1
|
Chen Y, Liu Z, Zhang B, Wu H, Lv X, Zhang Y, Lin Y. Biomedical Utility of Non-Enzymatic DNA Amplification Reaction: From Material Design to Diagnosis and Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404641. [PMID: 39152925 DOI: 10.1002/smll.202404641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid nanotechnology has become a promising strategy for disease diagnosis and treatment, owing to remarkable programmability, precision, and biocompatibility. However, current biosensing and biotherapy approaches by nucleic acids exhibit limitations in sensitivity, specificity, versatility, and real-time monitoring. DNA amplification reactions present an advantageous strategy to enhance the performance of biosensing and biotherapy platforms. Non-enzymatic DNA amplification reaction (NEDAR), such as hybridization chain reaction and catalytic hairpin assembly, operate via strand displacement. NEDAR presents distinct advantages over traditional enzymatic DNA amplification reactions, including simplified procedures, milder reaction conditions, higher specificity, enhanced controllability, and excellent versatility. Consequently, research focusing on NEDAR-based biosensing and biotherapy has garnered significant attention. NEDAR demonstrates high efficacy in detecting multiple types of biomarkers, including nucleic acids, small molecules, and proteins, with high sensitivity and specificity, enabling the parallel detection of multiple targets. Besides, NEDAR can strengthen drug therapy, cellular behavior control, and cell encapsulation. Moreover, NEDAR holds promise for constructing assembled diagnosis-treatment nanoplatforms in the forms of pure DNA nanostructures and hybrid nanomaterials, which offer utility in disease monitoring and precise treatment. Thus, this paper aims to comprehensively elucidate the reaction mechanism of NEDAR and review the substantial advancements in NEDAR-based diagnosis and treatment over the past five years, encompassing NEDAR-based design strategies, applications, and prospects.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bowen Zhang
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoying Lv
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Ghosh PK, Rao MJ, Putta CL, Ray S, Rengan AK. Telomerase: a nexus between cancer nanotherapy and circadian rhythm. Biomater Sci 2024; 12:2259-2281. [PMID: 38596876 DOI: 10.1039/d4bm00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer represents a complex disease category defined by the unregulated proliferation and dissemination of anomalous cells within the human body. According to the GLOBOCAN 2020 report, the year 2020 witnessed the diagnosis of approximately 19.3 million new cases of cancer and 10.0 million individuals succumbed to the disease. A typical cell eventually becomes cancerous because of a long-term buildup of genetic instability and replicative immortality. Telomerase is a crucial regulator of cancer progression as it induces replicative immortality. In cancer cells, telomerase inhibits apoptosis by elongating the length of the telomeric region, which usually protects the genome from shortening. Many nanoparticles are documented as being available for detecting the presence of telomerase, and many were used as delivery systems to transport drugs. Furthermore, telomere homeostasis is regulated by the circadian time-keeping machinery, leading to 24-hour rhythms in telomerase activity and TERT mRNA expression in mammals. This review provides a comprehensive discussion of various kinds of nanoparticles used in telomerase detection, inhibition, and multiple drug-related pathways, as well as enlightens an imperative association between circadian rhythm and telomerase activity from the perspective of nanoparticle-based anticancer therapeutics.
Collapse
Affiliation(s)
- Pramit Kumar Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Maddila Jagapathi Rao
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Chandra Lekha Putta
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| |
Collapse
|
3
|
Pang H, Peng Y, Zhang R, Gao Z, Lai X, Li D, Zhao X, Wang Y, Pei H, Qiao B, Ji Y, Wu Q. A triggered DNA nanomachine with enzyme-free for the rapid detection of telomerase activity in a one-step method. Anal Chim Acta 2024; 1299:342420. [PMID: 38499416 DOI: 10.1016/j.aca.2024.342420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Telomerase is considered a biomarker for the early diagnosis and clinical treatment of cancer. The rapid and sensitive detection of telomerase activity is crucial to biological research, clinical diagnosis, and drug development. However, the main obstacles facing the current telomerase activity assay are the cumbersome and time-consuming procedure, the easy degradation of the telomerase RNA template and the need for additional proteases. Therefore, it is necessary to construct a new method for the detection of telomerase activity with easy steps, efficient reaction and strong anti-interference ability. RESULTS Herein, an efficient, enzyme-free, economical, sensitive, fluorometric detection method for telomerase activity in one-step, named triggered-DNA (T-DNA) nanomachine, was created based on target-triggered DNAzyme-cleavage activity and catalytic molecular beacon (CMB). Telomerase served as a switch and extended few numbers of (TTAGGG)n repeat sequences to initiate the signal amplification in the T-DNA nanomachine, resulting in a strong fluorescent signal. The reaction was a one-step method with a shortened time of 1 h and a constant temperature of 37 °C, without the addition of any protease. It also sensitively distinguished telomerase activity in various cell lines. The T-DNA nanomachine offered a detection limit of 12 HeLa cells μL-1, 9 SK-Hep-1 cells μL-1 and 3 HuH-7 cells μL-1 with a linear correlation detection range of 0.39 × 102-6.25 × 102 HeLa cells μL-1 for telomerase activity. SIGNIFICANCE In conclusion, our study demonstrated that the triggered-DNA nanomachine fulfills the requirements for rapid detection of telomerase activity in one-step under isothermal and enzyme-free conditions with excellent specificity, and its simple and stable structure makes it ideal for complex systems. These findings indicated the application prospect of DNA nanomachines in clinical diagnostics and provided new insights into the field of DNA nanomachine-based bioanalysis.
Collapse
Affiliation(s)
- Huajie Pang
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Yanan Peng
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Rui Zhang
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Zhijun Gao
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Xiangde Lai
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Dongxia Li
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Xuan Zhao
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Yuanyuan Wang
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Hua Pei
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Bin Qiao
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China.
| | - Yuxiang Ji
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, China.
| | - Qiang Wu
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
4
|
Wang LJ, Liu WJ, Wang LY, Ho YP, Han Y, Li DL, Zhang CY. Construction of an Enzymatically Controlled DNA Nanomachine for One-Step Imaging of Telomerase in Living Cells. Anal Chem 2024; 96:4647-4656. [PMID: 38441540 DOI: 10.1021/acs.analchem.3c05795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Telomerase is a basic reverse transcriptase that maintains the telomere length in cells, and accurate and specific sensing of telomerase in living cells is critical for medical diagnostics and disease therapeutics. Herein, we demonstrate for the first time the construction of an enzymatically controlled DNA nanomachine with endogenous apurinic/apyrimidinic endonuclease 1 (APE1) as a driving force for one-step imaging of telomerase in living cells. The DNA nanomachine is designed by rational engineering of substrate probes and reporter probes embedded with an enzyme-activatable site (i.e., AP site) and their subsequent assembly on a gold nanoparticle (AuNP). Upon recognition and cleavage of the AP site in the substrate probe by APE1, the loop of the substrate probe unfolds, exposing telomeric primer (TP) with the 3'-OH end. Subsequently, the TP is elongated by telomerase at the 3'-OH end to generate a long telomeric product. The resultant telomeric product acts as a swing arm that can hybridize with a reporter probe to initiate the APE1-powered walking reaction, ultimately generating a significantly enhanced fluorescence signal. Notably, endogenous APE1 is used as the driving force of the DNA nanomachine, avoiding the introduction of exogenous auxiliary cofactors into the cellular microenvironment. Owing to the high kinetics and high amplification efficiency of the APE1-powered DNA nanomachine, this strategy enables one-step sensitive sensing of telomerase in vitro and in vivo. It can successfully discriminate telomerase activity between cancer cells and normal cells, screen telomerase inhibitors, and monitor the variations of telomerase activity in living cells, offering a prospective platform for molecular diagnostics and drug discovery.
