1
|
Callejón-Leblic B, Sánchez Espirilla S, Gotera-Rivera C, Santana R, Díaz-Olivares I, Marín JM, Macario CC, Cosio BG, Fuster A, García IS, de-Torres JP, Feu Collado N, Cabrera Lopez C, Amado Diago C, Romero Plaza A, Fraysse LAP, Márquez Martín E, Marín Royo M, Balcells Vilarnau E, Llunell Casanovas A, Martínez González C, Galdíz Iturri JB, Lacárcel Bautista C, Gómez-Ariza JL, Pereira-Vega A, Seijo L, López-Campos JL, Peces-Barba G, García-Barrera T. Metallomic Signatures of Lung Cancer and Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:14250. [PMID: 37762552 PMCID: PMC10532173 DOI: 10.3390/ijms241814250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer (LC) is the leading cause of cancer deaths, and chronic obstructive pulmonary disease (COPD) can increase LC risk. Metallomics may provide insights into both of these tobacco-related diseases and their shared etiology. We conducted an observational study of 191 human serum samples, including those of healthy controls, LC patients, COPD patients, and patients with both COPD and LC. We found 18 elements (V, Al, As, Mn, Co, Cu, Zn, Cd, Se, W, Mo, Sb, Pb, Tl, Cr, Mg, Ni, and U) in these samples. In addition, we evaluated the elemental profiles of COPD cases of varying severity. The ratios and associations between the elements were also studied as possible signatures of the diseases. COPD severity and LC have a significant impact on the elemental composition of human serum. The severity of COPD was found to reduce the serum concentrations of As, Cd, and Tl and increased the serum concentrations of Mn and Sb compared with healthy control samples, while LC was found to increase Al, As, Mn, and Pb concentrations. This study provides new insights into the effects of LC and COPD on the human serum elemental profile that will pave the way for the potential use of elements as biomarkers for diagnosis and prognosis. It also sheds light on the potential link between the two diseases, i.e., the evolution of COPD to LC.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Department of Chemistry, Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007 Huelva, Spain; (B.C.-L.); (S.S.E.); (J.L.G.-A.)
| | - Saida Sánchez Espirilla
- Department of Chemistry, Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007 Huelva, Spain; (B.C.-L.); (S.S.E.); (J.L.G.-A.)
- Department of Chemistry, Faculty of Sciences, National University of San Antonio Abad of Cusco, Av. de La Cultura, Cusco 773, Peru
| | - Carolina Gotera-Rivera
- IIS-Jiménez Díaz Foundation, ISCIII-CIBERES, Reyes Católicos Ave., 28040 Madrid, Spain; (C.G.-R.); (R.S.)
| | - Rafael Santana
- IIS-Jiménez Díaz Foundation, ISCIII-CIBERES, Reyes Católicos Ave., 28040 Madrid, Spain; (C.G.-R.); (R.S.)
| | - Isabel Díaz-Olivares
- Beturia Andalusian Foundation for Health Research (FABIS), Ronda Norte, s/n, 21005 Huelva, Spain;
| | - José M. Marín
- Miguel Servet Hospital-IIS Aragon, ISCIII-CIBERES, Paseo de Isabel la Católica, 1-3, 50009 Zaragoza, Spain;
| | - Ciro Casanova Macario
- Pulmonary Department—Research Unit, Hospital Universitario Nuestra Señora de Candelaria, CIBERES, ISCIII, Universidad de La Laguna, Padre Herrera, s/n, 38200 Santa Cruz de Tenerife, Spain;
| | - Borja García Cosio
- Son Espases Hospital, IdISBa, ISCIII-CIBERES, Valldemossa Road, 79, 07120 Palma De Mallorca, Spain;
| | - Antonia Fuster
- Son Llàtzer Hospital, C. de Manacor, 07198 Palma, Spain;
| | - Ingrid Solanes García
- Santa Creu i Sant Pau Hospital, Carrer de St. Antoni Maria Claret, 167, 08025 Barcelona, Spain;
| | - Juan P. de-Torres
- University Clinic of Navarra, Pío XII Ave., 36, 31008 Pamplona, Spain;
| | - Nuria Feu Collado
- Reina Sofía Hospital, Maimonides Institute for Biomedical Research of Córdoba, Menéndez Pidal Ave., s/n, 14004 Córdoba, Spain;
| | - Carlos Cabrera Lopez
- University Hospital of Gran Canaria Dr. Negrín, Respiratory Service, C. Pl. Barranco de la Ballena, s/n, 35010 Las Palmas de Gran Canarias, Spain;
| | | | | | | | - Eduardo Márquez Martín
- Virgen del Rocío Hospital, Institute of Biomedicine of Seville (IBiS), ISCIII-CIBERES, Manuel Siurot Ave., s/n, 41013 Seville, Spain;
| | | | - Eva Balcells Vilarnau
- Hospital del Mar, ISCIII-CIBERES, Paseo Marítimo de la Barceloneta, 25, 29, 08003 Barcelona, Spain;
| | | | | | | | | | - José Luis Gómez-Ariza
- Department of Chemistry, Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007 Huelva, Spain; (B.C.-L.); (S.S.E.); (J.L.G.-A.)
