1
|
Douma C, Bowser MT. Assessing Surface Adsorption in Cyclic Olefin Copolymer Microfluidic Devices Using Two-Dimensional Nano Liquid Chromatography-Micro Free Flow Electrophoresis Separations. Anal Chem 2023; 95:18379-18387. [PMID: 38060457 PMCID: PMC10733905 DOI: 10.1021/acs.analchem.3c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 12/20/2023]
Abstract
Surface interactions are a concern in microscale separations, where analyte adsorption can decrease the speed, sensitivity, and resolution otherwise achieved by miniaturization. Here, we functionally characterize the surface adsorption of hot-embossed cyclic olefin copolymer (COC) micro free-flow electrophoresis (μFFE) devices using two-dimensional nLC × μFFE separations, which introduce a 3- to 5 s plug of analyte into the device and measure temporal broadening that arises from surface interactions. COC is an attractive material for microfluidic devices, but little is known about its potential for surface adsorption in applications with continuous fluid flow and temporal measurements. Adsorption was minimal for three small molecule dyes: positively charged rhodamine 123, negatively charged fluorescein, and neutral rhodamine 110. Temporal peak widths for the three dyes ranged from 3 to 7 s and did not change significantly with increasing transit distance. Moderate adsorption was observed for Chromeo P503-labeled myoglobin and cytochrome c with temporal peak widths around 20 s. Overall, the COC surface adsorption was low compared to traditional glass devices, where peak widths are on the order of minutes. Improvements in durability, long-term performance, and ease of fabrication, combined with low overall adsorption, make the COC μFFE devices a practical choice for applications involving time-resolved continuous detection.
Collapse
Affiliation(s)
- Cecilia
C. Douma
- Department of Chemistry, University
of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael T. Bowser
- Department of Chemistry, University
of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Mahmud S, Ramproshad S, Deb R, Dutta D. A review of the zone broadening contributions in free-flow electrophoresis. Electrophoresis 2023; 44:1519-1538. [PMID: 37548630 DOI: 10.1002/elps.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
The broadening of analyte streams, as they migrate through a free-flow electrophoresis (FFE) channel, often limits the resolving power of FFE separations. Under laminar flow conditions, such zonal spreading occurs due to analyte diffusion perpendicular to the direction of streamflow and variations in the lateral distance electrokinetically migrated by the analyte molecules. Although some of the factors that give rise to these contributions are inherent to the FFE method, others originate from non-idealities in the system, such as Joule heating, pressure-driven crossflows, and a difference between the electrical conductivities of the sample stream and background electrolyte. The injection process can further increase the stream width in FFE separations but normally influencing all analyte zones to an equal extent. Recently, several experimental and theoretical works have been reported that thoroughly investigate the various contributions to stream variance in an FFE device for better understanding, and potentially minimizing their magnitudes. In this review article, we carefully examine the findings from these studies and discuss areas in which more work is needed to advance our comprehension of the zone broadening contributions in FFE assays.
Collapse
Affiliation(s)
- Sakur Mahmud
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Sarker Ramproshad
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Rajesh Deb
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
3
|
LeMon MB, Douma CC, Burke GS, Bowser MT. Fabrication of µFFE Devices in COC via Hot Embossing with a 3D-Printed Master Mold. MICROMACHINES 2023; 14:1728. [PMID: 37763891 PMCID: PMC10534651 DOI: 10.3390/mi14091728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The fabrication of high-performance microscale devices in substrates with optimal material properties while keeping costs low and maintaining the flexibility to rapidly prototype new designs remains an ongoing challenge in the microfluidics field. To this end, we have fabricated a micro free-flow electrophoresis (µFFE) device in cyclic olefin copolymer (COC) via hot embossing using a PolyJet 3D-printed master mold. A room-temperature cyclohexane vapor bath was used to clarify the device and facilitate solvent-assisted thermal bonding to fully enclose the channels. Device profiling showed 55 µm deep channels with no detectable feature degradation due to solvent exposure. Baseline separation of fluorescein, rhodamine 110, and rhodamine 123, was achieved at 150 V. Limits of detection for these fluorophores were 2 nM, 1 nM, and 10 nM, respectively, and were comparable to previously reported values for glass and 3D-printed devices. Using PolyJet 3D printing in conjunction with hot embossing, the full design cycle, from initial design to production of fully functional COC µFFE devices, could be completed in as little as 6 days without the need for specialized clean room facilities. Replicate COC µFFE devices could be produced from an existing embossing mold in as little as two hours.