Collapse
Affiliation(s)
- Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lu-Yao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
Yu W, Kang L, Lin X, Duan N, Ying D, Wang Z, Wu S. Deoxynivalenol (DON)-Triggered Dual-Color Composite Probe Based on Gold Nanoclusters for Simultaneous Imaging of DON and miR-34a in Living Cells. Anal Chem 2023; 95:18611-18618. [PMID: 38057995 DOI: 10.1021/acs.analchem.3c04630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin secreted by Fusarium species, posing great harm to food safety and human health. Therefore, it is of great significance to study its toxic effects and mechanism. miR-34a is a representative biomarker during the process of DON-induced apoptosis. Herein, a DON-triggered dual-color composite probe was constructed for simultaneous imaging of DON and miR-34a in living cells. The aptamer blocks the recognition sequence of miR-34a to realize DON-triggered cell imaging. The specific binding of DON with its aptamer and HCR induced by miR-34a resulted in the recovery of fluorescence of the dual-color Au NCs. Under the optimal conditions, the correlation between the relative fluorescence intensities of dual-color Au NCs showed good linear relationships with the logarithm of DON and miR-34a concentration, respectively. With the increase in DON concentration (0-20 μg/mL) and stimulation time (0-12 h), the fluorescence of dual-color Au NCs gradually recovered. This dual-color Au NCs composite probe can realize simultaneous detection of DON and miR-34a induced by DON, which is significant for verifying the cytotoxic mechanism of DON.
Collapse
Affiliation(s)
- Wenyan Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lixin Kang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Dichen Ying
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Wang H, Wang S, Wang H, Tang F, Chen D, Liang Y, Li Z. Amplification-free detection of telomerase activity at the single-cell level via Cas12a-lighting-up single microbeads (Cas12a-LSMBs). LAB ON A CHIP 2023; 23:4674-4679. [PMID: 37795981 DOI: 10.1039/d3lc00598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Telomerase overexpresses in almost all cancer cells and has been deemed a universal biomarker for cancer diagnosis and therapy. However, simple and ultrasensitive detection of telomerase activity in single-cells is still a huge challenge. Herein, we wish to report Cas12a-lighting up single microbeads (Cas12a-LSMBs) for ultrasensitive detection of telomerase activity without nucleic acid amplification. In this platform, single-strand DNA reporter (ssDNA reporter)-functionalized single-microbeads (functionalized-SMBs) are employed as a reactor for the trans-cleavage of telomerase-activated CRISPR/Cas12a as well as a reporting unit for fluorescence signal enrichment and visualization. Due to the space-confined effect and signal enrichment mechanism on the surface of the functionalized SMBs, the Cas12a-LSMBs can accurately detect telomerase activity in crude cell lysates with high specificity. Importantly, we have demonstrated that the Cas12a-LSMBs are a reliable and practical tool to detect telomerase activity in single cells and investigate cellular heterogeneity of telomerase activity from cell-to-cell variations.
Collapse
Affiliation(s)
- Honghong Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Shuhui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Hui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Fu Tang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Desheng Chen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Yuanwen Liang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
7
|
Wu K, Ma C, Wang Y. Functional Nucleic Acid Probes Based on Two-Photon for Biosensing. BIOSENSORS 2023; 13:836. [PMID: 37754070 PMCID: PMC10527542 DOI: 10.3390/bios13090836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Functional nucleic acid (FNA) probes have been widely used in environmental monitoring, food analysis, clinical diagnosis, and biological imaging because of their easy synthesis, functional modification, flexible design, and stable properties. However, most FNA probes are designed based on one-photon (OP) in the ultraviolet or visible regions, and the effectiveness of these OP-based FNA probes may be hindered by certain factors, such as their potential for photodamage and limited light tissue penetration. Two-photon (TP) is characterized by the nonlinear absorption of two relatively low-energy photons of near-infrared (NIR) light with the resulting emission of high-energy ultraviolet or visible light. TP-based FNA probes have excellent properties, including lower tissue self-absorption and autofluorescence, reduced photodamage and photobleaching, and higher spatial resolution, making them more advantageous than the conventional OP-based FNA probes in biomedical sensing. In this review, we summarize the recent advances of TP-excited and -activated FNA probes and detail their applications in biomolecular detection. In addition, we also share our views on the highlights and limitations of TP-based FNA probes. The ultimate goal is to provide design approaches for the development of high-performance TP-based FNA probes, thereby promoting their biological applications.
Collapse
Affiliation(s)
- Kefeng Wu
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yisen Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| |
Collapse
|
8
|
Wang J, Fu J, Chen H, Wang A, Ma Y, Yan H, Li Y, Yu D, Gao F, Li S. Trimer structures formed by target-triggered AuNPs self-assembly inducing electromagnetic hot spots for SERS-fluorescence dual-signal detection of intracellular miRNAs. Biosens Bioelectron 2023; 224:115051. [PMID: 36621084 DOI: 10.1016/j.bios.2022.115051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Accurate quantitative, in situ and temporal tracking imaging of tumor-associated miRNAs in living cells could provide a basis for cancer diagnosis and prognosis. In this strategy, a surface-enhanced Raman scattering (SERS)-fluorescence (FL) dual-spectral sensor (DSS) was constructed based on the nanoscale photophysical properties of AuNPs, mediated by functionalized DNA, to achieve rapid imaging of FL and accurate SERS quantification of intracellular miRNAs. The dual-spectrum sensor in the strategy is highly sensitive, specific and reproducibly stable. The LOD values of the dual spectra were 3.58 pM (SERS) as well as 11.8 pM (FL) with RSD values less than 2.69%. The bispectral sensor self-assembled into a trimer by the lapidation of Y-type DNA under the excitation of the target, generating a stable enhanced electric field coupling; and selected adenine located in the enhanced electric field as the reporter molecule, simplifying the labeling process and variables of the Raman reporter molecule, distinguishing it from other traditional methods. This strategy successfully achieved accurate tracking and quantification of miR-21 in cancer cells and showed good stability in the cells. The reported probes are potential tools for reliable monitoring of biomolecular dynamics in living cells.
Collapse
Affiliation(s)
- Jiwei Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Department of Blood Transfusion, Xuzhou Central Hospital, Jiangsu, 221004, Xuzhou, China
| | - Jingjing Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Jiangsu, 221116, Xuzhou, China
| | - Han Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu, Xuzhou, 221004, China
| | - Ali Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Yuting Ma
- Department of Blood Transfusion, Xuzhou Central Hospital, Jiangsu, 221004, Xuzhou, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China
| | - Dehong Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; The Affiliated Pizhou Hospital of Xuzhou Medical University, Xuzhou, 221399, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China.
| | - Shibao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004, Xuzhou, China; Medical Laboratory Department, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, Xuzhou, China.
| |
Collapse
|
9
|
Zhu Y, Wu J, Zhou Q. Functional DNA sensors integrated with nucleic acid signal amplification strategies for non-nucleic acid targets detection. Biosens Bioelectron 2023; 230:115282. [PMID: 37028002 DOI: 10.1016/j.bios.2023.115282] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
In addition to carrying and transmitting genetic material, some DNA molecules have specific binding ability or catalytic function. DNA with this special function is collectively referred to as functional DNA (fDNA), such as aptamer, DNAzyme and so on. fDNA has the advantages of simple synthetic process, low cost and low toxicity. It also has high chemical stability, recognition specificity and biocompatibility. In recent years, fDNA biosensors have been widely investigated as signal recognition elements and signal transduction elements for the detection of non-nucleic acid targets. However, the main problem of fDNA sensors is their limited sensitivity to trace targets, especially when the affinity of fDNA to the targets is low. To further improve the sensitivity, various nucleic acid signal amplification strategies (NASAS) are explored to improve the limit of detection of fDNA. In this review, we will introduce four NASAS (hybridization chain reaction, entropy-driven catalysis, rolling circle amplification, CRISPR/Cas system) and the corresponding design principles. The principle and application of these fDNA sensors integrated with signal amplification strategies for detection of non-nucleic acid targets are summarized. Finally, the main challenges and application prospects of NASAS integrated fDNA biosensing system are discussed.
