1
|
Rich J, Cole B, Li T, Lu B, Fu H, Smith BN, Xia J, Yang S, Zhong R, Doherty JL, Kaneko K, Suzuki H, Tian Z, Franklin AD, Huang TJ. Aerosol jet printing of surface acoustic wave microfluidic devices. MICROSYSTEMS & NANOENGINEERING 2024; 10:2. [PMID: 38169478 PMCID: PMC10757899 DOI: 10.1038/s41378-023-00606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 01/05/2024]
Abstract
The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Brian Cole
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Brandon Lu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Hanyu Fu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Brittany N. Smith
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - James L. Doherty
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Kanji Kaneko
- Deptartment of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551 Japan
| | - Hiroaki Suzuki
- Deptartment of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551 Japan
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Aaron D. Franklin
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
- Department of Chemistry, Duke University, Durham, NC 27708 USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| |
Collapse
|
2
|
Qian J, Lan H, Huang L, Zheng S, Hu X, Chen M, Lee JEY, Zhang W. Acoustofluidics for simultaneous droplet transport and centrifugation facilitating ultrasensitive biomarker detection. LAB ON A CHIP 2023; 23:4343-4351. [PMID: 37718921 DOI: 10.1039/d3lc00626c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Trace biological sample detection is critical for the analysis of pathologies in biomedicine. Integration of microfluidic manipulation techniques typically strengthens biosensing performance. For instance, using isothermal amplification reactions to sense trace miRNA in peripheral circulation lacks a sufficiently complex pretreatment process that limits the sensitivity of on-chip detection. Herein we propose an orthogonal tunable acoustic tweezer (OTAT) to simultaneously actuate the transportation and centrifugation of μ-droplets on a single device. The OTAT enables diversified modes of droplet transportation such as unidirectional transport, multi-direction transport, round-trip transport, tilt angle movement, multi-droplet fusion, and continuous centrifugation of the dynamic droplets simultaneously. The multiplicity of modalities enables the focusing of a loaded analyte at the center of the droplet or constant rotation about the center axis of the droplet. We herein demonstrate the OTAT's ability to actuate transportation, fusion, and centrifugation-based pretreatment of two biological sample droplets loaded with miRNA biomarkers and multiple mixtures, as well as facilitating the increase of fluorescence detection sensitivity by an order of magnitude compared to traditional tube reaction methods. The results herein demonstrate the OTAT-based droplet acoustofluidic platform's ability to combine a wide range of biosensing mechanisms and provide a higher accuracy of detection for one-stop point-of-care disease diagnosis.
Collapse
Affiliation(s)
- Jingui Qian
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Huaize Lan
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China.
| | - Xuefeng Hu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China.
| | - Joshua E-Y Lee
- School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wei Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Ning J, Lei Y, Hu H, Gai C. A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications. MICROMACHINES 2023; 14:1543. [PMID: 37630082 PMCID: PMC10456473 DOI: 10.3390/mi14081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
This review focuses on the development of surface acoustic wave-enabled acoustic drop ejection (SAW-ADE) technology, which utilizes surface acoustic waves to eject droplets from liquids without touching the sample. The technology offers advantages such as high throughput, high precision, non-contact, and integration with automated systems while saving samples and reagents. The article first provides an overview of the SAW-ADE technology, including its basic theory, simulation verification, and comparison with other types of acoustic drop ejection technology. The influencing factors of SAW-ADE technology are classified into four categories: fluid properties, device configuration, presence of channels or chambers, and driving signals. The influencing factors discussed in detail from various aspects, such as the volume, viscosity, and surface tension of the liquid; the type of substrate material, interdigital transducers, and the driving waveform; sessile droplets and fluid in channels/chambers; and the power, frequency, and modulation of the input signal. The ejection performance of droplets is influenced by various factors, and their optimization can be achieved by taking into account all of the above factors and designing appropriate configurations. Additionally, the article briefly introduces the application scenarios of SAW-ADE technology in bioprinters and chemical analyses and provides prospects for future development. The article contributes to the field of microfluidics and lab-on-a-chip technology and may help researchers to design and optimize SAW-ADE systems for specific applications.
Collapse
Affiliation(s)
| | | | - Hong Hu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; (J.N.)
| | | |
Collapse
|
4
|
Wei W, Wang Y, Wang Z, Duan X. Microscale acoustic streaming for biomedical and bioanalytical applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Sheng S, Yang H, Song Y, Chen R, Liang S, Fang H. Size-Dependent Spontaneous Separation of Colloidal Particles in Sub-Microliter Suspension by Cations. Int J Mol Sci 2022; 23:ijms23158055. [PMID: 35897631 PMCID: PMC9329736 DOI: 10.3390/ijms23158055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Great efforts have been made to separate micro/nanoparticles in small-volume specimens, but it is a challenge to achieve the simple, maneuverable and low-cost separation of sub-microliter suspension with large separation distances. By simply adding trace amounts of cations (Mg2+/Ca2+/Na+), we experimentally achieved the size-dependent spontaneous separation of colloidal particles in an evaporating droplet with a volume down to 0.2 μL. The separation distance was at a millimeter level, benefiting the subsequent processing of the specimen. Within only three separating cycles, the mass ratio between particles with diameters of 1.0 μm and 0.1 μm can be effectively increased to 13 times of its initial value. A theoretical analysis indicates that this spontaneous separation is attributed to the size-dependent adsorption between the colloidal particles and the aromatic substrate due to the strong hydrated cation-π interactions.
Collapse
Affiliation(s)
- Shiqi Sheng
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (S.S.); (Y.S.); (R.C.); (S.L.)
| | - Haijun Yang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yongshun Song
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (S.S.); (Y.S.); (R.C.); (S.L.)
| | - Ruoyang Chen
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (S.S.); (Y.S.); (R.C.); (S.L.)
| | - Shanshan Liang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (S.S.); (Y.S.); (R.C.); (S.L.)
| | - Haiping Fang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (S.S.); (Y.S.); (R.C.); (S.L.)