Collapse
Affiliation(s)
| | | | | | - Michael T. Bowser
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Quan X, Yan B. Eu(III) Functionalized Crystalline Polyimide Hydrogel Film as a Multifunctional Platform for Consecutive Sensing of Spermine and Copper Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49072-49081. [PMID: 36281977 DOI: 10.1021/acsami.2c12822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a novel Eu(III) functionalized crystalline polyimide hydrogel film (Eu-1) is fabricated by incorporating highly stable polyimide (PI) into a sodium alginate (SA) matrix, followed by cross-linking reaction with Eu3+ ions. Based on different fluorescence responses, Eu-1 is used for the consecutive detection of spermine (Spm) and copper ions (Cu2+). Eu-1 can be employed as a sensor for polyamine, especially for Spm with significant fluorescence enhancement based on the "turn on" mode. The fluorescent sensor Eu-1@Spm constructed by the Eu-1 and Spm can be further used as a "turn off" sensor to quantitatively monitor Cu2+. The good selectivity combined with the low detection limit of the sensor meets the requirements for monitoring Cu2+. The possible luminescence response mechanisms to Spm and Cu2+ have been studied through experimental data and theoretical calculations. In addition, a back-propagation neural network (BPNN) model based on an Eu-1@Spm sensor is constructed, which can accurately distinguish Cu2+ concentrations by deep machine learning (ML). This work not only puts forward a facile method to prepare a novel Eu-functionalized PI-based hybrid film but also demonstrates the potential of PI-based film materials for fluorescence detection.
Collapse
Affiliation(s)
- Xueping Quan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
5
|
Přibyl M, Izák P, Slouka Z. A mathematical model of a lateral electrochromatography device for continuous chiral separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Microfluidic free-flow electrophoresis: a promising tool for protein purification and analysis in proteomics. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Reciprocating free-flow isoelectric focusing with online array ultraviolet detector for process monitoring of protein separation. J Chromatogr A 2022; 1663:462747. [PMID: 34973480 DOI: 10.1016/j.chroma.2021.462747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 11/22/2022]
Abstract
Free-flow isoelectric focusing (FFIEF) is a useful tool for separating and purifying proteins, DNA, cells, and organelles, etc. However, the online monitoring of each fraction during an FFIEF run has not been achieved yet, resulting in a lack of process monitoring of FFIEF. Herein, an online array ultraviolet (UV) detection system was developed for the easy assay of FFE fractions. The detector was integrated with an apparatus of FFIEF with 32 fractions to show the online monitoring, and bovine serum albumin (BSA) and lysozyme were chosen as the model proteins for manifesting the UV detector performance. The experiments revealed that (i) all the fluidic cells had good linearity from 0.03 to 10 mg/mL BSA and fair limits of detection (LODs) of 0.01 mg/mL; (ii) all the cells had good uniformity of UV absorbance; and (iii) the deviations of intra-day and inter-day of UV detector were respectively 3.8% and 5.8%, indicating the fair stability of the UV detector. The UV detector could be well used for the process monitoring of two model proteins through the whole FFIEF run, and the online absorbance assay of proteins at the end of FFIEF. The UV detector herein had the evident potential for rapid and convenient assay of protein fraction in FFIEF as well as other FFE modes.
Collapse
|
8
|
Sun L, Chen Q, Lu H, Wang J, Zhao J, Li P. Electrodialysis with porous membrane for bioproduct separation: Technology, features, and progress. Food Res Int 2020; 137:109343. [DOI: 10.1016/j.foodres.2020.109343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/26/2022]
|
9
|
Courtney M, Thompson E, Glawdel T, Ren CL. Counterflow Gradient Focusing in Free-Flow Electrophoresis for Protein Fractionation. Anal Chem 2020; 92:7317-7324. [PMID: 32336087 DOI: 10.1021/acs.analchem.0c01024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew Courtney
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Ethan Thompson
- Department of Nanotechnology Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Tomasz Glawdel
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Carolyn L. Ren
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
10
|
Kinde TF, Hess N, Dutta D. Enhancement in MS-based peptide detection by microfluidic free-flow zone electrophoresis. Electrophoresis 2020; 41:545-553. [PMID: 31985060 DOI: 10.1002/elps.201900321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/07/2023]
Abstract
Matrix components are known to significantly alter the ionization of a target analyte in ESI-based measurements particularly when working with complex biological samples. This issue however may be alleviated by extracting the analyte of interest from the original sample into a relatively simple matrix compatible with ESI mass-spectrometric analysis. In this article, we report a microfluidic device that enables such extraction of small peptide molecules into an ESI-compatible solvent stream significantly improving both the sensitivity and reproducibility of the measurements. The reported device realizes this analyte extraction capability based on the free-flow zone electrophoretic fractionation process using a set of internal electrodes placed across the width of the analysis channel. Employing lateral electric fields and separation distances of 75 V/cm and 600 µm, respectively, efficient extraction of the model peptide human angiotensin II was demonstrated allowing a reduction in its detection limit by one to three orders of magnitude using the ESI-MS method. The noted result was obtained in our experiments both for a relatively simple specimen comprising DNA strands and angiotensin II as well as for human serum samples spiked with the same model peptide.