Collapse
|
10
|
Wang H, Wang S, Wang H, Liang Y, Li Z. Sensitive and amplification-free detection of telomerase activity by self-extension of telomerase and trans-cleavage of CRISPR/Cas12a. Talanta 2023. [DOI: 10.1016/j.talanta.2022.123999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Dai J, Liu Z, Wang L, Huang G, Song S, Chen C, Wu T, Xu X, Hao C, Bian Y, Rozhkova EA, Chen Z, Yang H. A Telomerase-Activated Magnetic Resonance Imaging Probe for Consecutively Monitoring Tumor Growth Kinetics and In Situ Screening Inhibitors. J Am Chem Soc 2023; 145:1108-1117. [PMID: 36622303 DOI: 10.1021/jacs.2c10749] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Telomerase has long been considered as a biomarker for cancer diagnosis and a therapeutic target for drug discovery. Detecting telomerase activity in vivo could provide more direct information of tumor progression and response to drug treatment, which, however, is hampered by the lack of an effective probe that can generate an output signal without a tissue penetration depth limit. In this study, using the principle of distance-dependent magnetic resonance tuning, we constructed a telomerase-activated magnetic resonance imaging probe (TAMP) by connecting superparamagnetic ferroferric oxide nanoparticles (SPFONs) and paramagnetic Gd-DOTA (Gd(III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) complexes via telomerase-responsive DNA motifs. Upon telomerase-catalyzed extension of the primer in TAMP, Gd-DOTA-conjugated oligonucleotides can be liberated from the surface of SPFONs through a DNA strand displacement reaction, restoring the T1 signal of the Gd-DOTA for a direct readout of the telomerase activity. Here we show that, by tracking telomerase activity, this probe provides consistent monitoring of tumor growth kinetics during progression and in response to drug treatment and enables in situ screening of telomerase inhibitors in whole-animal models. This study provides an alternative toolkit for cancer diagnosis, treatment response assessment, and anticancer drug screening.
Collapse
Affiliation(s)
- Junduan Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Zheng Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Lili Wang
- Fujian Medical University Union Hospital, Fuzhou 350001, P.R. China
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Sijie Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Chen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Ting Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Xiao Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Chaojie Hao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Yijie Bian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| |
Collapse
|
12
|
Huang Z, Guo X, Ma X, Wang F, Jiang JH. Genetically encodable tagging and sensing systems for fluorescent RNA imaging. Biosens Bioelectron 2023; 219:114769. [PMID: 36252312 DOI: 10.1016/j.bios.2022.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/06/2022]
Abstract
Live cell imaging of RNAs is crucial to interrogate their fundamental roles in various biological processes. The highly spatiotemporal dynamic nature of RNA abundance and localization has presented great challenges for RNA imaging. Genetically encodable tagging and sensing (GETS) systems that can be continuously produced in living systems have afforded promising tools for imaging and sensing RNA dynamics in live cells. Here we review the recent advances of GETS systems that have been developed for RNA tagging and sensing in live cells. We first describe the various GETS systems using MS2-bacteriophage-MS2 coat protein, pumilio homology domain and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9/13 for RNA labeling and tracking. The progresses of GETS systems for fluorogenic labeling and/or sensing RNAs by engineering light-up RNA aptamers, CRISPR-Cas9 systems and RNA aptamer stabilized fluorogenic proteins are then elaborated. The challenges and future perspectives in this field are finally discussed. With the continuing development, GETS systems will afford powerful tools to elucidate RNA biology in living systems.
Collapse
Affiliation(s)
- Zhimei Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiaoyan Guo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xianbo Ma
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
13
|
Zhang Q, Yuan ZZ, Zhang X, Zhang Y, Zou X, Ma F, Zhang CY. Entropy-Driven Self-Assembly of Single Quantum Dot Sensor for Catalytic Imaging of Telomerase in Living Cells. Anal Chem 2022; 94:18092-18098. [PMID: 36519804 DOI: 10.1021/acs.analchem.2c04747] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Telomerase is a highly valuable cancer diagnosis biomarker and a promising cancer therapy target. So far, most telomerase assays are limited by the involvement of tedious procedures, multiple enzymes, and complicated reaction schemes. Sensitive monitoring of low-abundant telomerase in living cells remains a challenge. Herein, we demonstrate an entropy-driven catalytic assembly of quantum dot (QD) sensors for accurate detection and imaging of telomerase activity in living cells. In this sensor, target telomerase specifically catalyzes extension of telomerase primer, and the extended primer subsequently acts as a catalyst to continuously initiate entropy-driven catalytic reaction, generating a large number of fluorophore- and biotin-labeled DNAs that can be self-assembled on the QD surface to induce an efficient Föster resonance energy transfer signal. The proposed sensor requires a single step for both recognition and amplification of the telomerase signal, eliminating the use of either protein enzymes or laborious procedures. Taking advantage of the inherent superiority of single-molecule fluorescence detection and high amplification efficiency of the entropy-driven reaction, this sensor demonstrates single-cell sensitivity for the in vitro assay. Moreover, it is capable of screening the telomerase inhibitor, discriminating different tumor cells from normal ones, and even real-time imaging telomerase in living cells, providing a novel platform for telomerase-associated cancer diagnosis and drug screening.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Zhen-Zhen Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan528458, China
| | - Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| |
Collapse
|
14
|
Dawood EE, Awadalla A, Hashem A, Shokeir AA, Abdel-Aziz AF. Evaluation of molecular signatures in the urinary bladder and upper tract urothelial carcinomas: a prospective controlled clinical study. J Egypt Natl Canc Inst 2022; 34:47. [DOI: 10.1186/s43046-022-00148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/21/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Urothelial carcinomas (UC) can be either in the upper or in the lower urinary tract or both. Urothelial bladder cancer (UBC) is more common than upper tract urothelial carcinoma (UTUC). This research was designed to study the difference between UBC and UTUC using the molecular pathways including (MAPK/ERK) pathway, cell cycle regulating genes, and oncogenic genes.
Methods
To study the discrepancy between UBC and UTUC, a prospective trial was carried out for 31 radical cystectomy and 19 nephrouretrectomy fresh-frozen specimens of UBC and UTUC patients, respectively. The expression level of mRNA of eight genes namely EGFR, ELK1, c-fos, survivin, TP53, RB1, FGFR3, and hTERT was assessed in normal adjacent tissues, UTUC, and UBC by RT-PCR.