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Correspondence:
| |
Collapse
|
6
|
Mokhtare A, Davaji B, Xie P, Yaghoobi M, Rosenwaks Z, Lal A, Palermo G, Abbaspourrad A. Non-contact ultrasound oocyte denudation. LAB ON A CHIP 2022; 22:777-792. [PMID: 35075469 DOI: 10.1039/d1lc00715g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cumulus removal (CR) is a central prerequisite step for many protocols involved in the assisted reproductive technology (ART) such as intracytoplasmic sperm injection (ICSI) and preimplantation genetic testing (PGT). The most prevalent CR technique is based upon laborious manual pipetting, which suffers from inter-operator variability and therefore a lack of standardization. Automating CR procedures would alleviate many of these challenges, improving the odds of a successful ART or PGT outcome. In this study, a chip-scale ultrasonic device consisting of four interdigitated transducers (IDT) on a lithium niobate substrate has been engineered to deliver megahertz (MHz) range ultrasound to perform denudation. The acoustic streaming and acoustic radiation force agitate COCs inside a microwell placed on top of the LiNbO3 substrate to remove the cumulus cells from the oocytes. This paper demonstrates the capability and safety of the denudation procedure utilizing surface acoustic wave (SAW), achieving automation of this delicate manual procedure and paving the steps toward improved and standardized oocyte manipulation.
Collapse
Affiliation(s)
- Amir Mokhtare
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA.
| | - Benyamin Davaji
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Philip Xie
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohammad Yaghoobi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA.
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Amit Lal
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Gianpiero Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
7
|
Nam H, Sung HJ, Park J, Jeon JS. Manipulation of cancer cells in a sessile droplet via travelling surface acoustic waves. LAB ON A CHIP 2021; 22:47-56. [PMID: 34821225 DOI: 10.1039/d1lc00801c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The behaviours of microparticles inside a sessile droplet actuated by surface acoustic waves (SAWs) were investigated, where the SAWs produced an acoustic streaming flow and imparted an acoustic radiation force on the microparticles. The Rayleigh waves formed by a comb-like interdigital transducer were made to propagate along the surface of a LiNbO3 substrate in order to allow the manipulation of microparticles in a label-free and non-contact manner. Polystyrene microparticles were first employed to describe the behaviours inside a sessile droplet. The influence of the volume of the sessile droplet on the behaviours of the microparticles was examined by changing the contact angle of the droplet. Next, cancer cells were suspended in a sessile droplet, and the influence of contact angle on the behaviours of the cancer cells was investigated. A long gelation time was afforded by using a PEGylated fibrin gel. A primary tumour was mimicked by patterning the cancer cells to be concentrated in the middle of the sessile droplet. The non-contact manipulation property of acoustic waves was indicated to be biocompatible and enabled a structure-free platform configuration. Three-dimensional aggregated culture models were observed to make the cancer cells display an elevated expression of E-cadherin. The efficacy of the anticancer drug tirapazamine increased in the aggregated cancer cells, attributed to the low levels of oxygen in this formation of cancer cells.
Collapse
Affiliation(s)
- Hyeono Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Hyung Jin Sung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Jinsoo Park
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Akther A, Walsh EP, Reineck P, Gibson BC, Ohshima T, Abe H, McColl G, Jenkins NL, Hall LT, Simpson DA, Rezk AR, Yeo LY. Acoustomicrofluidic Concentration and Signal Enhancement of Fluorescent Nanodiamond Sensors. Anal Chem 2021; 93:16133-16141. [PMID: 34813284 DOI: 10.1021/acs.analchem.1c03893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diamond nitrogen-vacancy (NV) centers constitute a promising class of quantum nanosensors owing to the unique magneto-optic properties associated with their spin states. The large surface area and photostability of diamond nanoparticles, together with their relatively low synthesis costs, make them a suitable platform for the detection of biologically relevant quantities such as paramagnetic ions and molecules in solution. Nevertheless, their sensing performance in solution is often hampered by poor signal-to-noise ratios and long acquisition times due to distribution inhomogeneities throughout the analyte sample. By concentrating the diamond nanoparticles through an intense microcentrifugation effect in an acoustomicrofluidic device, we show that the resultant dense NV ensembles within the diamond nanoparticles give rise to an order-of-magnitude improvement in the measured acquisition time. The ability to concentrate nanoparticles under surface acoustic wave (SAW) microcentrifugation in a sessile droplet is, in itself, surprising given the well-documented challenge of achieving such an effect for particles below 1 μm in dimension. In addition to a demonstration of their sensing performance, we thus reveal in this work that the reason why the diamond nanoparticles readily concentrate under the SAW-driven recirculatory flow can be attributed to their considerably higher density and hence larger acoustic contrast compared to those for typical particles and cells for which the SAW microcentrifugation flow has been shown to date.
Collapse
Affiliation(s)
- Asma Akther
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ella P Walsh
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Hiroshi Abe
- National Institutes for Quantum Science and Technology, Takasaki, Gunma 370-1292, Japan
| | - Gawain McColl
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Victoria 3010, Australia
| | - Nicole L Jenkins
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Victoria 3010, Australia
| | - Liam T Hall
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David A Simpson
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
9
|
Peng T, Fan C, Zhou M, Jiang F, Drummer D, Jiang B. Rapid Enrichment of Submicron Particles within a Spinning Droplet Driven by a Unidirectional Acoustic Transducer. Anal Chem 2021; 93:13293-13301. [PMID: 34554739 DOI: 10.1021/acs.analchem.1c02914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Efficient and rapid particle enrichment at the submicron scale is essential for research in biomedicine and biochemistry. Here, we demonstrate an acoustofluidic method for submicron particle enrichment within a spinning droplet driven by a unidirectional transducer. The unidirectional transducer generates intense sound energy with relatively low attenuation. Droplets placed offset in the wave propagation path on a polydimethylsiloxane film undergo strong pressure gradients, deforming into an ellipsoid shape and spinning at high speed. Benefitting from the drag force induced by the droplet spin and acoustic streaming and the radial force induced by the droplet compression and expansion, the submicron particles in the liquid droplet quickly enrich toward the central area following a spiral trajectory. Through numerical calculations and experimental processes, we have demonstrated the possible mechanism responsible for particle enrichment. The application of biological sample processing has also been exploited. This study anticipates that the strategy based on the spinning droplet and particle enrichment method will be highly desirable for many applications.
