1
|
Piersimoni L, Kastritis PL, Arlt C, Sinz A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons. Chem Rev 2021; 122:7500-7531. [PMID: 34797068 DOI: 10.1021/acs.chemrev.1c00786] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mass spectrometry (MS) has become one of the key technologies of structural biology. In this review, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined. We summarize the most important cross-linking reagents, software tools, and XL-MS workflows and highlight prominent examples for characterizing proteins, their assemblies, and interaction networks in vitro and in vivo. Computational modeling plays a crucial role in deriving 3D-structural information from XL-MS data. Integrating XL-MS with other techniques of structural biology, such as cryo-electron microscopy, has been successful in addressing biological questions that to date could not be answered. XL-MS is therefore expected to play an increasingly important role in structural biology in the future.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Biozentrum, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Semkova ME, Hsuan JJ. Mass Spectrometric Identification of a Novel Factor XIIIa Cross-Linking Site in Fibrinogen. Proteomes 2021; 9:proteomes9040043. [PMID: 34842803 PMCID: PMC8628943 DOI: 10.3390/proteomes9040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Transglutaminases are a class of enzymes that catalyze the formation of a protein:protein cross-link between a lysine and a glutamine residue. These cross-links play important roles in diverse biological processes. Analysis of cross-linking sites in target proteins is required to elucidate their molecular action on target protein function and the molecular specificity of different transglutaminase isozymes. Mass-spectrometry using settings designed for linear peptide analysis and software designed for the analysis of disulfide bridges and chemical cross-links have previously been employed to identify transglutaminase cross-linking sites in proteins. As no control peptide with which to assess and improve the mass spectrometric analysis of TG cross-linked proteins was available, we developed a method for the enzymatic synthesis of a well-defined transglutaminase cross-linked peptide pair that mimics a predicted tryptic digestion product of collagen I. We then used this model peptide to determine optimal score thresholds for correct peptide identification from y- and b-ion series of fragments produced by collision-induced dissociation. We employed these settings in an analysis of fibrinogen cross-linked by the transglutaminase Factor XIIIa. This approach resulted in identification of a novel cross-linked peptide in the gamma subunit. We discuss the difference in behavior of ions derived from different cross-linked peptide sequences and the consequent demand for a more tailored mass spectrometry approach for cross-linked peptide identification compared to that routinely used for linear peptide analysis.
Collapse
|
3
|
Dorner J, Korn P, Gruhle K, Ramsbeck D, Garamus VM, Lilie H, Meister A, Schwieger C, Ihling C, Sinz A, Drescher S. A Diazirine-Modified Membrane Lipid to Study Peptide/Lipid Interactions - Chances and Challenges. Chemistry 2021; 27:14586-14593. [PMID: 34406694 PMCID: PMC8597076 DOI: 10.1002/chem.202102048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 01/19/2023]
Abstract
Although incorporation of photo‐activatable lipids into membranes potentially opens up novel avenues for investigating interactions with proteins, the question of whether diazirine‐modified lipids are suitable for such studies, remains under debate. Focusing on the potential for studying lipid/peptide interactions by cross‐linking mass spectrometry (XL‐MS), we developed a diazirine‐modified lipid (DiazPC), and examined its behaviour in membranes incorporating the model α‐helical peptide LAVA20. We observed an unexpected backfolding of the diazirine‐containing stearoyl chain of the lipid. This surprising behaviour challenges the potential application of DiazPC for future XL‐MS studies of peptide and protein/lipid interactions. The observations made for DiazPC most likely represent a general phenomenon for any type of membrane lipids with a polar moiety incorporated into the alkyl chain. Our finding is therefore of importance for future protein/lipid interaction studies relying on modified lipid probes.