Results
Comparison between UTUC and UBC regarding the expression level of mRNA of the EGFR, ELK1, c-fos, survivin, TP53, and FGFR3 had significant difference (p-value < 0.001), while the expression level of RB1 and hTERT level had no significance. Sensitivity/specificity of EGFR, Elk1, c-fos, survivin, TP53, and FGFR3 was 0.78/0.90, 0.84/0.90, 0.84/0.80, 0.84/0.96, 0.94/0.93, and 0.89/0.93, respectively, to differentiate between UTUC and UBC.
Conclusions
Despite the fact that UTUC and UBC share the same origin, there is a clear evidence that there is a molecular difference between them. This molecular difference could be the reason that UTUC is more aggressive than UBC.
Collapse
|
15
|
Yang L, Guo H, Hou T, Li F. Uncovering the Interaction between Intracellular Telomerase Activity and Hydrogen Peroxide during Cancer Cell Apoptosis Utilizing a Dual-Color Fluorescent Nanoprobe. Anal Chem 2022; 94:15162-15169. [PMID: 36256448 DOI: 10.1021/acs.analchem.2c03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uncovering the intrinsic interaction of different bioactive species, i.e., reactive oxygen species (ROS) and telomerase, is of great importance because they play interrelated and interdependent biological roles in living organisms. Nevertheless, exploration of the intracellular ROS/telomerase cross-talk by effective and noninvasive methods remains a great challenge, as it is difficult to simultaneously detect different types of biomolecules (i.e., active small molecules and proteins) in living cells. To address this issue, herein, we report, for the first time, a novel fluorescent nanoprobe for simultaneous determination and in situ imaging of telomerase activity and hydrogen peroxide (H2O2) in living cells. With the advantage of high sensitivity and good specificity, this newly fabricated nanoprobe was successfully applied to precisely visualize and monitor the changes in telomerase activity and H2O2 concentration in cancer cells. More significantly, by employing the nanoprobe as a one-step incubation tool, it is found that there is a cross-talk between H2O2 and telomerase activity in the drug-induced cancer cells' apoptosis process, which provides valuable information for gaining fundamental insights into the relationship between ROS and telomerase activity in cancer treatments. This work affords a promising method for revealing the relevant regulatory mechanisms and roles of ROS and telomerase activity in the occurrence, evolvement, and treatment of diseases.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Heng Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
16
|
Zhang Q, Zhao R, Li CC, Zhang Y, Tang C, Luo X, Ma F, Zhang CY. Construction of an Entropy-Driven Dumbbell-Type DNAzyme Assembly Circuit for Lighting Up Uracil-DNA Glycosylase in Living Cells. Anal Chem 2022; 94:13978-13986. [PMID: 36179339 DOI: 10.1021/acs.analchem.2c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive monitoring of intracellular uracil-DNA glycosylase (UDG) in living cells is essential to understanding the DNA repair pathways and discovery of anticancer drugs. Herein, we demonstrate the construction of an entropy-driven dumbbell-type DNAzyme assembly circuit for lighting up UDG in living cells via the integration of entropy-driven DNA catalysis (EDC) with the DNAzyme biocatalyst. Target UDG excises the damaged uracil base, causing the breakage of detection probe and the release of trigger. The released trigger can initiate the downstream EDC reaction to form two catalytically active DNAzyme units. The resultant dual Mg2+-DNAzyme units serve as the signal transducers to cyclically cleave the fluorophore/quenched-modified reporters, generating an enhanced fluorescence signal. In contrast to the single-layered EDC method with a linear amplification, the proposed doublet EDC-DNAzyme strategy exhibits high signal gain and achieves a detection limit of 8.71 × 10-6 U/mL. Notably, this assay can be performed in one-step manner at room temperature without the requirement of strict temperature control and complicated reaction procedures, and it can further screen the UDG inhibitors, measure kinetic parameters, and discriminate cancer cells from normal cells. Moreover, this strategy can monitor intracellular UDG activity with improved signal gain, and it may be exploited for sensing and imaging of other types of DNA modifying enzymes with the integration of the corresponding detection substrate, providing a facile and robust approach for biological research studies and clinical diagnosis.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Ran Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chen-Chen Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chunying Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
17
|
Liu W, Fan Z, Li L, Li M. DNA-Based Nanoprobes for Simultaneous Detection of Telomerase and Correlated Biomolecules. Chembiochem 2022; 23:e202200307. [PMID: 35927933 DOI: 10.1002/cbic.202200307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Telomerase (TE), a ribonucleoprotein reverse transcriptase, is enzymatically activated in most tumor cells and is responsible for promoting tumor progression and malignancy by enabling replicative immortality of cancer cells. TE has become an important hallmark for cancer diagnosis and a potential therapy target. Therefore, accurate and in site detection of TE activity, especially the simultaneous imaging of TE activity and its correlated biomolecules, is highly essential to medical diagnostics and therapeutics. DNA-based nanoprobes, with their effective cell penetration capability and programmability, are the most advantageous for detection of intracellular TE activity. This concept article introduces the recent strategies for in situ sensing and imaging of TE activity, with a focus on simultaneous detection of TE and related biomolecules, and provides challenges and perspectives for the development of new strategies for such correlated imaging.
Collapse
Affiliation(s)
- Wenjing Liu
- Capital Medical University, Beijing Chest Hospital, CHINA
| | - Zetan Fan
- National Center for Nanoscience and Technology, cas key lab, CHINA
| | - Lele Li
- National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, 11 ZhongGuanCun BeiYiTiao, Haidian District, 100190, Beijing, CHINA
| | - Mengyuan Li
- University of Science and Technology Beijing, Chemistry, CHINA
| |
Collapse
|
18
|
Wu K, Yao C, Yang D, Liu D. A functional DNA nanosensor for highly sensitive and selective imaging of ClO− in atherosclerotic plaques. Biosens Bioelectron 2022; 209:114273. [DOI: 10.1016/j.bios.2022.114273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
|
19
|
Zhang X, Huang G, Zhang Y, Situ B, Luo S, Wu Y, Zheng L, Yan X. Metastable DNA hairpins driven isothermal amplification for in situ and intracellular analysis. Anal Chim Acta 2022; 1209:339006. [PMID: 35569841 DOI: 10.1016/j.aca.2021.339006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022]
Abstract
Intracellular substance analysis is critical for understanding cellular physiological mechanisms and predicting disease progression. Isothermal amplification technologies have been raised to accurately detect intracellular substances due to their low abundance, which is significant for the mechanism analysis and clinical application. However, traditional isothermal method still needs to cell destruction and extraction, resulting in fluctuant results. Moreover, it only works on dead cells. Therefore, non-destructive analysis based on isothermal amplification deserves to be studied, which directly reveals the content and position of relevant molecules. In recent years, metastable DNA hairpins-driven isothermal amplification (Mh-IA) blazes a trail for analysis in living cells. This review tracks the recent advances of Mh-IA strategy in living cell detection and highlights the potential challenges regarding this field, aiming to improve in vivo isothermal amplification. Also, challenges and prospects of Mh-IA for in situ and intracellular analysis are considered.