Collapse
Affiliation(s)
- Tao Peng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Cui Fan
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Mingyong Zhou
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Fengze Jiang
- Institute of Polymer Technology (LKT), Friedrich-Alexander-University Erlangen-Nurnberg, Am Weichselgarten 9, Erlangen-Tennenlohe 91058, Germany
| | - Dietmar Drummer
- Institute of Polymer Technology (LKT), Friedrich-Alexander-University Erlangen-Nurnberg, Am Weichselgarten 9, Erlangen-Tennenlohe 91058, Germany
| | - Bingyan Jiang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
10
|
Qian J, Begum H, Lee JEY. Acoustofluidic localization of sparse particles on a piezoelectric resonant sensor for nanogram-scale mass measurements. MICROSYSTEMS & NANOENGINEERING 2021; 7:61. [PMID: 34567773 PMCID: PMC8433202 DOI: 10.1038/s41378-021-00288-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 05/24/2023]
Abstract
The ability to weigh microsubstances present in low concentrations is an important tool for environmental monitoring and chemical analysis. For instance, developing a rapid analysis platform that identifies the material type of microplastics in seawater would help evaluate the potential toxicity to marine organisms. In this study, we demonstrate the integration of two different techniques that bring together the functions of sparse particle localization and miniaturized mass sensing on a microelectromechanical system (MEMS) chip for enhanced detection and minimization of negative measurements. The droplet sample for analysis is loaded onto the MEMS chip containing a resonant mass sensor. Through the coupling of a surface acoustic wave (SAW) from a SAW transducer into the chip, the initially dispersed microparticles in the droplet are localized over the detection area of the MEMS sensor, which is only 200 µm wide. The accreted mass of the particles is then calibrated against the resulting shift in resonant frequency of the sensor. The SAW device and MEMS chip are detachable after use, allowing the reuse of the SAW device part of the setup instead of the disposal of both parts. Our platform maintains the strengths of noncontact and label-free dual-chip acoustofluidic devices, demonstrating for the first time an integrated microparticle manipulation and real-time mass measurement platform useful for the analysis of sparse microsubstances.
Collapse
Affiliation(s)
- Jingui Qian
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Habiba Begum
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Joshua E.-Y. Lee
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR China
| |
Collapse
|
11
|
Kolesnik K, Xu M, Lee PVS, Rajagopal V, Collins DJ. Unconventional acoustic approaches for localized and designed micromanipulation. LAB ON A CHIP 2021; 21:2837-2856. [PMID: 34268539 DOI: 10.1039/d1lc00378j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acoustic fields are ideal for micromanipulation, being biocompatible and with force gradients approaching the scale of single cells. They have accordingly found use in a variety of microfluidic devices, including for microscale patterning, separation, and mixing. The bulk of work in acoustofluidics has been predicated on the formation of standing waves that form periodic nodal positions along which suspended particles and cells are aligned. An evolving range of applications, however, requires more targeted micromanipulation to create unique patterns and effects. To this end, recent work has made important advances in improving the flexibility with which acoustic fields can be applied, impressively demonstrating generating arbitrary arrangements of pressure fields, spatially localizing acoustic fields and selectively translating individual particles in ways that are not achievable via traditional approaches. In this critical review we categorize and examine these advances, each of which open the door to a wide range of applications in which single-cell fidelity and flexible micromanipulation are advantageous, including for tissue engineering, diagnostic devices, high-throughput sorting and microfabrication.
Collapse
Affiliation(s)
- Kirill Kolesnik
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Mingxin Xu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Qian J, Huang W, Yang R, Lam RHW, Lee JEY. Low-cost laser-cut patterned chips for acoustic concentration of micro- to nanoparticles and cells by operating over a wide frequency range. Analyst 2021; 146:3280-3288. [PMID: 33999056 DOI: 10.1039/d1an00197c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Acoustofluidic platforms for cell manipulation benefit from being contactless and label-free at potentially low cost. Particle concentration in a droplet relies on augmenting spatial asymmetry in the acoustic field, which is difficult to reproduce reliably. Etching periodic patterns into a chip to create acoustic band gaps is an attractive approach to spatially modify the acoustic field. However, the sensitivity of acoustic band structures to geometrical tolerances requires the use of costly microfabrication processes. In this work, we demonstrate particle concentration across a range of periodic structure patterns fabricated with a laser-cutting tool, suitable for low-cost and low-volume rapid prototyping. The relaxation on precision is underscored by experimental results of equally efficient particle concentration outside band gaps and even in their absence, allowing operation over a range of frequencies independent of acoustic band gaps. These results are significant by indicating the potential of extending the proposed method from the microscale (e.g. tumor cells) to the nanoscale (e.g. bacteria) by scaling up the frequency without being limited by fabrication capabilities. We demonstrate the device's high degree of biocompatibility to illustrate the method's applicability in the biomedical field for applications such as basic biochemical analysis and in vitro diagnosis.
Collapse
Affiliation(s)
- Jingui Qian
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong.
| | | | | | | | | |
Collapse
|
13
|
Sun C, Wu F, Fu Y, Wallis DJ, Mikhaylov R, Yuan F, Liang D, Xie Z, Wang H, Tao R, Shen MH, Yang J, Xun W, Wu Z, Yang Z, Cang H, Yang X. Thin film Gallium nitride (GaN) based acoustofluidic Tweezer: Modelling and microparticle manipulation. ULTRASONICS 2020; 108:106202. [PMID: 32535411 DOI: 10.1016/j.ultras.2020.106202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/13/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Gallium nitride (GaN) is a compound semiconductor which shows advantages in new functionalities and applications due to its piezoelectric, optoelectronic, and piezo-resistive properties. This study develops a thin film GaN-based acoustic tweezer (GaNAT) using surface acoustic waves (SAWs) and demonstrates its acoustofluidic ability to pattern and manipulate microparticles. Although the piezoelectric performance of the GaNAT is compromised compared with conventional lithium niobate-based SAW devices, the inherited properties of GaN allow higher input powers and superior thermal stability. This study shows for the first time that thin film GaN is suitable for the fabrication of the acoustofluidic devices to manipulate microparticles with excellent performance. Numerical modelling of the acoustic pressure fields and the trajectories of mixtures of microparticles driven by the GaNAT was performed and the results were verified from the experimental studies using samples of polystyrene microspheres. The work has proved the robustness of thin film GaN as a candidate material to develop high-power acoustic tweezers, with the potential of monolithical integration with electronics to offer diverse microsystem applications.