Collapse
Affiliation(s)
- Julia Dorner
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Patricia Korn
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.,Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Weinbergweg 22, 06120, Halle (Saale), Germany.,Institute of Pharmacy, University Leipzig, Brüderstr. 34, 04103, Leipzig, Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Hauke Lilie
- Institute for Biochemistry and Biotechnology-Technical Biochemistry, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Annette Meister
- Institute of Biochemistry and Biotechnology-Physical Biotechnology Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany.,Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Christian Schwieger
- Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany.,Phospholipid Research Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Lenz S, Sinn LR, O'Reilly FJ, Fischer L, Wegner F, Rappsilber J. Reliable identification of protein-protein interactions by crosslinking mass spectrometry. Nat Commun 2021; 12:3564. [PMID: 34117231 PMCID: PMC8196013 DOI: 10.1038/s41467-021-23666-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
Protein-protein interactions govern most cellular pathways and processes, and multiple technologies have emerged to systematically map them. Assessing the error of interaction networks has been a challenge. Crosslinking mass spectrometry is currently widening its scope from structural analyses of purified multi-protein complexes towards systems-wide analyses of protein-protein interactions (PPIs). Using a carefully controlled large-scale analysis of Escherichia coli cell lysate, we demonstrate that false-discovery rates (FDR) for PPIs identified by crosslinking mass spectrometry can be reliably estimated. We present an interaction network comprising 590 PPIs at 1% decoy-based PPI-FDR. The structural information included in this network localises the binding site of the hitherto uncharacterised protein YacL to near the DNA exit tunnel on the RNA polymerase.
Collapse
Affiliation(s)
- Swantje Lenz
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ludwig R Sinn
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Francis J O'Reilly
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Lutz Fischer
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Fritz Wegner
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany. .,Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Giese SH, Sinn LR, Wegner F, Rappsilber J. Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry. Nat Commun 2021; 12:3237. [PMID: 34050149 PMCID: PMC8163845 DOI: 10.1038/s41467-021-23441-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Crosslinking mass spectrometry has developed into a robust technique that is increasingly used to investigate the interactomes of organelles and cells. However, the incomplete and noisy information in the mass spectra of crosslinked peptides limits the numbers of protein-protein interactions that can be confidently identified. Here, we leverage chromatographic retention time information to aid the identification of crosslinked peptides from mass spectra. Our Siamese machine learning model xiRT achieves highly accurate retention time predictions of crosslinked peptides in a multi-dimensional separation of crosslinked E. coli lysate. Importantly, supplementing the search engine score with retention time features leads to a substantial increase in protein-protein interactions without affecting confidence. This approach is not limited to cell lysates and multi-dimensional separation but also improves considerably the analysis of crosslinked multiprotein complexes with a single chromatographic dimension. Retention times are a powerful complement to mass spectrometric information to increase the sensitivity of crosslinking mass spectrometry analyses.
Collapse
Affiliation(s)
- Sven H Giese
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Data Analytics and Computational Statistics, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany
- Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
| | - Ludwig R Sinn
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Fritz Wegner
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Ziemianowicz DS, Sarpe V, Crowder D, Pells TJ, Raval S, Hepburn M, Rafiei A, Schriemer DC. Harmonizing structural mass spectrometry analyses in the mass spec studio. J Proteomics 2020; 225:103844. [DOI: 10.1016/j.jprot.2020.103844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 01/06/2023]
|
7
|
Pompach P, Viola CM, Radosavljević J, Lin J, Jiráček J, Brzozowski AM, Selicharová I. Cross-Linking/Mass Spectrometry Uncovers Details of Insulin-Like Growth Factor Interaction With Insect Insulin Binding Protein Imp-L2. Front Endocrinol (Lausanne) 2019; 10:695. [PMID: 31649623 PMCID: PMC6794382 DOI: 10.3389/fendo.2019.00695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
Abstract
Structural details of changes accompanying interaction between insulin-related hormones and their binding partners are often enigmatic. Here, cross-linking/mass spectrometry could complement structural techniques and reveal details of these protein-protein interfaces. We used such approach to clarify missing structural description of the interface in human insulin-like growth factor (IGF-1): Drosophila melanogaster imaginal morphogenesis protein-late 2 protein (Imp-L2) complex which we studied previously by X-ray crystallography. We crosslinked these proteins by heterobifunctional cross-linker sulfosuccinimidyl 4,4'-azidopentanoate (Sulfo-SDA) for the subsequent mass spectrometry (MS) analysis. The MS analysis revealed IGF-1:Imp-L2 interactions which were not resolved in the crystal structure of this assembly, and they converged with X-ray results, indicating the importance of the IGF-1 N-terminus interaction with the C-terminal (185-242) part of the Imp-L2 for stability of this complex. Here, we also showed the advantage and reliability of MS approach in solving details of protein-protein interactions that are too flexible for solid state structural methods.