Collapse
Affiliation(s)
- Xiaohe Zhang
- Clinical Medicine Research Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Guoni Huang
- Clinical Medicine Research Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Ye Zhang
- Clinical Medicine Research Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Bo Situ
- Clinical Medicine Research Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Shihua Luo
- Clinical Medicine Research Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuan Wu
- Clinical Medicine Research Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, PR China
| | - Lei Zheng
- Clinical Medicine Research Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Xiaohui Yan
- Clinical Medicine Research Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
20
|
Liu X, Zhang L, Lu L, Jiang W, Zhang N. A primer extension activating 3D DNAzyme walker for in situ imaging and sensitive detection of telomerase activity. Analyst 2022; 147:1968-1975. [PMID: 35416808 DOI: 10.1039/d2an00142j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acquiring information on telomerase activity at multiple levels contributes to a better understanding of its role in various physiological and pathological processes. Herein, a primer extension activating 3D DNAzyme walker is developed for in situ imaging and sensitive detection of telomerase activity. This walker is constructed via co-modifying specially designed hairpin structured walking strands and track strands on a gold nanoparticle (AuNP). The walking strand contains a pre-blocked DNAzyme sequence and a telomerase primer hybridized to its root. The track strand embeds at an RNA cleavage site and is labeled with the FAM group. After this walker is taken up by cells, the telomerase primer is extended under the action of endogenous telomerase to liberate DNAzyme. The liberated DNAzyme cuts track strands in the presence of the cofactor Mn2+ to drive the walker's processive operation, resulting in an enhanced fluorescence recovery of the AuNP-quenched FAM fluorophore. In situ imaging of telomerase activity in three different cell lines (MCF-7 cells, HeLa cells and HL-7702 cells) was well implemented. The discrimination of cancer cells from normal cells and the screening of telomerase inhibitors have been achieved. The sensitive detection of telomerase activity in HeLa cell lysate has also been realized with a detection limit of 10 cells. This walker performed a new approach for monitoring telomerase activity from different levels, providing a potential tool for clinical diagnosis, prognostic evaluation and drug screening.
Collapse
Affiliation(s)
- Xiaoting Liu
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 250013, Jinan, PR China. .,School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Liyan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Ling Lu
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 250013, Jinan, PR China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Nan Zhang
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 250013, Jinan, PR China.
| |
Collapse
|
21
|
Ma D, Bai H, Li J, Li Y, Song L, Zheng J, Miao C. A ratiometric fluorescent nanoprobe for signal amplification monitoring of intracellular telomerase activity. Anal Bioanal Chem 2022; 414:1891-1898. [DOI: 10.1007/s00216-021-03823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/01/2022]
|
22
|
Sun Y, Qin Y, Zhang J, Ren Q. Electrochemiluminescent determination of prostate-specific antigen using Au@(MoS 2/GO/o-MWNTs) nanohybrids as co-reaction accelerator and hyperbranched hybridization chain reaction for signal amplification. Mikrochim Acta 2021; 188:300. [PMID: 34409505 DOI: 10.1007/s00604-021-04957-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Three-dimensional flowerlike Au@(MoS2/GO/o-MWNTs) nanohybrids (abbreviated as AMGMs) were synthesized and then introduced into an electrochemiluminescence (ECL) system as a new co-reaction accelerator for the ultrasensitive prostate-specific antigen (PSA). The AMGMs not only served as a substrate with good conductivity and a large specific surface area for loading abundant primary antibodies but also acted as an effective co-reaction accelerator; the co-reaction accelerator could interact with a co-reactant rather than the luminophore to boost the generation of free radical intermediates, thereby producing abundant excited states of luminophores to amplify the ECL signal response. Additionally, an anticipated signal amplification strategy based on the hybridization chain reaction (HCR) was developed by gathering a large amount of a DNA initiator on gold nanoparticles. These gathered DNA initiators could generate multiple DNA concatemers and attach more signal molecules, which resulted in outstanding exponential signal amplification. Consequently, the ECL immunosensor demonstrated high sensitivity, with a linear range from 0.1 pg mL-1 to 50 ng mL-1 and a detection limit of 0.028 pg mL-1. In addition, the immunosensor displayed excellent stability and selectivity. It was evaluated by analyzing human serum sample. The recovery obtained was 98.80-112.00% and the RSD was 1.73-3.12%, indicating the immunosensor could be applied to the simultaneous detection of PSA in human serum samples. Graphical abstract.
Collapse
Affiliation(s)
- Yingying Sun
- Department of Medical Laboratory Science, Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Yan Qin
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| | - Jun Zhang
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| | - Qunxiang Ren
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| |
Collapse
|
23
|
Silver-amplified fluorescence immunoassay via aggregation-induced emission for detection of disease biomarker. Talanta 2021; 225:121963. [DOI: 10.1016/j.talanta.2020.121963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
|
24
|
Yu Z, Jiang F, Hu C, Tang B. Functionalized nanoprobes for in situ detection of telomerase. Chem Commun (Camb) 2021; 57:3736-3748. [PMID: 33876119 DOI: 10.1039/d0cc08412c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Telomerase, a special ribonucleoprotein reverse transcriptase, can maintain the length and stability of telomeres and plays an important role in cell proliferation and differentiation. Due to the distinguishable expression level in normal cells and cancer cells, telomerase has become an important biomarker for cancer diagnosis and prognosis evaluation. Despite major breakthroughs in the field of telomerase detection, the extracts in the cell lysate are still the first choice as the analyte nevertheless, which will bring serious inaccuracies compared with the real intracellular activity. With the development of nanotechnology and nanomaterials, extraordinary progress has been made in telomerase detection by employing different versatile nanoprobes. In this review, we list the superiority of nanoprobes and systematically summarize the applications of nanoprobes in telomerase detection from the aspects of various nanomaterials and discuss the current challenges and potential trends in the future design of nanoprobes.
Collapse
Affiliation(s)
- Zhengze Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | | | | | | |
Collapse
|
25
|
Huang R, Jin R, Jiang D, Chen HY. Single-cell-resolved measurement of enzyme activity at the tissue level using drop-on-demand microkits. Analyst 2021; 146:1548-1551. [PMID: 33427262 DOI: 10.1039/d0an02247k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drop-on-demand microkits with a diameter of ∼20 μm are used to measure the activity of acetylcholinesterase (AChE) in a brain slice with single-cell resolution. The relative standard deviation from 25 cellular regions reached 73.3% exhibiting the difference of enzyme activity in the brain slice. Therefore, this approach utilizing the well-established kits provides an alternative single-cell-resolved strategy for the elucidation of enzymatic heterogeneity at the tissue level.
Collapse
Affiliation(s)
- Rongcan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | | | | | | |
Collapse
|
26
|
Lv WY, Li CH, Li YF, Zhen SJ, Huang CZ. Hierarchical Hybridization Chain Reaction for Amplified Signal Output and Cascade DNA Logic Circuits. Anal Chem 2021; 93:3411-3417. [DOI: 10.1021/acs.analchem.0c04483] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
27
|
DNAzyme-Au nanoprobe coupled with graphene-oxide–loaded hybridization chain reaction signal amplification for fluorometric determination of alkaline phosphatase. Mikrochim Acta 2021; 188:7. [DOI: 10.1007/s00604-020-04681-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
|
28
|
Wang D, Xue W, Ren X, Xu Z. A review on sensing mechanisms and strategies for telomerase activity detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Dong Z, Xue X, Liang H, Guan J, Chang L. DNA Nanomachines for Identifying Cancer Biomarkers in Body Fluids and Cells. Anal Chem 2020; 93:1855-1865. [PMID: 33325676 DOI: 10.1021/acs.analchem.0c03518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Identifying molecular biomarkers promises to significantly improve the accuracy in cancer diagnosis at its early stage. DNA nanomachines, which are designable and switchable nanostructures made of DNA, show broad potential to detect tumor biomarkers with noninvasive, inexpensive, highly sensitive, and highly specific advantages. This Feature summarizes the recent DNA nanomachine-based platforms for the early detection of cancer biomarkers, both from body fluids and in cells.