Collapse
Affiliation(s)
- Chao Sun
- School of Life Sciences, Northwestern Polytechnical University, 710072, PR China; Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, CF24 3AA, UK.
| | - Fangda Wu
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, CF24 3AA, UK
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - David J Wallis
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, CF24 3AA, UK; Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, UK
| | - Roman Mikhaylov
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, CF24 3AA, UK
| | - Fan Yuan
- Department of Biomedical Engineering, School of Engineering, Duke University, NC 27708-0281, USA
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, CB2 1PZ, UK
| | - Zhihua Xie
- Department of Civil Engineering, School of Engineering, Cardiff University, CF24, UK
| | - Hanlin Wang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, CF24 3AA, UK
| | - Ran Tao
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Ming Hong Shen
- Preclinical Studies of Renal Tumours Group, Division of Cancer and Genetics, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Jian Yang
- Preclinical Studies of Renal Tumours Group, Division of Cancer and Genetics, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Wenpeng Xun
- Department of Mechanical Engineering, Northwestern Polytechnical University, 710072, PR China
| | - Zhenlin Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116023, PR China
| | - Zhiyong Yang
- School of Mechanical Engineering, Tianjin University, 300072, PR China
| | - Huaixing Cang
- School of Life Sciences, Northwestern Polytechnical University, 710072, PR China
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, CF24 3AA, UK.
| |
Collapse
|
14
|
Gerlt MS, Haidas D, Ratschat A, Suter P, Dittrich PS, Dual J. Manipulation of single cells inside nanoliter water droplets using acoustic forces. BIOMICROFLUIDICS 2020; 14:064112. [PMID: 33381252 PMCID: PMC7749759 DOI: 10.1063/5.0036407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/08/2020] [Indexed: 05/10/2023]
Abstract
Droplet microfluidics enables high-throughput screening of single cells and is particularly valuable for applications, where the secreted compounds are analyzed. Typically, optical methods are employed for analysis, which are limited in their applicability as labeling protocols are required. Alternative label-free methods such as mass spectrometry would broaden the range of assays but are harmful to the cells, which is detrimental for some applications such as directed evolution. In this context, separation of cells from supernatant is beneficial prior to the analysis to retain viable cells. In this work, we propose an in-droplet separation method based on contactless and label-free acoustic particle manipulation. In a microfluidic chip, nanoliter droplets containing particles are produced at a T-junction. The particles are trapped in the tip of the droplet by the interplay of acoustic forces in two dimensions and internal flow fields. The droplets are subsequently split at a second T-junction into two daughter droplets-one containing the supernatant and the other containing the corresponding particles. The separation efficiency is measured in detail for polystyrene (PS) beads as a function of droplet speed, size, split ratio, and particle concentration. Further, single-bead (PS) and single-cell (yeast) experiments were carried out. At a throughput of 114 droplets/min, a separation efficiency of 100% ± 0% was achieved for more than 150 droplets. Finally, mammalian cells and bacteria were introduced into the system to test its versatility. This work demonstrates a robust, non-invasive strategy to perform single yeast cell-supernatant sampling in nanoliter volumes.
Collapse
Affiliation(s)
- Michael S. Gerlt
- Department of Mechanical and Process Engineering, ETH Zurich, Institute for Mechanical Systems (IMES), Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Dominik Haidas
- Department of Biosystems Science and Engineering, ETH Zurich, Bioanalytics Group, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Alexandre Ratschat
- Department of Mechanical and Process Engineering, ETH Zurich, Institute for Mechanical Systems (IMES), Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Philipp Suter
- Department of Mechanical and Process Engineering, ETH Zurich, Institute for Mechanical Systems (IMES), Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Bioanalytics Group, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Jürg Dual
- Department of Mechanical and Process Engineering, ETH Zurich, Institute for Mechanical Systems (IMES), Tannenstrasse 3, CH-8092 Zurich, Switzerland
| |
Collapse
|
15
|
Lei Y, Hu H. SAW-driven droplet jetting technology in microfluidic: A review. BIOMICROFLUIDICS 2020; 14:061505. [PMID: 33343781 PMCID: PMC7728459 DOI: 10.1063/5.0014768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The introduction of surface acoustic wave (SAW) technology on microfluidics has shown its powerfully controlling and actuating fluid and particle capability in a micro-nano scale, such as fluid mixing, fluid translation, microfluidic pumping, microfluidic rotational motor, microfluidic atomization, particle or cell concentration, droplet or cell sorting, reorientation of nano-objects, focusing and separation of particles, and droplet jetting. The SAW-driven droplet jetting technology enjoys the advantages of simple structure to fabricate with little hindrance, compact size to integrate with other components, high biocompatibility with biological cells or other molecule samples, large force in realizing fast fluidic actuation, and contact-free manipulation with fluid. The realization of this technology can effectively overcome some bottleneck problems in the current micro-injection technology, such as mechanical swear, complicated and bulky structure, and strict limitation of requirements on fluidic characteristics. This article reviews and reorganizes SAW-microfluidic jetting technology from decades of years, referring to the interaction mechanism theory of SAW and fluid, experimental methods of SAW-microfluidic jetting, effects of related parameters on objected pinch-off droplets, and applications of individual structures. Finally, we made a summary of the research results of the current literature and look forward and appraise where this discipline of SAW-microfluidic jetting could go in the future.
Collapse
Affiliation(s)
- Yulin Lei
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Hong Hu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Akther A, Marqus S, Rezk AR, Yeo LY. Submicron Particle and Cell Concentration in a Closed Chamber Surface Acoustic Wave Microcentrifuge. Anal Chem 2020; 92:10024-10032. [PMID: 32475111 DOI: 10.1021/acs.analchem.0c01757] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preconcentrating particulate and cellular matter for their isolation or detection is often a necessary and critical sample preparation or purification step in many lab-on-a-chip diagnostic devices. While surface acoustic wave (SAW) microcentrifugation has been demonstrated as a powerful means to drive efficient particle concentration, this has primarily been limited to micron dimension particles. When the particle size is around 1 μm or below, studies on SAW microcentrifugation to date have shown that particle ring-like aggregates can only be obtained in contrast to the localized concentrated clusters that are obtained with larger particles. Considering the importance of submicron particles and bioparticles that are common in many real-world samples, we elucidate why previous studies have not been able to achieve the concentration of these smaller particles to completion, and we present a practical solution involving a novel closed chamber configuration that minimizes sample heating and eliminates evaporation to show that it is indeed possible to drive submicron particle and cell concentration down to 200 nm diameters with SAW microcentrifugation over longer durations.