Collapse
Affiliation(s)
- Tristan F Kinde
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| | - Natalie Hess
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| | - Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
11
|
Anciaux SK, Bowser MT. Reduced surface adsorption in 3D printed acrylonitrile butadiene styrene micro free-flow electrophoresis devices. Electrophoresis 2020; 41:225-234. [PMID: 31816114 PMCID: PMC7316087 DOI: 10.1002/elps.201900179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/27/2023]
Abstract
We have 3D printed and fabricated micro free-flow electrophoresis (µFFE) devices in acrylonitrile butadiene styrene (ABS) that exhibit minimal surface adsorption without requiring additional surface coatings or specialized buffer additives. 2D, nano LC-micro free flow electrophoresis (2D nLC × µFFE) separations were used to assess both spatial and temporal broadening as peaks eluted through the separation channel. Minimal broadening due to wall adsorption was observed in either the spatial or temporal dimensions during separations of rhodamine 110, rhodamine 123, and fluorescein. Surface adsorption was observed in separations of Chromeo P503 labeled myoglobin and cytochrome c but was significantly reduced compared to previously reported glass devices. Peak widths of < 30 s were observed for both proteins. For comparison, Chromeo P503 labeled myoglobin and cytochrome c adsorb strongly to the surface of glass µFFE devices resulting in peak widths >20 min. A 2D nLC × µFFE separation of a Chromeo P503 labeled tryptic digest of BSA was performed to demonstrate the high peak capacity possible due to the low surface adsorption in the 3D printed ABS devices, even in the absence of surface coatings or buffer additives.
Collapse
Affiliation(s)
- Sarah K. Anciaux
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN, 55455
| | - Michael T. Bowser
- University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN, 55455
| |
Collapse
|
12
|
Chi Z, Azhar I, Khan H, Yang L, Feng Y. Automatic Dissolution Testing with High-Temporal Resolution for Both Immediate-Release and Fixed-Combination Drug Tablets. Sci Rep 2019; 9:17114. [PMID: 31745201 PMCID: PMC6863837 DOI: 10.1038/s41598-019-53750-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
Dissolution testing plays many important roles throughout the pharmaceutical industry, from the research and development of drug products to the control and evaluation of drug quality. However, it is a challenging task to perform both high-efficient separation and high-temporal detection to achieve accurate dissolution profile of each active ingredient dissolved from a drug tablet. In our study, we report a novel non-manual-operation method for performing the automatic dissolution testing of drug tablets, by combining a program-controlled sequential analysis and high-speed capillary electrophoresis for efficient separation of active ingredients. The feasibility of the method for dissolution testing of real drug tablets as well as the performance of the proposed system has been demonstrated. The accuracy of drug dissolution testing is ensured by the excellent repeatability of the sequential analysis, as well as the similarity of the evaluation of dissolution testing. Our study show that the proposed method is capable to achieve simultaneous dissolution testing of multiple ingredients, and the matrix interferences can be avoided. Therefore it is of potential valuable applications in various fields of pharmaceutical research and drug regulation.