Collapse
Affiliation(s)
- Zaizai Dong
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing 100853, China
| | - Hailun Liang
- School of Public Administration and Policy, Renmin University of China, Beijing 100872, China
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.,School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
30
|
Deng X, Wu S, Li Z, Zhao Y, Duan C. Ratiometric Detection of DNA and Protein in Serum by a Universal Tripyridinyl RuII Complex–Encapsulated SiO2@Polydopamine Fluorescence Nanoplatform. Anal Chem 2020; 92:15908-15915. [DOI: 10.1021/acs.analchem.0c03306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xunxun Deng
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
- Zhangdayu School of Chemistry, Dalian University of Technology, Dalian 116023, PR China
| | - Shuo Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Zhipeng Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yanqiu Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Chunying Duan
- Zhangdayu School of Chemistry, Dalian University of Technology, Dalian 116023, PR China
| |
Collapse
|
31
|
Liu LQ, Yin F, Lu Y, Yan XL, Wu CC, Li X, Li C. A light-up "G-quadruplex nanostring" for label-free and selective detection of miRNA via duplex-specific nuclease mediated tandem rolling circle amplification. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102339. [PMID: 33227538 DOI: 10.1016/j.nano.2020.102339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
MicroRNA (miRNA) has emerged as a promising genetic marker for cancer diagnosis and therapy because its expression level is closely related to the progression of malignant diseases. Herein, a label-free and selective fluorescence platform was proposed for miRNA based on light-up "G-quadruplex nanostring" via duplex-specific nuclease (DSN) mediated tandem rolling circle amplification (RCA). First, a long DNA generated from upstream RCA was designed with the antisense sequences for miR-21 and downstream RCA primer. Upon recognizing miR-21, the resulting DNA-RNA permitted DSN digestion and triggered downstream two-way RCA, and generation of abundant "G-quadruplex nanostring" binding with ZnPPIX for label-free fluorescent responses. In our strategy, the strong preference of DSN for perfectly matched DNA/RNA ensures its excellent selectivity. The developed method generated wide linear response with LOD of 1.019 fM. Additionally, the miR-21 levels in cell extracts have been evaluated, revealing the utility of this tool for biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Li-Qi Liu
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Fei Yin
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Yu Lu
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Xi-Luan Yan
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| | - Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, China.
| | - Chenzhong Li
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| |
Collapse
|
32
|
Wang J, Gao Y, Liu P, Xu S, Luo X. Core-Shell Multifunctional Nanomaterial-Based All-in-One Nanoplatform for Simultaneous Multilayer Imaging of Dual Types of Tumor Biomarkers and Photothermal Therapy. Anal Chem 2020; 92:15169-15178. [PMID: 33125850 DOI: 10.1021/acs.analchem.0c03669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Versatile all-in-one nanoplatforms that inherently possess both diagnostic imaging and therapeutic capabilities are highly desirable for efficient tumor diagnosis and treatment. Herein, we have developed a novel core-shell multifunctional nanomaterial-based all-in-one nanoplatform composed of gold nanobipyramids@polydopamine (Au NBPs@PDA) and gold nanoclusters (Au NCs) for simultaneous in situ multilayer imaging of dual types of tumor biomarkers (using a single-wavelength excitation) with different intracellular spatial distributions and fluorescence-guided photothermal therapy. The competitive combination between target transmembrane glycoprotein mucin1 (MUC1) and its aptamer caused Au NCs (620 nm) labeled with MUC1 aptamer to detach from the surface of Au NBPs@PDA, turning on the red fluorescence. Meanwhile, the hybridization between microRNA-21 (miRNA-21) and its complementary single-stranded DNA triggered the green fluorescence of Au NCs (515 nm). Based on this, simultaneous in situ multilayer imaging of dual types of tumor biomarkers with different intracellular spatial distributions was achieved. In addition, the potential of Au NBPs@PDA/Au NCs was also confirmed by simultaneous multilayer in situ imaging within not only three cell lines (MCF-7, HepG2, and L02 cells) with different expression levels of MUC1 and miRNA-21 but also cancer cells treated with different inhibitors. Moreover, the remarkable photothermal properties of Au NBPs@PDA resulted in the more efficient killing of cancer cells, demonstrating the great promise of the all-in-one nanoplatform for accurate diagnosis and tumor therapy.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yuhuan Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute, CNTC, Zhengzhou 450000, P. R. China
| | - Shenghao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
33
|
Zou L, Li X, Zhang J, Ling L. A Highly Sensitive Catalytic Hairpin Assembly-Based Dynamic Light-Scattering Biosensors for Telomerase Detection in Bladder Cancer Diagnosis. Anal Chem 2020; 92:12656-12662. [DOI: 10.1021/acs.analchem.0c02858] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xinghui Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Ji Zhang
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
34
|
Ma Y, Mao G, Wu G, He Z, Huang W. Magnetic bead-enzyme assemble for triple-parameter telomerase detection at single-cell level. Anal Bioanal Chem 2020; 412:5283-5289. [PMID: 32494916 DOI: 10.1007/s00216-020-02741-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 01/11/2023]
Abstract
In this work, we developed a triple-parameter strategy for the detection of telomerase activity from cancer cells and urine samples. This strategy was developed based on magnetic bead-enzyme hybrids combined with fluorescence analysis, colorimetric assay, or adenosine triphosphate (ATP) meter as readout. The application of magnetic bead-enzyme hybrids has the advantages of magnetic separation and signal amplification. These detection methods can be used individually or in combination to achieve the optimal sensing performance and make the results more convincing. Among them, the ATP meter with portable size had easy operation and low cost, and this response strategy provided a higher sensitivity at the single-cell level. The designed strategy was suitable as naked-eye sensor and point-of-care testing (POCT) for rapid assaying of telomerase activity. Graphical abstract Magnetic bead-enzyme assemble for triple-parameter telomerase detection.
Collapse
Affiliation(s)
- Yingxin Ma
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Guobin Mao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Guoqiang Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518039, Guangdong, China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518039, Guangdong, China.
| |
Collapse
|
35
|
Huang S, Zhang Q, Yao H, Wang W, Zhang JR, Zhu JJ. Quantitative Detection and Imaging of Multiple Biological Molecules in Living Cells for Cell Screening. ACS Sens 2020; 5:1149-1157. [PMID: 32164417 DOI: 10.1021/acssensors.0c00170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Because of insufficient information, a single biomarker is not sufficient for early diagnosis of cancer, whereas sensitive and selective detection of multiple biomolecules can significantly reduce analysis time, sample size, and accurately perform cell screening in early cancer. Therefore, the development of a noninvasive strategy that can simultaneously quantify multiple biomarkers (i.e., nucleic acids, proteins, and small molecules) in a single cell is particularly important. Herein, a universal sensing system (functional DNA@mesoporous silica nanoparticles (MSN)-Black Hole Quencher-rhodamine 6G (RhB), FDSBR), which is based on the combination of functionalized DNA and smart responsive nanomaterial, was successfully constructed. After incubation with the cells, different types of targets trigger the strand displacement reaction to release the fluorophore-labeled nucleic acids as the output signals to reflect the intracellular level of the telomerase and adenosine triphosphate (ATP), respectively. Simultaneously, intracellular miR-21 can be clearly indicated by the restored fluorescence of RhB when the caged double-stranded DNA was substituted into single-stranded DNA to open the pore. The concentrations of intracellular telomerase, miR-21, and ATP were identified successfully in three cell lines at the single-cell level. The results show that the contents of three biomolecules have significant differences in the three model cell lines and provide a promising route for developing innovative early disease diagnosis and cell screening assay.