Collapse
Affiliation(s)
- Asma Akther
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Susan Marqus
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
17
|
Raymond SJ, Collins DJ, O'Rorke R, Tayebi M, Ai Y, Williams J. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Sci Rep 2020; 10:8745. [PMID: 32457358 PMCID: PMC7251103 DOI: 10.1038/s41598-020-65453-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Acoustic waves can be used to accurately position cells and particles and are appropriate for this activity owing to their biocompatibility and ability to generate microscale force gradients. Such fields, however, typically take the form of only periodic one or two-dimensional grids, limiting the scope of patterning activities that can be performed. Recent work has demonstrated that the interaction between microfluidic channel walls and travelling surface acoustic waves can generate spatially variable acoustic fields, opening the possibility that the channel geometry can be used to control the pressure field that develops. In this work we utilize this approach to create novel acoustic fields. Designing the channel that results in a desired acoustic field, however, is a non-trivial task. To rapidly generate designed acoustic fields from microchannel elements we utilize a deep learning approach based on a deep neural network (DNN) that is trained on images of pre-solved acoustic fields. We use then this trained DNN to create novel microchannel architectures for designed microparticle patterning.
Collapse
Affiliation(s)
- Samuel J Raymond
- Dept. Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David J Collins
- Biomedical Engineering Department, The University of Melbourne, Melbourne, 3010, Australia.
| | - Richard O'Rorke
- Engineering Product Design Pillar, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Mahnoush Tayebi
- Engineering Product Design Pillar, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Ye Ai
- Engineering Product Design Pillar, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - John Williams
- Dept. Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
18
|
Ahmed H, Ramesan S, Lee L, Rezk AR, Yeo LY. On-Chip Generation of Vortical Flows for Microfluidic Centrifugation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903605. [PMID: 31535785 DOI: 10.1002/smll.201903605] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/20/2019] [Indexed: 05/21/2023]
Abstract
Microcentrifugation constitutes an important part of the microfluidic toolkit in a similar way that centrifugation is crucial to many macroscopic procedures, given that micromixing, sample preconcentration, particle separation, component fractionation, and cell agglomeration are essential operations in small scale processes. Yet, the dominance of capillary and viscous effects, which typically tend to retard flow, over inertial and gravitational forces, which are often useful for actuating flows and hence centrifugation, at microscopic scales makes it difficult to generate rotational flows at these dimensions, let alone with sufficient vorticity to support efficient mixing, separation, concentration, or aggregation. Herein, the various technologies-both passive and active-that have been developed to date for vortex generation in microfluidic devices are reviewed. Various advantages or limitations associated with each are outlined, in addition to highlighting the challenges that need to be overcome for their incorporation into integrated microfluidic devices.
Collapse
Affiliation(s)
- Heba Ahmed
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Lillian Lee
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
19
|
Volume and Frequency-Independent Spreading of Droplets Driven by Ultrasonic Surface Vibration. FLUIDS 2020. [DOI: 10.3390/fluids5010018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many industrial processes depend on the wetting of liquids on various surfaces. Understanding the wetting effects due to ultrasonic vibration could provide a means for changing the behavior of liquids on any surface. In previous studies, low-frequency surface vibrations have been used to alter wetting states of droplets by exciting droplet volume modes. While high-frequency (>20 kHz) surface vibration can also cause droplets to wet or spread on a surface, this effect is relatively uncharacterized. In this study, droplets of various liquids with volumes ranging from 2 to 70 µL were vibrated on hydrophobic-coated (FluoroSyl) glass substrates fixed to a piezoelectric transducer at varying amplitudes and at a range of frequencies between 21 and 42 kHz. The conditions for contact line motion were evaluated, and the change in droplet diameter under vibration was measured. Droplets of all tested liquids initially begin to spread out at a similar surface acceleration level. The results show that the increase in diameter is proportional to the maximum acceleration of the surface. Finally, liquid properties and surface roughness may also produce some secondary effects, but droplet volume and excitation frequency do not significantly change the droplet spreading behavior within the parameter range studied.
Collapse
|
20
|
Lim H, Back SM, Choi H, Nam J. Acoustic mixing in a dome-shaped chamber-based SAW (DC-SAW) device. LAB ON A CHIP 2020; 20:120-125. [PMID: 31723954 DOI: 10.1039/c9lc00820a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of an open droplet system for surface acoustic wave (SAW)-based applications has been limited by droplet instability at high input power. This study introduces a dome-shaped chamber-based SAW (DC-SAW) device for the first time, which can be fabricated simply using a single adhesive tape and a drop of ultraviolet-curable material without soft lithography processes. The dome-shaped chamber device with a contact angle of 68° enables the maximizing of the effect of SAW transmitted at a refraction angle of roughly 22°, negating the droplet instability. The DC-SAW device was applied to acoustic mixing to estimate its capability. Acoustic mixing of two different fluids (i.e., deionized water and fluorescent particle suspension) was demonstrated in the dome-shaped chamber device. Moreover, the effect of flow rate and applied voltage on mixing performance was estimated. With the decreasing flow rate and increasing applied voltage, mixing performance was enhanced. At an applied voltage of 20 V, mixing indices were higher than 0.9 at a total flow rate of 300 μl min-1.
Collapse
Affiliation(s)
- Hyunjung Lim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.
| | - Seung Min Back
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.
| | - Jeonghun Nam
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Korea University, Seoul, Korea. and Department of Emergency Medicine, College of Medicine, Korea University Guro Hospital, Korea University, Seoul, Korea
| |
Collapse
|
21
|
Rezk AR, Ahmed H, Ramesan S, Yeo LY. High Frequency Sonoprocessing: A New Field of Cavitation-Free Acoustic Materials Synthesis, Processing, and Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001983. [PMID: 33437572 PMCID: PMC7788597 DOI: 10.1002/advs.202001983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/17/2020] [Indexed: 04/14/2023]
Abstract
Ultrasound constitutes a powerful means for materials processing. Similarly, a new field has emerged demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (⩽3 MHz) for synthesizing and manipulating a variety of bulk, nanoscale, and biological materials. At these frequencies and the typical acoustic intensities employed, cavitation-which underpins most sonochemical or, more broadly, ultrasound-mediated processes-is largely absent, suggesting that altogether fundamentally different mechanisms are at play. Examples include the crystallization of novel morphologies or highly oriented structures; exfoliation of 2D quantum dots and nanosheets; polymer nanoparticle synthesis and encapsulation; and the possibility for manipulating the bandgap of 2D semiconducting materials or the lipid structure that makes up the cell membrane, the latter resulting in the ability to enhance intracellular molecular uptake. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with such high-frequency surface vibration gives rise to a variety of static and dynamic charge generation and transfer effects, in addition to molecular ordering, polarization, and assembly-remarkably, given the vast dimensional separation between the acoustic wavelength and characteristic molecular length scales, or between the MHz-order excitation frequencies and typical THz-order molecular vibration frequencies.
