1
|
Nemeškalová A, Konvalinková J, Vágnerová M, Kuchař M, Buček J, Vrkoslav V, Sýkora D, Cvačka J, Volny M. Ambient ionization mass spectrometry provides screening of selective androgen receptor modulators. Talanta 2024; 277:126358. [PMID: 38879944 DOI: 10.1016/j.talanta.2024.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Ambient ionization mass spectrometry allows for analysis of samples in their natural state, i.e., with no sample pre-treatment. It can be viewed as a fast, simple, and economical analysis, but its main disadvantages include a lower analytical performance due to the presence of complex sample matrix and the lack of chromatographic separation prior to the introduction of the sample into the mass spectrometer. Here we present an application of two ambient ionization mass spectrometry techniques, i.e., Desorption Atmospheric Pressure Photoionization and Dielectric Barrier Discharge Ionization, for the analysis of known Selective Androgen Receptor Modulators, which represent common compounds of abuse in professional and semiprofessional sport. Eight real samples of illegal food supplements, seized by the local law enforcement, were used to test the performance of the ambient mass spectrometry and the results were validated against a newly developed targeted LC-UV-MS/MS method performed in multiple reaction monitoring mode with an external calibration for each analyte. In order to decide whether or not the compound can be declared as present, we proposed a system of rules for the interpretation of the obtained spectra. The criteria are based on mass spectrum matching (5-10 ppm accuracy from the theoretical exact mass and a correct isotopic pattern), duration of the mass signal (three or five consecutive scans, depending on the instrumentation used), and intensity above the background noise (threefold increase in intensity and absolute intensity above 5E4 or 1E5, depending on the instrumentation). When applying these criteria, good agreement was found between the tested methods. Ambient ionization techniques were effective at detecting SARMs at pharmacologically relevant doses, i.e., approximately above 1 mg per capsule, although they may fail to detect lower levels or isomeric species. It is demonstrated that when adhering to a set of clear and consistent rules, ambient mass spectrometry can be employed as a qualitative technique for the screening of illegal SARMs with sufficient confidence and without the necessity to perform a regular LC-MS analysis.
Collapse
Affiliation(s)
- Alžběta Nemeškalová
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jitka Konvalinková
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Magdaléna Vágnerová
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic; Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jan Buček
- Plasmion GmbH, Am Mittleren Moos 48, 86167, Augsburg, Germany
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 166 00, Prague 6, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 166 00, Prague 6, Czech Republic
| | - Michael Volny
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4, Czech Republic.
| |
Collapse
|
2
|
Wen TL, Bai JH, Bao MM, Qin Y, Su Y, Guo YL. Ultrasonic sample introduction combined with flame assisted thermal ionization: Pretreatment-free direct mass spectrometry analysis for fraction collecting tubes of preparative liquid chromatography. Talanta 2023; 259:124508. [PMID: 37043878 DOI: 10.1016/j.talanta.2023.124508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Ultrasonic sample introduction combined with flame assisted thermal ionization mass spectrometry (USI-FATI-MS) was developed to monitor the fractions of preparative liquid chromatography. Recently, ultrasound-based sample introduction techniques have achieved great advance in the field of high-throughput analysis. However, it is still a challenge to directly apply these existing techniques to the analysis of macro volume samples (mL level). In this work, ultrasonic sample introduction combined with flame assisted thermal ionization was used for pretreatment-free direct mass spectrometry analysis of micro to macro volume samples (μL-mL level). Utilizing this unique design of ultrasonic sample introduction, liquid sample in the container can be quickly atomized to the gas phase without contact. Then, due to the flame assisted thermal ionization source, desolvation and ionization of the sample droplets will occur immediately. USI-FATI-MS has shown excellent sensitivity, repeatability and great compatibility to solvents and compounds with a wide range of polarity. As a proof of concept, USI-FATI-MS has been applied for rapid monitoring and identification of purified synthetic and natural products in fractions.
Collapse
Affiliation(s)
- Tian-Lun Wen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jia-Hui Bai
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ming-Mai Bao
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yong Qin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yin-Long Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Wang Z, Zhang L, Chen Y. HPTLC+SRES screening of pesticide for point-of-care application as shown with thiram in juice. Food Chem X 2023; 18:100670. [PMID: 37101421 PMCID: PMC10123129 DOI: 10.1016/j.fochx.2023.100670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
In this study, a HPTLC-platformed SERS detection was established for screening thiram in juice. After a simple extraction, the sample liquid was separated on HPTLC plates, which resulted in a specific zone for the analyte. Following infiltration with atomize water, the band of interest was easily scraped off and eluted. In parallel, a flexible and SERS-active substrate was fabricated by the in-situ synthesis of gold nanoparticles within cotton fabrics. Under optimized conditions, fingerprint-like signal at 1376 cm-1 of the analyte were easily recorded by a hand-held Raman spectrometer with enough LOD (0.5 mg/L), LOQ (0.9 mg/L) and reproducibility (<11.7%). The optimized screening system was further validated with pear, apple and mango juice by determining the spike-and-recovery rates (75.6 to 112.8%). It was demonstrated that this method could be a facile point-of-care testing system tailored for pesticide screening.