Collapse
Affiliation(s)
- Shan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huiqin Yao
- Department of Chemistry, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Chemistry and Life Science, Nanjing University Jinling College, Nanjing 210089, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
36
|
|
37
|
Li G, Li J, Li Q. Biodegradable MnO 2 nanosheet mediated hybridization chain reaction for imaging of human apurinic/apyrimidinic endonuclease 1 activity in living cells. NANOSCALE 2019; 11:20456-20460. [PMID: 31637399 DOI: 10.1039/c9nr06436b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A highly sensitive enzyme-free amplification assay for the detection of apurinic/apyrimidinic endonuclease 1 activity was developed. By incorporating biodegradable MnO2 nanosheets, in situ light up intracellular APE 1 activity was achieved.
Collapse
Affiliation(s)
- Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China.
| | - Junjie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qing Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China.
| |
Collapse
|
38
|
Peng H, Newbigging AM, Reid MS, Uppal JS, Xu J, Zhang H, Le XC. Signal Amplification in Living Cells: A Review of microRNA Detection and Imaging. Anal Chem 2019; 92:292-308. [DOI: 10.1021/acs.analchem.9b04752] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Ashley M. Newbigging
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Michael S. Reid
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Jagdeesh S. Uppal
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Jingyang Xu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical
Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
39
|
Liu X, Yu S, Feng C, Mao D, Li J, Zhu X. In situ Analysis of Cancer Cells Based on DNA Signal Amplification and DNA Nanodevices. Crit Rev Anal Chem 2019; 51:8-19. [PMID: 31613139 DOI: 10.1080/10408347.2019.1674631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cancer is a global disease which has been disturbing researchers in medicine and seriously threatens patients' health and lifetime around the world in the past several decades. Due to the characteristics of cancer cells, such as uncontrollable cell proliferation, cell invasion and metastasis to surrounding tissues, lower grade of differentiation, higher telomerase activity and others, it has been one of the most usual lethal factors, next to heart disease in incidence. Cancer mortality can be decreased by early diagnosis, and the people who with treatment at an early stage have an obvious improved survival rate. Consequently, early detection is significant for better understanding the pathogenesis of cancer and improving the prognosis of patients. In situ detection technique is a vital tool for imaging and cellular pathology research, which can provide effective information about tumor markers in the early cancer detection. In view of low expression of most tumor markers in the early stage of cancers, detection techniques based on DNA signal amplification and DNA nanodevices can provide a strong support for the diagnosis and detection of cancers. In this review, we summarize the research progress of different analytical techniques for detecting various tumor markers that have been reported in recent years. We compare different DNA amplification and nanodevices, then provide guidance and suggestions for better understanding in situ analysis of cancer cells.
Collapse
Affiliation(s)
- Xiaohao Liu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Sinuo Yu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Jinlong Li
- Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|
40
|
Li Y, Han H, Wu Y, Yu C, Ren C, Zhang X. Telomere elongation-based DNA-Catalytic amplification strategy for sensitive SERS detection of telomerase activity. Biosens Bioelectron 2019; 142:111543. [DOI: 10.1016/j.bios.2019.111543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
|
41
|
Ye S, Wu Y, Wan F, Li Y. A seesaw ratiometric probe for dual-spectrum imaging and detection of telomerase activity in single living cells. Chem Commun (Camb) 2019; 55:9967-9970. [PMID: 31367705 DOI: 10.1039/c9cc03870a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, a seesaw ratiometric (SR) probe is designed which integrates fluorescence and surface enhanced Raman scattering (SERS) technology. Fluorescence imaging enables tracking of the spatiotemporal dynamic behaviour of telomerase. Meanwhile, SERS reverse ratiometric measurement can enable sensitive detection of telomerase activity in single living cells.
Collapse
Affiliation(s)
- Sujuan Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | |
Collapse
|
42
|
Zhang Y, Zhang Y, Ma C, Wang Y, Mu S, Liu X, Zhang X, Zhang H. Molecularly imprinted gelatin nanoparticles for DNA delivery and in-situ fluorescence imaging of telomerase activity. Mikrochim Acta 2019; 186:610. [DOI: 10.1007/s00604-019-3671-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022]
|
43
|
Huang ZM, Lin MY, Zhang CH, Wu Z, Yu RQ, Jiang JH. Recombinant Fusion Streptavidin as a Scaffold for DNA Nanotetrads for Nucleic Acid Delivery and Telomerase Activity Imaging in Living Cells. Anal Chem 2019; 91:9361-9365. [DOI: 10.1021/acs.analchem.9b02115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhi-Mei Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Mei-Ya Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Chong-Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
44
|
Wang X, Yang D, Liu M, Cao D, He N, Wang Z. Highly sensitive fluorescence biosensor for intracellular telomerase detection based on a single patchy gold/carbon nanosphere via the combination of nanoflare and hybridization chain reaction. Biosens Bioelectron 2019; 137:110-116. [PMID: 31085399 DOI: 10.1016/j.bios.2019.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 11/18/2022]
Abstract
How to in situ detect intracellular telomerase activity with high sensitivity still faces many challenges. This paper constructs a new fluorescence biosensing platform for the sensitive detection of intracellular telomerase activity via the combination of nanoflare and hybridization chain reaction (HCR)-based signal amplification on a single patchy gold/carbon nanosphere (PG/CNS), which has two or more distinct parts and allows hybridized-DNA (HS-DNA/Primer-DNA/Flare-DNA) and H1/H2-DNA (a pair of cross complementary DNA hairpins) to bind onto their surfaces via Au-S bond and electrostatic interaction, respectively. In the presence of telomerase, Primer-DNA (telomerase primer) extends at its 3' end to produce a telomeric repeated sequence, resulting in the release of Flare-DNA followed by the recovery of the fluorescence. Subsequently, the released Flare-DNA further initiates cross hybridization of H1 and H2 DNA from mimic-HCR system to amplify the fluorescence signal. The in vivo confocal microscopy studies demonstrate that resulting sensor can enter into the cancer cells such as A549 cells, and lead to the increase in luminescence, which is stronger than the sensor without the HCR-based signal amplification system. A linear relationship between the fluorescence intensity and the amount of A549 cells is observed, and the limit of detection of the sensor reaches about 280 A549 cells.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Pharmaceutical Research Center, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Dandan Yang
- Pharmaceutical Research Center, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Mei Liu
- Pharmaceutical Research Center, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Dongwei Cao
- Department of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Nongyue He
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhifei Wang
- Pharmaceutical Research Center, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China.