Collapse
Affiliation(s)
- Amgad R. Rezk
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Heba Ahmed
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
22
|
Nam J, Jang WS, Kim J, Lee H, Lim CS. Lamb wave-based molecular diagnosis using DNA hydrogel formation by rolling circle amplification (RCA) process. Biosens Bioelectron 2019; 142:111496. [PMID: 31302395 DOI: 10.1016/j.bios.2019.111496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/10/2019] [Accepted: 07/07/2019] [Indexed: 11/25/2022]
Abstract
Recent developments in microfluidics enable the lab-on-a-chip-based molecular diagnosis. Rapid and accurate diagnosis of infectious diseases is critical for preventing the transmission of the disease. Here, we characterize a Lamb wave-based device using various parameters including the contact angle and viscosity of the sample droplet, the applied voltage, and the temperature increase. Additionally, we demonstrate the functionality of the Lamb wave-based device in clinical application. Optimal temperature for rolling circle amplification (RCA) process is 30 °C, and it was achieved by Lamb wave generation at 17 V. Gene amplification due to RCA process could be detected by viscosity increase due to DNA hydrogel formation in a sample droplet, which induced the acoustic streaming velocity of suspended particles to be decreased. In our Lamb wave-based device, isothermal amplification of target nucleic acids could be successfully detected within 30 min using 10 μL of sessile droplet, and was validated by comparing that of commercial real-time fluorescence analysis. Our device enables simple and low-cost molecular diagnosis, which can be applied to resource-limited clinical settings.
Collapse
Affiliation(s)
- Jeonghun Nam
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, South Korea; Department of Emergency Medicine, College of Medicine, Korea University, Seoul, South Korea.
| | - Woong Sik Jang
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, South Korea; Department of Emergency Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Jisu Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
23
|
Castro JO, Ramesan SR, Dang HD, Rezk AR, Yeo LY. Acoustopipetting: Tunable Nanoliter Sample Dispensing Using Surface Acoustic Waves. Anal Chem 2019; 91:5621-5628. [DOI: 10.1021/acs.analchem.8b05319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jasmine O. Castro
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Shwathy R. Ramesan
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Huy D. Dang
- Invetech Pty. Ltd., Mount Waverley, Victoria 3149, Australia
| | - Amgad R. Rezk
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Leslie Y. Yeo
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
24
|
Zhang Y, Devendran C, Lupton C, de Marco A, Neild A. Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing. LAB ON A CHIP 2019; 19:262-271. [PMID: 30564824 DOI: 10.1039/c8lc01117f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present and demonstrate a dextrous microfluidic device which features a reaction chamber with volume flexibility. This feature is critical for developing protocols directly on chip when the exact reaction is not yet defined, enabling bio/chemical reactions on chip to be performed without volumetric restrictions. This is achieved by the integration of single layer valves (for reagent dispensing) and surface acoustic wave excitation (for rapid reagent mixing). We show that a single layer valve can control the delivery of fluid into, an initially air-filled, mixing chamber. This chamber arrangement offers flexibility in the relative volume of reagents used, and so offers the capability to not only conduct, but also develop protocols on a chip. To enable this potential, we have integrated a SAW based mixer into the system, and characterised its mixing time based on frequency and power of excitation. Numerical simulations on the streaming pattern inside the chamber were conducted to probe the underlying physics of the experimental system. To demonstrate the on-chip protocol capability, the system was utilised to perform protein crystallization. Furthermore, the effect of rapid mixing, results in a significant increase in crystal size uniformity.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
25
|
Destgeer G, Hashmi A, Park J, Ahmed H, Afzal M, Sung HJ. Microparticle self-assembly induced by travelling surface acoustic waves. RSC Adv 2019; 9:7916-7921. [PMID: 35521193 PMCID: PMC9061445 DOI: 10.1039/c8ra09859j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/05/2019] [Indexed: 01/04/2023] Open
Abstract
We present an acoustofluidic method based on travelling surface acoustic waves (TSAWs) to induce self-assembly of microparticles inside a microfluidic channel. The particles are trapped above an interdigitated transducer, placed directly beneath the microchannel, by the TSAW-based direct acoustic radiation force (ARF). This approach was applied to trap 10 μm polystyrene particles, which were pushed towards the ceiling of the microchannel by 72 MHz TSAWs to form single- and multiple-layer colloidal structures. The repair of cracks and defects within the crystal lattice occurs as part of the self-assembly process. The sample flow through the first inlet can be switched with a buffer flow through the second inlet to control the number of particles assembled in the crystalline structure. The constant flow-induced Stokes drag force on the particles is balanced by the opposing TSAW-based ARF. This force balance is essential for the acoustics-based self-assembly of microparticles inside the microchannel. Moreover, we studied the effects of varying input voltage and fluid flow rate on the position and shape of the colloidal structure. The active self-assembly of microparticles into crystals with multiple layers can be used in the bottom-up fabrication of colloidal structures with dimensions greater than 500 μm × 500 μm, which is expected to have important applications in various fields. We present an acoustofluidic method based on travelling surface acoustic waves (TSAWs) for the self-assembly of microparticles inside a microfluidic channel.![]()
Collapse
Affiliation(s)
| | - Ali Hashmi
- Institut de Biologie du Développement de Marseille (IBDM)
- France
| | - Jinsoo Park
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Husnain Ahmed
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Muhammad Afzal
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Hyung Jin Sung
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| |
Collapse
|
26
|
Fakhfouri A, Devendran C, Ahmed A, Soria J, Neild A. The size dependant behaviour of particles driven by a travelling surface acoustic wave (TSAW). LAB ON A CHIP 2018; 18:3926-3938. [PMID: 30474095 DOI: 10.1039/c8lc01155a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The use of travelling surface acoustic waves (TSAW) in a microfluidic system provides a powerful tool for the manipulation of particles and cells. In a TSAW driven system, acoustophoretic effects can cause suspended micro-objects to display three distinct responses: (1) swirling, driven by acoustic streaming forces, (2) migration, driven by acoustic radiation forces and (3) patterning in a spatially periodic manner, resulting from diffraction effects. Whilst the first two phenomena have been widely discussed in the literature, the periodic patterning induced by TSAW has only recently been reported and is yet to be fully elucidated. In particular, more in-depth understanding of the size-dependant nature of this effect and the factors involved are required. Herein, we present an experimental and numerical study of the transition in acoustophoretic behaviour of particles influenced by relative dominance of these three mechanisms and characterise it based on particle diameter, channel height, frequency and intensity of the TSAW driven microfluidic system. This study will enable better understanding of the performance of TSAW sorters and allow the development of TSAW systems for particle collection and patterning.