Collapse
Affiliation(s)
- Zhijian Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
- Corresponding author at: College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
4
|
Borisov R, Kanateva A, Zhilyaev D. Recent Advances in Combinations of TLC With MALDI and Other Desorption/Ionization Mass-Spectrometry Techniques. Front Chem 2022; 9:771801. [PMID: 34976947 PMCID: PMC8719418 DOI: 10.3389/fchem.2021.771801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 01/09/2023] Open
Abstract
The combination of planar chromatography with desorption/ionization mass-spectrometry (MS) techniques provides chemists with unique tools for fast and simple separation of mixtures followed by the detection of analytes by the most powerful analytical method. Since its introduction in the early 1990s, thin-layer chromatography (TLC)/matrix-assisted mass spectrometry (MALDI) has been used for the analysis of a wide range of analytes, including natural and synthetic organic compounds. Nowadays, new desorption/ionization approaches have been developed and applied in conjunction with planar chromatography competing with MALDI. This review covers recent developments in the combination of TLC with various desorption/ionization MS methods which were made in recent several years.
Collapse
Affiliation(s)
- Roman Borisov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia.,Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anastasiia Kanateva
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Zhilyaev
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia.,Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
5
|
Cebolla VL, Jarne C, Vela J, Garriga R, Membrado L, Galbán J. Scanning densitometry and mass spectrometry for HPTLC analysis of lipids: The last 10 years. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2020.1866600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Carmen Jarne
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, EINA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Javier Galbán
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
HPTLC-Densitometry Screening and Mass Identification of Fluorescent Whitening Agents Contamination in Cereal Flour. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01935-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Anyakudo F, Adams E, Van Schepdael A. Analysis of amikacin, gentamicin and tobramycin by thin layer chromatography-flame ionization detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Deng J, Yang Y, Luo L, Xiao Y, Luan T. Lipid analysis and lipidomics investigation by ambient mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Kauppila TJ. Desorption Atmospheric Pressure Photoionization Coupled with Ion Mobility-Mass Spectrometry. Methods Mol Biol 2020; 2084:223-233. [PMID: 31729664 DOI: 10.1007/978-1-0716-0030-6_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Desorption atmospheric photoionization (DAPPI) is an ambient mass spectrometry (MS) technique that can be used to analyze both polar and nonpolar compounds. Here, the coupling of DAPPI with traveling wave ion mobility-mass spectrometry (TWIM-MS) and application to analysis of food, multivitamin, and pharmaceutical products is described.
Collapse
Affiliation(s)
- Tiina J Kauppila
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Benham K, Fernández FM, Orlando TM. Sweep Jet Collection Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization for Lipid Analysis Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:647-658. [PMID: 30617859 DOI: 10.1007/s13361-018-2118-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Laser-induced acoustic desorption coupled to microplasma-based atmospheric pressure photoionization (LIAD-APPI) using a nebulized sweep jet to aid in dopant introduction and ion transmission has been applied to the analysis of model, apolar lipid compounds. Specifically, several sterols, sterol esters, and triacylglycerols were detected using dopants such as anisole and toluene. Additionally, several triacylglycerols, sterols, carboxylic acids, and hopanoids were detected from complex mixtures of olive oil and Australian shale rock extract as a first demonstration of the applicability of LIAD-APPI on real-world samples. Detection limits using a sweep jet configuration for α-tocopherol and cholesterol were found to be 609 ± 61 and 292 ± 29 fmol, respectively. For sterol esters and triacylglycerols with a large number of double bonds in the fatty acid chain, LIAD-APPI was shown to yield greater molecular ion or [M+NH4]+ abundances than those with saturated fatty acid chains. Dopants such as anisole and toluene, with ionization potentials (IPs) of 8.2 and 8.8 eV, respectively, were tested. A greater degree of fragmentation with several of the more labile test compounds was observed using toluene. Overall, LIAD-APPI with a nebulized sweep jet requires minimal sample preparation and is a generally useful and sensitive analysis technique for low-polarity mixtures of relevance to biochemical assays and geochemical profiling. Graphical Abstract.