| | - Antonio Pereira-Vega
- Pneumology Area of the Juan Ramón Jiménez Hospital, Ronda Norte, s/n, 21005 Huelva, Spain; (L.A.P.F.); (A.P.-V.)
| | - Luis Seijo
- University Clinic of Navarra, ISCIII-CIBERES, Monforte de Lemos Ave., 28029 Madrid, Spain;
| | - José Luis López-Campos
- Medical-Surgical Unit for Respiratory Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, Manuel Siurot Ave., s/n, 41013 Sevilla, Spain;
- Center for Biomedical Research in Respiratory Diseases Network (CIBERES), Carlos III Health Institute, Av. de Monforte de Lemos, 3–5, 28029 Madrid, Spain
| | - Germán Peces-Barba
- IIS-Jiménez Díaz Foundation, ISCIII-CIBERES, Reyes Católicos Ave., 28040 Madrid, Spain; (C.G.-R.); (R.S.)
| | - Tamara García-Barrera
- Department of Chemistry, Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007 Huelva, Spain; (B.C.-L.); (S.S.E.); (J.L.G.-A.)
| |
Collapse
|
2
|
Shin SY, Seo JW, Kim JY, Williams PS, Moon MH. Flow Field-Flow Fractionation with a Thickness-Tapered Channel. Anal Chem 2022; 94:14460-14466. [PMID: 36194886 DOI: 10.1021/acs.analchem.2c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study introduces the thickness-tapered channel design for flow field-flow fractionation (FlFFF) for the first time. In this design, the channel thickness linearly decreases along the channel axis such that the flow velocity increases down the channel. Channel thickness is an important variable for controlling retention time and resolution in field-flow fractionation. Especially, in the steric/hyperlayer mode of FlFFF, in which particles (>1 μm) migrate at elevated heights above the channel wall owing to hydrodynamic lift forces, the migration of long-retaining smaller-sized particles can be enhanced in a relatively thin channel or by increasing the migration flow rate; however, an upper size limit that can be resolved is simultaneously sacrificed. A thickness-tapered channel was constructed without a channel spacer by carving the surface of a channel block such that the channel inlet was deeper than the outlet (w = 400 → 200 μm). The performance of a thickness-tapered channel was evaluated using polystyrene standards and compared to that of a channel of uniform thickness (w = 300 μm) with a similar effective channel volume in terms of sample recovery, dynamic size range of separation, and steric transition under different flow rate conditions. The thickness-tapered channel can be an alternative to maintain the resolving power for particles with an upper large-diameter limit, faster separation of particles with a lower limit, and higher elution recovery without implementing the additional field-programming option.