Collapse
Affiliation(s)
- Petr Pompach
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Cristina M. Viola
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, United Kingdom
| | - Jelena Radosavljević
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Jingjing Lin
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Andrzej M. Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, United Kingdom
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Müller F, Graziadei A, Rappsilber J. Quantitative Photo-crosslinking Mass Spectrometry Revealing Protein Structure Response to Environmental Changes. Anal Chem 2019; 91:9041-9048. [PMID: 31274288 PMCID: PMC6639777 DOI: 10.1021/acs.analchem.9b01339] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Protein structures respond to changes in their chemical and physical environment. However, studying such conformational changes is notoriously difficult, as many structural biology techniques are also affected by these parameters. Here, the use of photo-crosslinking, coupled with quantitative crosslinking mass spectrometry (QCLMS), offers an opportunity, since the reactivity of photo-crosslinkers is unaffected by changes in environmental parameters. In this study, we introduce a workflow combining photo-crosslinking using sulfosuccinimidyl 4,4'-azipentanoate (sulfo-SDA) with our recently developed data-independent acquisition (DIA)-QCLMS. This novel photo-DIA-QCLMS approach is then used to quantify pH-dependent conformational changes in human serum albumin (HSA) and cytochrome C by monitoring crosslink abundances as a function of pH. Both proteins show pH-dependent conformational changes resulting in acidic and alkaline transitions. 93% and 95% of unique residue pairs (URP) were quantifiable across triplicates for HSA and cytochrome C, respectively. Abundance changes of URPs and hence conformational changes of both proteins were visualized using hierarchical clustering. For HSA we distinguished the N-F and the N-B form from the native conformation. In addition, we observed for cytochrome C acidic and basic conformations. In conclusion, our photo-DIA-QCLMS approach distinguished pH-dependent conformers of both proteins.
Collapse
Affiliation(s)
- Fränze Müller
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
| | - Andrea Graziadei
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
- Wellcome
Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom
| |
Collapse
|
9
|
Stieger CE, Doppler P, Mechtler K. Optimized Fragmentation Improves the Identification of Peptides Cross-Linked by MS-Cleavable Reagents. J Proteome Res 2019; 18:1363-1370. [DOI: 10.1021/acs.jproteome.8b00947] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christian E. Stieger
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Philipp Doppler
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna 1030, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| |
Collapse
|
10
|
James JMB, Cryar A, Thalassinos K. Optimization Workflow for the Analysis of Cross-Linked Peptides Using a Quadrupole Time-of-Flight Mass Spectrometer. Anal Chem 2019; 91:1808-1814. [PMID: 30620560 PMCID: PMC6383985 DOI: 10.1021/acs.analchem.8b02319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Cross-linking
mass spectrometry is an emerging structural biology
technique. Almost exclusively, the analyzer of choice for such an
experiment has been the Orbitrap. We present an optimized protocol
for the use of a Synapt G2-Si for the analysis of cross-linked peptides.
We first tested six different energy ramps and analyzed the fragmentation
behavior of cross-linked peptides identified by xQuest. By combining
the most successful energy ramps, cross-link yield can be increased
by up to 40%. When compared to previously published Orbitrap data,
the Synapt G2-Si also offers improved fragmentation of the β
peptide. In order to improve cross-link quality control we have also
developed ValidateXL, a programmatic solution that works with existing
cross-linking software to improve cross-link quality control.
