport of a Sessile Aqueous Droplet over Spikes of Oil Based Ferrofluid in the Presence of a Magnetic Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8238-8245. [PMID: 31141667 DOI: 10.1021/acs.langmuir.9b00631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Droplets can be used as carrier vehicles for the transportation of biological and chemical reagents. Manipulation of water- and oil-based ferromagnetic droplets in the presence of a magnetic field has been well-studied. Here, we elucidate the transport of a sessile aqueous (diamagnetic) droplet placed over spikes of oil-based ferrofluid (FF) in the presence of a nonuniform magnetic field. An oil-based FF droplet, dispensed over a rigid oleophilic surface, interacts with a magnetic field to get transformed into an array of spikes which then act as a carrier for the transportation of the aqueous droplet. Our study reveals that transportation phenomena is governed by the interplay of three different forces: magnetic force Fm, frictional force Ff, and interfacial tension force Fi, which is expressed in terms of the magnetic Laplace number ( Lam) and magnetic Bond number ( Bom) as Lam?1 = ( Ff1/ Fm, x) and Bom Lam?1 = ( Ff2/ Fi). Based on the values of the dimensionless numbers, three different regimes, steady droplet transport, spike extraction, and magnet disengagement, are identified. It is found that steady droplet transport is observed for Lam?1 ? 1 and Bom Lam?1 ? 1, whereas extraction of spikes is observed for Lam?1 ? 1 and Bom Lam?1 > 1 and magnet disengagement is observed for Lam?1 > 1. In the steady droplet transport regime, velocity of the aqueous droplet Uds was found to be dependent on the volumes of the aqueous droplet Vw and FF droplet VFF following Uds ? Vw?0.19 VFF0.36. A simple model is presented that accurately predicts the aqueous droplet velocity Uds within 5% of the corresponding experimental data. In the spike extraction regime, the spike extraction distance Lse was found to vary with Vw, VFF, and the magnet velocity Ums following Lse ? Vw?1.75 VFF0.75 Ums?1.56.
Collapse
Affiliation(s)
- C Mandal
- Department of Mechanical Engineering , Indian Institute of Technology Madras , Chennai - 600036 , India
| | - U Banerjee
- Department of Mechanical Engineering , Indian Institute of Technology Madras , Chennai - 600036 , India
| | - A K Sen
- Department of Mechanical Engineering , Indian Institute of Technology Madras , Chennai - 600036 , India
| |
Collapse
|
8
|
Hermann M, Agrawal P, Koch I, Oleschuk R. Organic-free, versatile sessile droplet microfluidic device for chemical separation using an aqueous two-phase system. LAB ON A CHIP 2019; 19:654-664. [PMID: 30648179 DOI: 10.1039/c8lc01121d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work presents a novel portable, versatile sessile droplet microfluidic (SDMF) device to perform liquid manipulation operations such as confining, splitting and colorimetric detection. Furthermore, chemical isolations based on an aqueous two-phase system (ATPS) for separating an analyte of choice from a complicated sample matrix can be carried out. ATPS extractions can replace conventional liquid-liquid extractions and take away the need for harmful organic solvents. Superhydrophobic (SH) surfaces were fabricated from a commercially available material, Ultra-Ever Dry® (UED®). On these SH surfaces, surface energy traps (SETs) were produced either by air plasma treatment (simultaneously) or laser micromachining (sequentially) to dock/pin an ATPS containing droplet onto the surface. Splitting of droplets or removing a precise volume of the top phase from a pinned extraction system was achieved with a sandwich-chip approach. For this, an additional SET patterned substrate was placed on top of the droplet and subsequently lifted. This multipurpose platform was used to isolate Cd from a mixture of several other metal ions (i.e. Mn, Ni, Cu, Pb, Fe) for its subsequent interference-free detection. An ATPS consisting of sodium sulfate and polyethylene glycol (PEG) as phase forming components and potassium iodine as extractant allowed separation of cadmium with an extraction efficiency of q(Cd2+) = 98.5%. Using a portable, cost-effective, smartphone-based UV/vis spectrometer, Cd was detected with a LoD of 3.4 ppm. Alternatively, the multipurpose platform can also be used as sampling platform for a benchtop UV/vis spectrometer, where a LoD of 0.53 ppm was obtained. Potential applications of the presented platform include sample preparation and separation that can be achieved by aqueous two-phase extractions, such as proteins, antibodies, DNA, cells, organic molecules and metal ions.
Collapse
Affiliation(s)
- Matthias Hermann
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
| | | | | | | |
Collapse
|
9
|
Takei T, Sakoguchi S, Yoshida M. Efficient mixing of microliter droplets as micro-bioreactors using paramagnetic microparticles manipulated by external magnetic field. J Biosci Bioeng 2018; 126:649-652. [DOI: 10.1016/j.jbiosc.2018.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 10/28/2022]
|