Collapse
Affiliation(s)
- Seung Yeon Shin
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul03722, South Korea
| | - Jae Won Seo
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul03722, South Korea
| | - Jin Yong Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul03722, South Korea
| | | | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul03722, South Korea
| |
Collapse
|
3
|
Zhang Y, He J, Jin J, Ren C. Recent advances in the application of metallomics in diagnosis and prognosis of human cancer. Metallomics 2022; 14:6596881. [PMID: 35648480 DOI: 10.1093/mtomcs/mfac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
Metals play a critical role in human health and diseases. In recent years, metallomics has been introduced and extensively applied to investigate the distribution, regulation, function, and crosstalk of metal(loid) ions in various physiological and pathological processes. Based on high-throughput multielemental analytical techniques and bioinformatics methods, it is possible to elucidate the correlation between the metabolism and homeostasis of diverse metals and complex diseases, in particular for cancer. This review aims to provide an overview of recent progress made in the application of metallomics in cancer research. We mainly focuses on the studies about metallomic profiling of different human biological samples for several major types of cancer, which reveal distinct and dynamic patterns of metal ion contents and the potential benefits of using such information in the detection and prognosis of these malignancies. Elevated levels of copper appear to be a significant risk factor for various cancers, and each type of cancer has a unique distribution of metals in biofluids, hair/nails, and tumor-affected tissues. Furthermore, associations between genetic variations in representative metalloprotein genes and cancer susceptibility have also been demonstrated. Overall, metallomics not only offers a better understanding of the relationship between metal dyshomeostasis and the development of cancer but also facilitates the discovery of new diagnostic and prognostic markers for cancer translational medicine.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jie He
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jiao Jin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Cihan Ren
- Experimental High School Attached to Beijing Normal University, Beijing 100052, P. R. China
| |
Collapse
|
4
|
Ventouri IK, Loeber S, Somsen GW, Schoenmakers PJ, Astefanei A. Field-flow fractionation for molecular-interaction studies of labile and complex systems: A critical review. Anal Chim Acta 2022; 1193:339396. [DOI: 10.1016/j.aca.2021.339396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
|
5
|
Kim JY, Lee GB, Lee JC, Moon MH. High-Speed Screening of Lipoprotein Components Using Online Miniaturized Asymmetrical Flow Field-Flow Fractionation and Electrospray Ionization Tandem Mass Spectrometry: Application to Hepatocellular Carcinoma Plasma Samples. Anal Chem 2021; 93:4867-4875. [PMID: 33689313 DOI: 10.1021/acs.analchem.0c04756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study introduces a high-speed screening method for the quantitative analysis of lipoprotein components in human plasma samples using online miniaturized asymmetrical flow field-flow fractionation and electrospray ionization-tandem mass spectrometry (mAF4-ESI-MS/MS). Using an mAF4 channel, high-density lipoproteins and low-density lipoproteins can be fractionated by size at a high speed (<10 min) and directly fed to ESI-MS/MS for the simultaneous screening of targeted lipid species and apolipoprotein A1 (ApoA1). By employing the heated electrospray ionization probe as an ionization source, an mAF4 effluent flow rate of up to a few tens of microliters per minute can be used, which is adequate for direct feeding to MS without splitting the outflow, resulting in a consistent feed rate to MS for stable MS detection. mAF4-ESI-MS/MS was applied to hepatocellular carcinoma (HCC) plasma samples for targeted quantification of 25 lipid biomarker candidates and ApoA1 compared with healthy controls, the results of which were in statistical agreement with the quantified results obtained by nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry. Moreover, the present method provided the simultaneous detection of changes in lipoprotein size and the relative amount. This study demonstrated the potential of mAF4-ESI-MS/MS as an alternative high-speed screening platform for the top-down analysis of targeted lipoprotein components in patients with HCC, which is applicable to other diseases that involve the perturbation of lipoproteins.
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Gwang Bin Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong Cheol Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Mahgoub EO, Razmara E, Bitaraf A, Norouzi FS, Montazeri M, Behzadi-Andouhjerdi R, Falahati M, Cheng K, Haik Y, Hasan A, Babashah S. Advances of exosome isolation techniques in lung cancer. Mol Biol Rep 2020; 47:7229-7251. [PMID: 32789576 DOI: 10.1007/s11033-020-05715-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is among the leading causes of death all over the world and it is often diagnosed at advanced or metastatic stages. Exosomes, derived from circulating vesicles that are released from the multivesicular body, can be utilized for diagnosis and also the prognosis of LC at early stages. Exosomal proteins, RNAs, and DNAs can help to better discern the prognostic and diagnostic features of LC. To our knowledge, there are various reviews on LC and the contribution of exosomes, but none of them are about the exome techniques and also their efficiency in LC. To fill this gap, in this review, we summarize the recent investigations regarding isolation and also the characterization of exosomes of LC cells. Furthermore, we discuss the noncoding RNAs as biomarkers and their applications in the diagnosis and prognosis of LC. Finally, we compare the efficacy of exosome isolation methods to better fi + 6 + guring out feasible techniques.