Collapse
Affiliation(s)
- Juliette M B James
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology , University College London , Gower Street , London , WC1E 6BT , United Kingdom
| | - Adam Cryar
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology , University College London , Gower Street , London , WC1E 6BT , United Kingdom.,LGC Group , Queen's Road , Teddington , TW11 0LY , United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology , University College London , Gower Street , London , WC1E 6BT , United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck, University of London , London , WC1E 7HX , United Kingdom
| |
Collapse
|
11
|
Ziemianowicz DS, Ng D, Schryvers AB, Schriemer DC. Photo-Cross-Linking Mass Spectrometry and Integrative Modeling Enables Rapid Screening of Antigen Interactions Involving Bacterial Transferrin Receptors. J Proteome Res 2018; 18:934-946. [DOI: 10.1021/acs.jproteome.8b00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Lenz S, Giese SH, Fischer L, Rappsilber J. In-Search Assignment of Monoisotopic Peaks Improves the Identification of Cross-Linked Peptides. J Proteome Res 2018; 17:3923-3931. [PMID: 30293428 PMCID: PMC6279313 DOI: 10.1021/acs.jproteome.8b00600] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Indexed: 01/01/2023]
Abstract
Cross-linking/mass spectrometry has undergone a maturation process akin to standard proteomics by adapting key methods such as false discovery rate control and quantification. A poorly evaluated search setting in proteomics is the consideration of multiple (lighter) alternative values for the monoisotopic precursor mass to compensate for possible misassignments of the monoisotopic peak. Here, we show that monoisotopic peak assignment is a major weakness of current data handling approaches in cross-linking. Cross-linked peptides often have high precursor masses, which reduces the presence of the monoisotopic peak in the isotope envelope. Paired with generally low peak intensity, this generates a challenge that may not be completely solvable by precursor mass assignment routines. We therefore took an alternative route by '"in-search assignment of the monoisotopic peak" in the cross-link database search tool Xi (Xi-MPA), which considers multiple precursor masses during database search. We compare and evaluate the performance of established preprocessing workflows that partly correct the monoisotopic peak and Xi-MPA on three publicly available data sets. Xi-MPA always delivered the highest number of identifications with ∼2 to 4-fold increase of PSMs without compromising identification accuracy as determined by FDR estimation and comparison to crystallographic models.
Collapse
Affiliation(s)
- Swantje Lenz
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
| | - Sven H. Giese
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
| | - Lutz Fischer
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Juri Rappsilber
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
13
|
Hägglund P, Mariotti M, Davies MJ. Identification and characterization of protein cross-links induced by oxidative reactions. Expert Rev Proteomics 2018; 15:665-681. [DOI: 10.1080/14789450.2018.1509710] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Chu F, Thornton DT, Nguyen HT. Chemical cross-linking in the structural analysis of protein assemblies. Methods 2018; 144:53-63. [PMID: 29857191 DOI: 10.1016/j.ymeth.2018.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
For decades, chemical cross-linking of proteins has been an established method to study protein interaction partners. The chemical cross-linking approach has recently been revived by mass spectrometric analysis of the cross-linking reaction products. Chemical cross-linking and mass spectrometric analysis (CXMS) enables the identification of residues that are close in three-dimensional (3D) space but not necessarily close in primary sequence. Therefore, this approach provides medium resolution information to guide de novo structure prediction, protein interface mapping and protein complex model building. The robustness and compatibility of the CXMS approach with multiple biochemical methods have made it especially appealing for challenging systems with multiple biochemical compositions and conformation states. This review provides an overview of the CXMS approach, describing general procedures in sample processing, data acquisition and analysis. Selection of proper chemical cross-linking reagents, strategies for cross-linked peptide identification, and successful application of CXMS in structural characterization of proteins and protein complexes are discussed.
Collapse
Affiliation(s)
- Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, United States.