| |
Collapse
|
45
|
Zhang L, Peng J, Hong MF, Chen JQ, Liang RP, Qiu JD. Cobalt phosphide nanowires for fluorometric detection and in-situ imaging of telomerase activity via hybridization chain reactions. Mikrochim Acta 2019; 186:309. [DOI: 10.1007/s00604-019-3391-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
|
46
|
Yang H, Fu F, Li W, Wei W, Zhang Y, Liu S. Telomerase and poly(ADP-ribose) polymerase-1 activity sensing based on the high fluorescence selectivity and sensitivity of TOTO-1 towards G bases in single-stranded DNA and poly(ADP-ribose). Chem Sci 2019; 10:3706-3714. [PMID: 31015914 PMCID: PMC6461019 DOI: 10.1039/c8sc05770b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/18/2019] [Indexed: 01/12/2023] Open
Abstract
Telomerase and poly(ADP-ribose) polymerase-1 (PARP-1) are two potential cancer biomarkers and are closely related to tumor initiation and malignant progression. TOTO-1 is well-known for differentiating ss-DNA from ds-DNA because it is virtually non-fluorescent without DNA and exhibits very low fluorescence with ss-DNA, while it emits strong fluorescence with ds-DNA. In this paper, for the first time, it was found that TOTO-1 has high fluorescence selectivity and sensitivity towards the G bases in single-stranded DNA and poly(ADP-ribose) (PAR). Poly(dG) was used as the model target to explore its possible mechanism. Molecular dynamics (MD) simulation proved that intramolecular π-π stacking existed in TOTO-1 (in an aqueous solution), while intermolecular π-π stacking formed between TOTO-1 and poly(dG) in a similar way as that observed for dsDNA. Interestingly, telomerase and PARP-1 catalyzed the formation of G-rich DNA and PAR in vivo, respectively. Therefore, TOTO-1 was explored in detecting both of them, obtaining satisfactory results. To the best of our knowledge, no probe has been reported to recognize PAR. It is also the first time where telomerase is detected based on the specific recognition of G bases. Importantly, integrating multiple functions into one probe that can detect not only telomerase but also PARP-1 will significantly raise the specificity of screening cancer and decrease false positive proportion, which make TOTO-1 a promising candidate probe for clinical diagnosis and pharmaceutical screening.
Collapse
Affiliation(s)
- Haitang Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research , School of Chemistry and Chemical Engineering , Southeast University , Nanjing, 211189 , China . ; ; ; Tel: +86-25-52090613
| | - Fangjia Fu
- Institution of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Wei Li
- Institution of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research , School of Chemistry and Chemical Engineering , Southeast University , Nanjing, 211189 , China . ; ; ; Tel: +86-25-52090613
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research , School of Chemistry and Chemical Engineering , Southeast University , Nanjing, 211189 , China . ; ; ; Tel: +86-25-52090613
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research , School of Chemistry and Chemical Engineering , Southeast University , Nanjing, 211189 , China . ; ; ; Tel: +86-25-52090613
| |
Collapse
|
47
|
Chenab KK, Eivazzadeh-Keihan R, Maleki A, Pashazadeh-Panahi P, Hamblin MR, Mokhtarzadeh A. Biomedical applications of nanoflares: Targeted intracellular fluorescence probes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 17:342-358. [PMID: 30826476 PMCID: PMC6520197 DOI: 10.1016/j.nano.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
Nanoflares are intracellular probes consisting of oligonucleotides immobilized on various nanoparticles that can recognize intracellular nucleic acids or other analytes, thus releasing a fluorescent reporter dye. Single-stranded DNA (ssDNA) complementary to mRNA for a target gene is constructed containing a 3'-thiol for binding to gold nanoparticles. The ssDNA "recognition sequence" is prehybridized to a shorter DNA complement containing a fluorescent dye that is quenched. The functionalized gold nanoparticles are easily taken up into cells. When the ssDNA recognizes its complementary target, the fluorescent dye is released inside the cells. Different intracellular targets can be detected by nanoflares, such as mRNAs coding for genes over-expressed in cancer (epithelial-mesenchymal transition, oncogenes, thymidine kinase, telomerase, etc.), intracellular levels of ATP, pH values and inorganic ions can also be measured. Advantages include high transfection efficiency, enzymatic stability, good optical properties, biocompatibility, high selectivity and specificity. Multiplexed assays and FRET-based systems have been designed.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| |
Collapse
|
48
|
Non-invasive diagnosis of bladder cancer by detecting telomerase activity in human urine using hybridization chain reaction and dynamic light scattering. Anal Chim Acta 2019; 1065:90-97. [PMID: 31005155 DOI: 10.1016/j.aca.2019.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022]
Abstract
Cystoscopy and histology are the gold standards for detection of bladder cancer. However, these methods are highly subjective, expensive, and invasive. We have developed a non-invasive method for the diagnosis of bladder cancer by detecting telomerase activity in human urine. Telomerase substrate (TS) primer is elongated with repeating sequences of (TTAGGG)n in the presence of telomerase. The elongated primer can trigger hybridization chain reaction between two hairpins H1 and H2, result in the aggregation of AuNPs due to the hybridization between the tail sequence on H1 (or H2) and DNA-AuNPs probe, and accompany with the increase of hydrodynamic diameter of AuNPs, which can be measured with dynamic light scattering (DLS). The biosensor displayed a detection limit of 4 MCF-7 cells (a signal-to-noise ratio of 3) and a dynamic range of 10-1000 cells. Moreover, only urine specimens from bladder cancer patients induced a significant change in the average hydrodynamic diameter, indicating its specificity for the non-invasive diagnosis of bladder cancer.
Collapse
|
49
|
Sun H, Hong M, Yang Q, Li C, Zhang G, Yue Q, Ma Y, Li X, Li CZ. Visualizing the down-regulation of hTERT mRNA expression using gold-nanoflare probes and verifying the correlation with cancer cell apoptosis. Analyst 2019; 144:2994-3004. [PMID: 30892312 DOI: 10.1039/c9an00204a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human telomerase reverse transcriptase catalytic subunit (hTERT) is the rate-limiting subunit of the telomerase holoenzyme. Down-regulating the expression of hTERT mRNA by antisense oligonucleotides would reduce the expression of hTERT, inhibit telomerase activity, and impair the growth of cancer cells in vitro. In this work, we propose a locked nucleic acid-functionalized gold nanoparticle flare probe (AuNP-probe). After transferring these probes into cells by endocytosis of the gold nanoparticles, the binding process of the antisense locked nucleic acid with hTERT mRNA along with gene regulation can be visualized by fluorescence recovery of flare-sequences. A significant decline in hTERT mRNA levels and the hTERT content occurred in cancer cells after treatment with the AuNP-probes, and only approximately 25% of the original level of hTERT mRNA remained after 72 h. AuNP-probe treated cancer cells were arrested in the G1 phase of the cell cycle and underwent apoptosis; cell viability decreased obviously compared with that of telomerase-negative normal cells.
Collapse
Affiliation(s)
- Hongxiao Sun
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Qiangqiang Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Chuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Guangzhi Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Yanhua Ma
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Xia Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Chen-Zhong Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China. and Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, 33174, USA.
| |
Collapse
|
50
|
Meng F, Chen X, Cheng W, Hu W, Tang Y, Miao P. Ratiometric Electrochemical Sensing Strategy for the Ultrasensitive Detection of Telomerase Activity. ChemElectroChem 2019. [DOI: 10.1002/celc.201900019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fanyu Meng
- University of Science and Technology of China Hefei 230026 P. R. China
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
| | - Xifeng Chen
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
- Tianjin Guokeyigong Science & Technology Development Co., Ltd. Tianjin 300399 P. R. China
| | - Wei Hu
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
- Tianjin Guokeyigong Science & Technology Development Co., Ltd. Tianjin 300399 P. R. China
| | - Yuguo Tang
- University of Science and Technology of China Hefei 230026 P. R. China
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
| | - Peng Miao
- University of Science and Technology of China Hefei 230026 P. R. China
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
| |
Collapse
|