Collapse
Affiliation(s)
- Elham O Mahgoub
- Department of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Ehsan Razmara
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Fahimeh-Sadat Norouzi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Maryam Montazeri
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ke Cheng
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, NC, Raleigh, USA.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Yousif Haik
- Department of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar. .,Biomedical Research Center, Qatar University, 2713, Doha, Qatar.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
7
|
Alcântara DB, Nascimento RF, Lopes GS, Grinberg P. Evaluation of different strategies for determination of selenomethionine (SeMet) in selenized yeast by asymmetrical flow field flow fractionation coupled to inductively coupled plasma mass spectrometry (AF4-ICP-MS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3351-3360. [PMID: 32930222 DOI: 10.1039/d0ay00658k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This manuscript exemplifies the prospective use of asymmetrical flow field flow fractionation (AF4) coupled to inductively coupled plasma mass spectrometry (ICP-MS) as a simple tool for chemical speciation of selenomethionine (SeMet) in selenized yeast. Several popular sample preparation methods were evaluated for their suitability to determine selenomethionine (SeMet) in selenized yeast by AF4-ICP-MS. These included water, methanesulfonic acid (MSA), formic acid (FA) and alkaline extractions. Alkaline extraction (using sodium dodecyl sulfate buffer) provided the best recovery/determination conditions for SeMet based on analysis of NRC certified reference material (CRM) SELM-1 since it minimized hydrolysis of the protein peptide bonds optimally required for the AF4 separation. The analytical performance of three different AF4 membranes (5, 10 and 500 kDa regenerated cellulose) was also evaluated. No significant difference in the recovery of SeMet was observed when using 5 and 10 kDa RC membranes, whereas the 500 kDa membrane resulted in a significant loss. The proposed method presents appropriate instrument and intra-assay precisions of 4.4-9.2% and 3.8% RSD, respectively, a detection limit of 0.49 μg L-1 SeMet as Se and good linearity with correlation coefficients (R) between 0.996 - 0.999. This is the first report of use of AF4-ICP-MS for species specific quantitation of SeMet in selenized yeast demonstrating its efficient use as an alternative method to other traditional chromatographic techniques.
Collapse
Affiliation(s)
- Daniel B Alcântara
- Chemical Metrology, NRC Metrology, National Research Council of Canada, Ottawa, Canada.
- Laboratório de Estudos em Química Aplicada (LEQA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará (UFC), 60455-760 Fortaleza, CE, Brazil
- Laboratório de Análise de Traços (LAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará (UFC), 60455-760 Fortaleza, CE, Brazil
| | - Ronaldo F Nascimento
- Laboratório de Análise de Traços (LAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará (UFC), 60455-760 Fortaleza, CE, Brazil
| | - Gisele S Lopes
- Laboratório de Estudos em Química Aplicada (LEQA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará (UFC), 60455-760 Fortaleza, CE, Brazil
| | - Patricia Grinberg
- Chemical Metrology, NRC Metrology, National Research Council of Canada, Ottawa, Canada.
| |
Collapse
|
8
|
Callejón-Leblic B, Arias-Borrego A, Rodríguez-Moro G, Navarro Roldán F, Pereira-Vega A, Gómez-Ariza JL, García-Barrera T. Advances in lung cancer biomarkers: The role of (metal-) metabolites and selenoproteins. Adv Clin Chem 2020; 100:91-137. [PMID: 33453868 DOI: 10.1016/bs.acc.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer (LC) is the second most common cause of death in men after prostate cancer, and the third most recurrent type of tumor in women after breast and colon cancers. Unfortunately, when LC symptoms begin to appear, the disease is already in an advanced stage and the survival rate only reaches 2%. Thus, there is an urgent need for early diagnosis of LC using specific biomarkers, as well as effective therapies and strategies against LC. On the other hand, the influence of metals on more than 50% of proteins is responsible for their catalytic properties or structure, and their presence in molecules is determined in many cases by the genome. Research has shown that redox metal dysregulation could be the basis for the onset and progression of LC disease. Moreover, metals can interact between them through antagonistic, synergistic and competitive mechanisms, and for this reason metals ratios and correlations in LC should be explored. One of the most studied antagonists against the toxic action of metals is selenium, which plays key roles in medicine, especially related to selenoproteins. The study of potential biomarkers able to diagnose the disease in early stage is conditioned by the development of new analytical methodologies. In this sense, omic methodologies like metallomics, proteomics and metabolomics can greatly assist in the discovery of biomarkers for LC early diagnosis.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Ana Arias-Borrego
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Gema Rodríguez-Moro
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Francisco Navarro Roldán
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Integrated Sciences-Cell Biology, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | | | - José Luis Gómez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain.