Collapse
Affiliation(s)
- Armaghan Fakhfouri
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | | | |
Collapse
|
27
|
Ramesan S, Rezk AR, Yeo LY. High frequency acoustic permeabilisation of drugs through tissue for localised mucosal delivery. LAB ON A CHIP 2018; 18:3272-3284. [PMID: 30225496 DOI: 10.1039/c8lc00355f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The majority of infectious diseases enter the body through mucosal membranes that line the ocular, nasal, oral, vaginal and rectal surfaces. As infections can be effectively prevented by instigating a local immune response in the immunocyte-rich regions of the mucosa, an efficacious route of vaccine administration is to directly target their delivery to these surfaces. It is nevertheless challenging to provide sufficient driving force to penetrate both the mucus lining as well as the epithelial barrier of the mucosal surfaces, which are designed to effectively keep foreign entities out, but not excessively such that the therapeutic agent penetrates deeper into the vascularised submucosal regions where they are mostly taken up by the systemic circulation, thus resulting in a far weaker immune response. In this work, we demonstrate the possibility of controllably localising and hence maximising the delivery of both small and large molecule model therapeutic agents in the mucosa of a porcine buccal model using high frequency acoustics. Unlike their low (kHz order) frequency bulk ultrasonic counterpart, these high frequency (>10 MHz) surface waves do not generate cavitation, which leads to large molecular penetration depths beyond the 100 μm order thick mucosal layer, and which has been known to cause considerable cellular/tissue damage and hence scarring. Through system parameters such as the acoustic irradiation frequency, power and exposure duration, we show that it is possible to tune the penetration depth such that over 95% of the delivered drug are localised within the mucosal layer, whilst preserving their structural integrity.
Collapse
Affiliation(s)
- Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3000, Australia.
| | | | | |
Collapse
|
28
|
Castro JO, Ramesan S, Rezk AR, Yeo LY. Continuous tuneable droplet ejection via pulsed surface acoustic wave jetting. SOFT MATTER 2018; 14:5721-5727. [PMID: 29845144 DOI: 10.1039/c7sm02534c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a miniaturised platform for continuous production of single or multiple liquid droplets with diameters between 60 and 500 μm by interfacing a capillary-driven self-replenishing liquid feed with pulsed excitation of focussed surface acoustic waves (SAWs). The orifice-free operation circumvents the disadvantages of conventional jetting systems, which are often prone to clogging that eventuates in rapid degradation of the operational performance. Additionally, we show the possibility for flexibly tuning the ejected droplet size through the pulse width duration, thus avoiding the need for a separate device for every different droplet size required, as is the case for systems in which the droplet size is set by nozzles and orifices, as well as preceding ultrasonic jetting platforms where the droplet size is controlled by the operating frequency. Further, we demonstrate that cells can be jetted and hence printed onto substrates with control over the cell density within the droplets down to single cells. Given that the jetting does not lead to significant loss to the cell's viability or ability to proliferate, we envisage that this versatile jetting method can potentially be exploited with further development for cell encapsulation, dispensing and 3D bioprinting applications.
Collapse
Affiliation(s)
- Jasmine O Castro
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia.
| | | | | | | |
Collapse
|
29
|
Cesewski E, Haring AP, Tong Y, Singh M, Thakur R, Laheri S, Read KA, Powell MD, Oestreich KJ, Johnson BN. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications. LAB ON A CHIP 2018; 18:2087-2098. [PMID: 29897358 PMCID: PMC6077993 DOI: 10.1039/c8lc00427g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 μm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.
Collapse
Affiliation(s)
- Ellen Cesewski
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ahmed H, Destgeer G, Park J, Jung JH, Sung HJ. Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700285. [PMID: 29619294 PMCID: PMC5827645 DOI: 10.1002/advs.201700285] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/13/2017] [Indexed: 05/04/2023]
Abstract
A particle suspended in a fluid within a microfluidic channel experiences a direct acoustic radiation force (ARF) when traveling surface acoustic waves (TSAWs) couple with the fluid at the Rayleigh angle, thus producing two components of the ARF. Most SAW-based microfluidic devices rely on the horizontal component of the ARF to migrate prefocused particles laterally across a microchannel width. Although the magnitude of the vertical component of the ARF is more than twice the magnitude of the horizontal component, it is long ignored due to polydimethylsiloxane (PDMS) microchannel fabrication limitations and difficulties in particle focusing along the vertical direction. In the present work, a single-layered PDMS microfluidic chip is devised for hydrodynamically focusing particles in the vertical plane while explicitly taking advantage of the horizontal ARF component to slow down the selected particles and the stronger vertical ARF component to push the particles in the upward direction to realize continuous particle separation. The proposed particle separation device offers high-throughput operation with purity >97% and recovery rate >99%. It is simple in its fabrication and versatile due to the single-layered microchannel design, combined with vertical hydrodynamic focusing and the use of both the horizontal and vertical components of the ARF.