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
15
|
Sinz A. Cross‐Linking/Mass Spectrometry for Studying Protein Structures and Protein–Protein Interactions: Where Are We Now and Where Should We Go from Here? Angew Chem Int Ed Engl 2018; 57:6390-6396. [DOI: 10.1002/anie.201709559] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of PharmacyMartin Luther University Halle-Wittenberg Wolfgang-Langenbeck-Str. 4 06120 Halle (Saale) Germany
| |
Collapse
|
16
|
Fischer L, Rappsilber J. False discovery rate estimation and heterobifunctional cross-linkers. PLoS One 2018; 13:e0196672. [PMID: 29746514 PMCID: PMC5944926 DOI: 10.1371/journal.pone.0196672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022] Open
Abstract
False discovery rate (FDR) estimation is a cornerstone of proteomics that has recently been adapted to cross-linking/mass spectrometry. Here we demonstrate that heterobifunctional cross-linkers, while theoretically different from homobifunctional cross-linkers, need not be considered separately in practice. We develop and then evaluate the impact of applying a correct FDR formula for use of heterobifunctional cross-linkers and conclude that there are minimal practical advantages. Hence a single formula can be applied to data generated from the many different non-cleavable cross-linkers.
Collapse
Affiliation(s)
- Lutz Fischer
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
17
|
Sinz A. Vernetzung/Massenspektrometrie zur Untersuchung von Proteinstrukturen und Protein‐Protein‐Wechselwirkungen: Wo stehen wir und welchen Weg wollen wir einschlagen? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrea Sinz
- Abteilung für Pharmazeutische Chemie & BioanalytikInstitut für PharmazieMartin-Luther-Universität Halle-Wittenberg Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale) Deutschland
| |
Collapse
|
18
|
Mariotti M, Leinisch F, Leeming DJ, Svensson B, Davies MJ, Hägglund P. Mass-Spectrometry-Based Identification of Cross-Links in Proteins Exposed to Photo-Oxidation and Peroxyl Radicals Using 18O Labeling and Optimized Tandem Mass Spectrometry Fragmentation. J Proteome Res 2018; 17:2017-2027. [DOI: 10.1021/acs.jproteome.7b00881] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, Kongens Lyngby, DK 2800 Denmark
| | - Fabian Leinisch
- Department of Biomedical Sciences, University of Copenhagen, Nørregade 10, Copenhagen, DK-1017 Denmark
| | | | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, Kongens Lyngby, DK 2800 Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, University of Copenhagen, Nørregade 10, Copenhagen, DK-1017 Denmark
| | - Per Hägglund
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, Kongens Lyngby, DK 2800 Denmark
- Department of Biomedical Sciences, University of Copenhagen, Nørregade 10, Copenhagen, DK-1017 Denmark
| |
Collapse
|
19
|
Protein Tertiary Structure by Crosslinking/Mass Spectrometry. Trends Biochem Sci 2018; 43:157-169. [PMID: 29395654 PMCID: PMC5854373 DOI: 10.1016/j.tibs.2017.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022]
Abstract
Observing the structures of proteins within the cell and tracking structural changes under different cellular conditions are the ultimate challenges for structural biology. This, however, requires an experimental technique that can generate sufficient data for structure determination and is applicable in the native environment of proteins. Crosslinking/mass spectrometry (CLMS) and protein structure determination have recently advanced to meet these requirements and crosslinking-driven de novo structure determination in native environments is now possible. In this opinion article, we highlight recent successes in the field of CLMS with protein structure modeling and challenges it still holds. The earliest structural studies on proteins using crosslinking/mass spectrometry aimed to elucidate their tertiary three-dimensional structure. Tertiary structure modeling using crosslinking fell out of favor for almost two decades because crosslink data were not informative to aid structure modeling. Two game-changing trends emerged: using short-range crosslinkers that capture relevant modeling information and high-density crosslinking. High-density crosslinking uses unspecific crosslinkers to dramatically increase crosslink numbers. In addition, computational structure modeling methods made significant progress in exploiting CLMS data. The combination of high-density crosslinking and computational structure modeling enables the elucidation of tertiary protein structure in native environments. This sidesteps the key limitation of today’s structure determination methods, which are unable (except for a few, specialized methods) to probe the structure of proteins in cell lysates or even intact cells.