| |
Collapse
|
9
|
Flow field-flow fractionation: Recent applications for lipidomic and proteomic analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Two-Dimensional Polyacrylamide Gel Electrophoresis for Metalloprotein Analysis Based on Differential Chemical Structure Recognition by CBB Dye. Sci Rep 2019; 9:10566. [PMID: 31332224 PMCID: PMC6646366 DOI: 10.1038/s41598-019-46955-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023] Open
Abstract
In an effort to develop an analytical method capable of finding new metalloproteins, this is the first report of a new diagonal gel electrophoresis method to isolate and identify metalloproteins, based on the molecular recognition of holo- and apo-metalloproteins (metalbound and -free forms, respectively) by CBB G-250 dye and employing metal ion contaminant sweeping-blue native-polyacrylamide gel electrophoresis (MICS-BN-PAGE). The difference in electrophoretic mobilities between holo- and apo-forms was exaggerated as a result of interactions between the metalloproteins and the dye with no metal ion dissociation. The different binding modes of proteins with CBB G-250 dye, primarily related to hydrogen bonding, were confirmed by capillary zone electrophoresis (CZE) and molecular docking simulations. Due to in-gel holo/apo conversion between the first and second dimensions of PAGE, holo-metalloproteins in the original sample were completely isolated as spots off the diagonal line in the second dimension of PAGE. To prove the high efficiency of this method for metalloprotein analysis, we successfully identified a copper-binding protein from a total bacterial soluble extract for the first time.
Collapse
|
11
|
Callejón-Leblic B, Arias-Borrego A, Pereira-Vega A, Gómez-Ariza JL, García-Barrera T. The Metallome of Lung Cancer and its Potential Use as Biomarker. Int J Mol Sci 2019; 20:ijms20030778. [PMID: 30759767 PMCID: PMC6387380 DOI: 10.3390/ijms20030778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Carcinogenesis is a very complex process in which metals have been found to be critically involved. In this sense, a disturbed redox status and metal dyshomeostasis take place during the onset and progression of cancer, and it is well-known that trace elements participate in the activation or inhibition of enzymatic reactions and metalloproteins, in which they usually participate as cofactors. Until now, the role of metals in cancer have been studied as an effect, establishing that cancer onset and progression affects the disturbance of the natural chemical form of the essential elements in the metabolism. However, it has also been studied as a cause, giving insights related to the high exposure of metals giving a place to the carcinogenic process. On the other hand, the chemical species of the metal or metallobiomolecule is very important, since it finally affects the biological activity or the toxicological potential of the element and their mobility across different biological compartments. Moreover, the importance of metal homeostasis and metals interactions in biology has also been demonstrated, and the ratios between some elements were found to be different in cancer patients; however, the interplay of elements is rarely reported. This review focuses on the critical role of metals in lung cancer, which is one of the most insidious forms of cancer, with special attention to the analytical approaches and pitfalls to extract metals and their species from tissues and biofluids, determining the ratios of metals, obtaining classification profiles, and finally defining the metallome of lung cancer.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Research Center on Health and Environment (RENSMA), 21007 Huelva, Spain.
| | - Ana Arias-Borrego
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Research Center on Health and Environment (RENSMA), 21007 Huelva, Spain.
| | | | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Research Center on Health and Environment (RENSMA), 21007 Huelva, Spain.
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Research Center on Health and Environment (RENSMA), 21007 Huelva, Spain.
| |
Collapse
|
12
|
Wang D, He B, Yan X, Nong Q, Wang C, Jiang J, Hu L, Jiang G. 3D printed gel electrophoresis device coupling with ICP-MS for online separation and detection of metalloproteins. Talanta 2019; 197:145-150. [PMID: 30771916 DOI: 10.1016/j.talanta.2019.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
We successfully developed a strategy to combine a customized gel electrophoresis device with ICP-MS for online separation and detection of metalloproteins. The self-designed horizontal column gel electrophoresis device was rapidly and easily fabricated in the laboratory via 3D printing with a low cost. The feasibility of 3D printing to fabricate this device was investigated by offline separation of commercial protein standards. And a better separation efficiency was found when using gel tubes printed with higher printing precision. As a proof-of-concept, the performance of the whole system is demonstrated by online separation and detection of both iodinated protein standards and proteins in rat blood plasma samples. Benefits from 3D printing, customized modification or further optimization can be readily achieved for a better protein separation and detection efficiency.