Collapse
Affiliation(s)
- Kevin Benham
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332, USA
| | - Thomas M Orlando
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
11
|
Simple interface for scanning chemical compounds on developed thin layer chromatography plates using electrospray ionization mass spectrometry. Anal Chim Acta 2019; 1049:1-9. [DOI: 10.1016/j.aca.2018.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 11/17/2022]
|
12
|
eicCluster software, an open-source in silico tool, and on-surface syntheses, an in situ concept, both exploited for signal highlighting in high-resolution mass spectrometry to ease structure elucidation in planar chromatography. J Chromatogr A 2018; 1577:101-108. [DOI: 10.1016/j.chroma.2018.09.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 11/20/2022]
|
13
|
Vrkoslav V, Rumlová B, Strmeň T, Nekvasilová P, Šulc M, Cvačka J. Applicability of low-flow atmospheric pressure chemical ionization and photoionization mass spectrometry with a microfabricated nebulizer for neutral lipids. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:639-648. [PMID: 29457286 DOI: 10.1002/rcm.8086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Mass spectrometry with atmospheric pressure chemical ionization (APCI) or photoionization (APPI) is widely used for neutral lipids involved in many fundamental processes in living organisms. Commercial APCI and APPI sources operate at high flow rates compatible with conventional high-performance liquid chromatography (HPLC). However, lipid analysis is often limited by a small amount of sample, which requires low flow rate separations like capillary or micro-HPLC. Therefore, APCI and APPI suitable for microliter-per-minute flow rates need to be developed and applied for neutral lipids. METHODS A micro-APCI/APPI source with a heated chip nebulizer was assembled and mounted on a Thermo ion trap instrument. The ion source operated in APCI, APPI or dual mode was optimized for low microliter-per-minute sample flow rates. The source performance was investigated for squalene, wax esters, fatty acid methyl esters, triacylglycerols, and cholesterol. RESULTS The ion source behaved as a mass-flow-sensitive detector. Direct infusion of methyl oleate showed superior analytical figures of merit when compared with high-flow ion sources. A detection limit of 200 pmol/mL and a linear dynamic range spanning three orders of magnitude were measured for micro-APCI. The mass spectra of most lipids differed from high flow rate spectra. Unlike micro-APCI, micro-APPI spectra were complicated by odd-electron species. Dual APCI/APPI mode did not show any benefits for neutral lipids. Applications for lipid samples were demonstrated. CONCLUSIONS Micro-APCI-MS is a useful detection technique for neutral lipids at microliter-per-minute flow rates. It offers high sensitivity and high quality of spectra in direct infusion mode and promises successful utilization in capillary and micro-HPLC applications.
Collapse
Affiliation(s)
- Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | - Barbora Rumlová
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| | - Timotej Strmeň
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| | - Pavlína Nekvasilová
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| | - Miloslav Šulc
- Czech University of Life Sciences, Faculty of Agrobiology Natural and Food Resources, Department of Chemistry, Kamýcká 129, CZ-165 00, Prague 6, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| |
Collapse
|
14
|
Rejšek J, Vrkoslav V, Pokorný V, Přibyl V, Cvačka J. Ion Source with Laser Triangulation for Ambient Mass Spectrometry of Nonplanar Samples. Anal Chem 2017; 89:11452-11459. [PMID: 28976183 DOI: 10.1021/acs.analchem.7b02568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The analysis of nonplanar samples in ambient mass spectrometry poses a formidable challenge. Here, an ion source equipped with laser triangulation for analyzing nonplanar surfaces was constructed. It was designed as a two-position device, where the sample height was measured using laser triangulation and the target compounds were then analyzed. Thanks to a stage movable in xyz, the ion source maintained an optimal vertical distance between the sample and the sampling capillary for each measured spot during the surface analysis. The xyz-coordinates for the movement of the sample stage were computed using the laser sensor data in such a way as to avoid direct contact of the sampling capillary and the measured surface. The ion source performance and its ability to analyze various morphologies were tested using desorption electrospray ionization with plastic objects coated by 2,5-dimethoxybenzoic acid. The experiments showed excellent performance for nonplanar samples but also revealed some limitations especially on object edges and steep slopes. The applicability of the ion source operated in desorption electrospray ionization and desorption atmospheric pressure photoionization was examined for food and pharmaceutical samples. Chemicals on the surface of nonplanar samples were probed along a line extending across the surface of the measured objects. The device provided high-quality spectra, regardless of the sample height at the measured spot. The automatic adjustments of the sample stage in xyz proved to be beneficial for analyzing nonplanar samples and for simultaneous measurement of samples with various dimensions and shapes.
Collapse
Affiliation(s)
- Jan Rejšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2, Prague 6 CZ-166 10, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University in Prague , Hlavova 2030/8, Prague 2 CZ-128 43, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2, Prague 6 CZ-166 10, Czech Republic
| | - Vít Pokorný
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2, Prague 6 CZ-166 10, Czech Republic
| | - Vladimír Přibyl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2, Prague 6 CZ-166 10, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo nám. 2, Prague 6 CZ-166 10, Czech Republic.,Department of Analytical Chemistry, Faculty of Science, Charles University in Prague , Hlavova 2030/8, Prague 2 CZ-128 43, Czech Republic
| |
Collapse
|