Collapse
|
20
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
21
|
Piotrowski C, Sinz A. Structural Investigation of Proteins and Protein Complexes by Chemical Cross-Linking/Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:101-121. [PMID: 30617826 DOI: 10.1007/978-981-13-2200-6_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the last two decades, cross-linking combined with mass spectrometry (MS) has evolved as a valuable tool to gain structural insights into proteins and protein assemblies. Structural information is obtained by introducing covalent connections between amino acids that are in spatial proximity in proteins and protein complexes. The distance constraints imposed by the cross-linking reagent provide information on the three-dimensional arrangement of the covalently connected amino acid residues and serve as basis for de-novo or homology modeling approaches. As cross-linking/MS allows investigating protein 3D-structures and protein-protein interactions not only in-vitro, but also in-vivo, it is especially appealing for studying protein systems in their native environment. In this chapter, we describe the principles of cross-linking/MS and illustrate its value for investigating protein 3D-structures and for unraveling protein interaction networks.
Collapse
Affiliation(s)
- Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
22
|
Hage C, Falvo F, Schäfer M, Sinz A. Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2022-2038. [PMID: 28653243 DOI: 10.1007/s13361-017-1712-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/03/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. ᅟ.
Collapse
Affiliation(s)
- Christoph Hage
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Francesco Falvo
- Department of Chemistry, University of Cologne, Greinstr. 4, 50939, Cologne, Germany
- Eurofins Umwelt West GmbH, Vorgebirgsstr. 20, 50389, Wesseling, Germany
| | - Mathias Schäfer
- Department of Chemistry, University of Cologne, Greinstr. 4, 50939, Cologne, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany.
| |
Collapse
|
23
|
Iacobucci C, Hage C, Schäfer M, Sinz A. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2039-2053. [PMID: 28717933 DOI: 10.1007/s13361-017-1744-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Claudio Iacobucci
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany.
| | - Christoph Hage
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany
| | - Mathias Schäfer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Greinstr. 4, D-50939, Kӧln, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany.
| |
Collapse
|
24
|
Kolbowski L, Mendes ML, Rappsilber J. Optimizing the Parameters Governing the Fragmentation of Cross-Linked Peptides in a Tribrid Mass Spectrometer. Anal Chem 2017; 89:5311-5318. [PMID: 28402676 PMCID: PMC5436099 DOI: 10.1021/acs.analchem.6b04935] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
Abstract
We compared the five different ways of fragmentation available on a tribrid mass spectrometer and optimized their collision energies with regard to optimal sequence coverage of cross-linked peptides. We created a library of bis(sulfosuccinimidyl)suberate (BS3/DSS) cross-linked precursors, derived from the tryptic digests of three model proteins (Human Serum Albumin, creatine kinase, and myoglobin). This enabled in-depth targeted analysis of the fragmentation behavior of 1065 cross-linked precursors using the five fragmentation techniques: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), and the combinations ETciD and EThcD. EThcD gave the best sequence coverage for cross-linked m/z species with high charge density, while HCD was optimal for all others. We tested the resulting data-dependent decision tree against collision energy-optimized single methods on two samples of differing complexity (a mix of eight proteins and a highly complex ribosomal cellular fraction). For the high complexity sample the decision tree gave the highest number of identified cross-linked peptide pairs passing a 5% false discovery rate (on average ∼21% more than the second best, HCD). For the medium complexity sample, the higher speed of HCD proved decisive. Currently, acquisition speed plays an important role in allowing the detection of cross-linked peptides against the background of linear peptides. Enrichment of cross-linked peptides will reduce this role and favor methods that provide spectra of higher quality. Data are available via ProteomeXchange with identifier PXD006131.
Collapse
Affiliation(s)
- Lars Kolbowski
- Chair
of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Marta L. Mendes
- Chair
of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Chair
of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
- Wellcome
Trust Centre for Cell Biology, University
of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
25
|
Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Rev Proteomics 2017; 14:223-242. [DOI: 10.1080/14789450.2017.1275966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Melanie Göth
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|