Collapse
Affiliation(s)
- Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiying Nong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Kim YB, Yang JS, Moon MH. Investigation of steric transition with field programming in frit inlet asymmetrical flow field-flow fractionation. J Chromatogr A 2018; 1576:131-136. [DOI: 10.1016/j.chroma.2018.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 11/26/2022]
|
14
|
Zhang X, Li Y, Shen S, Lee S, Dou H. Field-flow fractionation: A gentle separation and characterization technique in biomedicine. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Yang JS, Qiao J, Kim JY, Zhao L, Qi L, Moon MH. Online Proteolysis and Glycopeptide Enrichment with Thermoresponsive Porous Polymer Membrane Reactors for Nanoflow Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2018; 90:3124-3131. [DOI: 10.1021/acs.analchem.7b04273] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Joon Seon Yang
- Department of Chemistry, Yonsei University, 50 Yonsei-Ro, Seoul 03722, South Korea
| | - Juan Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jin Yong Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-Ro, Seoul 03722, South Korea
| | - Liping Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P. R. China
- College of Chemistry & Environmental Science, Hebei University, No. 180 Wusidong Road, Baoding 071002, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, 50 Yonsei-Ro, Seoul 03722, South Korea
| |
Collapse
|
16
|
Deng Z, Yang Z, Ma X, Tian X, Bi L, Guo B, Wen W, Han H, Huang Y, Zhang S. Urinary metal and metalloid biomarker study of Henoch-Schonlein purpura nephritis using inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry. Talanta 2018; 178:728-735. [PMID: 29136888 DOI: 10.1016/j.talanta.2017.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023]
Abstract
To obtain a better understanding as to whether concentration alterations of metals and metalloids in urine were related to Henoch-Schonlein purpura nephritis (HSPN), the profiles of as many as 29 elements in urine were compared among three groups, the Henoch-Schonlein purpura (HSP), HSPN and a healthy control group. To this end, a reliable method has been developed for the simultaneous quantification of multiple elements including Li, Be, B, Al, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Tl, Pb and Bi in urine using inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (ICP-oa-TOF-MS). The process of sample pre-treatment used a direct 20-fold dilution method with centrifuged urine. The internal standard element used for quantification was 103Rh, and 1,4-butanediol was chosen as a matrix matching reagent. The method detection limits of these 29 elements were in the range of 0.04-12ngmL-1. Results of statistical analysis revealed that the concentrations of 15 elements and the element homeostasis were significantly different among these three groups. Our study provides a potential method for HSPN metal and metalloid biomarker discovery.
Collapse
Affiliation(s)
- Zhifen Deng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhicong Yang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xue Ma
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiaoli Tian
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Liangliang Bi
- Henan University of Traditional Chinese Medicine, Zhengzhou 450008, PR China
| | - Bin Guo
- Ji Yuan Public Security Fire Control Detachment, Jiyuan 454650, PR China
| | - Wei Wen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Huayun Han
- Center for Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Yanjie Huang
- Henan University of Traditional Chinese Medicine, Zhengzhou 450008, PR China.
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Center for Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
17
|
Callejón-Leblic B, Gómez-Ariza JL, Pereira-Vega A, García-Barrera T. Metal dyshomeostasis based biomarkers of lung cancer using human biofluids. Metallomics 2018; 10:1444-1451. [DOI: 10.1039/c8mt00139a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metals, ratios, interactions and species in serum, urine and bronchoalveolar lavage fluid as biomarkers of lung cancer.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Department of Chemistry, Faculty of Experimental Sciences
- University of Huelva
- Campus de El Carmen
- Research Center on Health and Environment (RENSMA)
- Huelva-21007
| | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences
- University of Huelva
- Campus de El Carmen
- Research Center on Health and Environment (RENSMA)
- Huelva-21007
| | | | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences
- University of Huelva
- Campus de El Carmen
- Research Center on Health and Environment (RENSMA)
- Huelva-21007
| |
Collapse
|
18
|
Liu Z, Li X, Xiao G, Chen B, He M, Hu B. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|