Collapse
Affiliation(s)
- Husnain Ahmed
- Department of Mechanical EngineeringKAISTDaejeon34141South Korea
| | - Ghulam Destgeer
- Department of Mechanical EngineeringKAISTDaejeon34141South Korea
| | - Jinsoo Park
- Department of Mechanical EngineeringKAISTDaejeon34141South Korea
| | - Jin Ho Jung
- Department of Mechanical EngineeringKAISTDaejeon34141South Korea
| | - Hyung Jin Sung
- Department of Mechanical EngineeringKAISTDaejeon34141South Korea
| |
Collapse
|
31
|
Rezk AR, Ramesan S, Yeo LY. Plug-and-actuate on demand: multimodal individual addressability of microarray plates using modular hybrid acoustic wave technology. LAB ON A CHIP 2018; 18:406-411. [PMID: 29231220 DOI: 10.1039/c7lc01099k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The microarray titre plate remains a fundamental workhorse in genomic, proteomic and cellomic analyses that underpin the drug discovery process. Nevertheless, liquid handling technologies for sample dispensing, processing and transfer have not progressed significantly beyond conventional robotic micropipetting techniques, which are not only at their fundamental sample size limit, but are also prone to mechanical failure and contamination. This is because alternative technologies to date suffer from a number of constraints, mainly their limitation to carry out only a single liquid operation such as dispensing or mixing at a given time, and their inability to address individual wells, particularly at high throughput. Here, we demonstrate the possibility for true sequential or simultaneous single- and multi-well addressability in a 96-well plate using a reconfigurable modular platform from which MHz-order hybrid surface and bulk acoustic waves can be coupled to drive a variety of microfluidic modes including mixing, sample preconcentration and droplet jetting/ejection in individual or multiple wells on demand, thus constituting a highly versatile yet simple setup capable of improving the functionality of existing laboratory protocols and processes.
Collapse
Affiliation(s)
- Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | | | | |
Collapse
|
32
|
Park J, Jung JH, Park K, Destgeer G, Ahmed H, Ahmad R, Sung HJ. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip. LAB ON A CHIP 2018; 18:422-432. [PMID: 29220055 DOI: 10.1039/c7lc01083d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
On-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable. Here, we present a parallel-type acoustofluidic device with a disposable microfluidic chip to address the limitations of previous acoustic droplet splitting devices. In the proposed device, an acoustic field is applied in the direction opposite to the flow direction to achieve multichannel droplet splitting and steering. A disposable polydimethylsiloxane microfluidic chip is employed in the developed device, thereby removing the need for permanent bonding and improving the flexibility of the droplet microfluidic device. We experimentally demonstrated on-demand acoustic droplet bi-splitting and steering with precise control over the droplet splitting ratio, and we investigated the underlying physical mechanisms of droplet splitting and steering based on Laplace pressure and ray acoustics analyses, respectively. We also demonstrated droplet tri-splitting to prove the feasibility of multichannel droplet splitting. The proposed on-demand acoustic droplet splitting device enables on-chip droplet volume control in various droplet-based microfluidic applications.
Collapse
Affiliation(s)
- Jinsoo Park
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | | | | | | | | | | | | |
Collapse
|
33
|
Chan JY, Ahmad Kayani AB, Md Ali MA, Kok CK, Yeop Majlis B, Hoe SLL, Marzuki M, Khoo ASB, Ostrikov K(K, Ataur Rahman M, Sriram S. Dielectrophoresis-based microfluidic platforms for cancer diagnostics. BIOMICROFLUIDICS 2018; 12:011503. [PMID: 29531634 PMCID: PMC5825230 DOI: 10.1063/1.5010158] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/27/2017] [Indexed: 05/15/2023]
Abstract
The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms. This review focuses on a comprehensive analysis of the recent developments of DEP enabled microfluidic platforms sorted according to the target cancer cell. Each study is critically analyzed, and the features of each platform, the performance, added functionality for clinical use, and the types of samples, used are discussed. We address the novelty of the techniques, strategies, and design configuration used in improving on existing technologies or previous studies. A summary of comparing the developmental extent of each study is made, and we conclude with a treatment of future trends and a brief summary.
Collapse
Affiliation(s)
- Jun Yuan Chan
- Center for Advanced Materials and Green Technology, Multimedia University, 75450 Melaka, Malaysia
| | | | - Mohd Anuar Md Ali
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia
| | - Chee Kuang Kok
- Center for Advanced Materials and Green Technology, Multimedia University, 75450 Melaka, Malaysia
| | - Burhanuddin Yeop Majlis
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia
| | - Susan Ling Ling Hoe
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | - Marini Marzuki
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | | | | | - Md. Ataur Rahman
- Functional Materials and Microsystems Research Group, Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group, Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
34
|
Ahmed H, Destgeer G, Park J, Jung JH, Ahmad R, Park K, Sung HJ. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles. Anal Chem 2017; 89:13575-13581. [DOI: 10.1021/acs.analchem.7b04014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Husnain Ahmed
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Ghulam Destgeer
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Jinsoo Park
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Jin Ho Jung
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Raheel Ahmad
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Kwangseok Park
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Hyung Jin Sung
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
35
|
Go DB, Atashbar MZ, Ramshani Z, Chang HC. Surface acoustic wave devices for chemical sensing and microfluidics: A review and perspective. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:4112-4134. [PMID: 29151901 PMCID: PMC5685524 DOI: 10.1039/c7ay00690j] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Surface acoustic waves (SAWs), are electro-mechanical waves that form on the surface of piezoelectric crystals. Because they are easy to construct and operate, SAW devices have proven to be versatile and powerful platforms for either direct chemical sensing or for upstream microfluidic processing and sample preparation. This review summarizes recent advances in the development of SAW devices for chemical sensing and analysis. The use of SAW techniques for chemical detection in both gaseous and liquid media is discussed, as well as recent fabrication advances that are pointing the way for the next generation of SAW sensors. Similarly, applications and progress in using SAW devices as microfluidic platforms are covered, ranging from atomization and mixing to new approaches to lysing and cell adhesion studies. Finally, potential new directions and perspectives on the field as it moves forward are offered, with a specific focus on potential strategies for making SAW technologies for bioanalytical applications.
Collapse
Affiliation(s)
- David B. Go
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Masood Z. Atashbar
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Zeinab Ramshani
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
36
|
Collins DJ, Khoo BL, Ma Z, Winkler A, Weser R, Schmidt H, Han J, Ai Y. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming. LAB ON A CHIP 2017; 17:1769-1777. [PMID: 28394386 DOI: 10.1039/c7lc00215g] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.
Collapse
Affiliation(s)
- David J Collins
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Destgeer G, Jung JH, Park J, Ahmed H, Park K, Ahmad R, Sung HJ. Acoustic impedance-based manipulation of elastic microspheres using travelling surface acoustic waves. RSC Adv 2017. [DOI: 10.1039/c7ra01168g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Size-independent separation of particles is performed using difference in acoustic impedances via travelling surface acoustic waves.
Collapse
Affiliation(s)
| | - Jin Ho Jung
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Jinsoo Park
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Husnain Ahmed
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Kwangseok Park
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Raheel Ahmad
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Hyung Jin Sung
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| |
Collapse
|