Collapse
Affiliation(s)
- Zhongmei Chi
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, P.R. China
| | - Irfan Azhar
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, P.R. China
| | - Habib Khan
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, P.R. China
| | - Li Yang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, P.R. China.
| | - Yunxiang Feng
- Jingke-Oude Science and Education Instruments Co., Ltd., Changchun, Jilin, 130024, P.R. China
| |
Collapse
|
13
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
14
|
Stastna M. Continuous flow electrophoretic separation - Recent developments and applications to biological sample analysis. Electrophoresis 2019; 41:36-55. [PMID: 31650578 DOI: 10.1002/elps.201900288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/23/2023]
Abstract
Continuous flow electrophoretic separation with continuous sample loading provides the advantage of processing volumes of any sizes, as well as the benefit of a real-time monitoring and optimization of the separation process. In addition, the spatial separation of the sample enables collecting multiple separated components simultaneously and in a continuous manner. The separation is usually performed in mild buffers without organic solvents and detergents (sample biological activity is retained) and it is carried out without usage of a solid support in the separation space preventing the interaction of the sample with it (high sample recovery). The method is used for the separation of proteins/peptides in proteomic applications, and its great applicability is to the separation of the cells, cellular organelles, vesicles, membrane fragments, and DNA. This review focuses on the electrophoretic separation performed in a continuous flow and it describes various electrophoretic modes and instrumental setups. Recent developments in methodology and instrumentation, the integration with other techniques, and the application to the biological sample analysis are discussed as well.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
15
|
Wang S, Zhang L, Sun H, Chu Z, Chen H, Zhao Y, Zhang W. Carrier ampholyte-free free-flow isoelectric focusing for separation of protein. Electrophoresis 2019; 40:2610-2617. [PMID: 30977523 DOI: 10.1002/elps.201900148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/06/2019] [Indexed: 01/20/2023]
Abstract
Free-flow isoelectric focusing (FFIEF) has the merits of mild separation conditions, high recovery and resolution, but suffers from the issues of ampholytes interference and high cost due to expensive carrier ampholytes. In this paper, a home-made carrier ampholyte-free FFIEF system was constructed via orientated migration of H+ and OH- provided by electrode solutions. When applying an electric field, a linear pH gradient from pH 4 to 9 (R2 = 0.994) was automatically formed by the electromigration of protons and hydroxyl ions in the separation chamber. The carrier ampholyte-free FFIEF system not only avoids interference of ampholyte to detection but also guarantees high separation resolution by establishing stable pH gradient. The separation selectivity was conveniently adjusted by controlling operating voltage and optimizing the composition, concentration and flow rate of the carrier buffer. The constructed system was applied to separation of proteins in egg white, followed by MADLI-TOF-MS identification. Three major proteins, ovomucoid, ovalbumin and ovotransferrin, were successfully separated according to their pI values with 15 mmol/L Tris-acetic acid (pH = 6.5) as carrier buffer at a flow rate of 12.9 mL/min.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Haofan Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Zhanying Chu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Haihong Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
16
|
Rudisch BM, Pfeiffer SA, Geissler D, Speckmeier E, Robitzki AA, Zeitler K, Belder D. Nonaqueous Micro Free-Flow Electrophoresis for Continuous Separation of Reaction Mixtures in Organic Media. Anal Chem 2019; 91:6689-6694. [DOI: 10.1021/acs.analchem.9b00714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Benjamin M. Rudisch
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Simon A. Pfeiffer
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - David Geissler
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Elisabeth Speckmeier
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Andrea A. Robitzki
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, Leipzig 04103, Germany
| | - Kirsten Zeitler
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| |
Collapse
|
17
|
Zhou W, Xia L, Xiao X, Li G, Pu Q. A microchip device to enhance free flow electrophoresis using controllable pinched sample injections. Electrophoresis 2019; 40:2165-2171. [DOI: 10.1002/elps.201900079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Wanjun Zhou
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| | - Ling Xia
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| | - Xiaohua Xiao
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| | - Gongke Li
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| | - Qiaosheng Pu
- Department of Chemistry Lanzhou University Lanzhou Gansu P. R. China
| |
Collapse
|
18
|
Beutner A, Herl T, Matysik FM. Selectivity enhancement in capillary electrophoresis by means of two-dimensional separation or dual detection concepts. Anal Chim Acta 2018; 1057:18-35. [PMID: 30832915 DOI: 10.1016/j.aca.2018.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
For the identification and quantification of analytes in complex samples, highly selective analytical strategies are required. The selectivity of single separation techniques such as gas chromatography (GC), liquid chromatography (LC), or capillary electrophoresis (CE) with common detection principles can be enhanced by hyphenating orthogonal separation techniques but also by using complementary detection systems. In this review, two-dimensional systems containing CE in at least one dimension are reviewed, namely LC-CE or 2D CE systems. Particular attention is paid to the aspect of selectivity enhancement due to the orthogonality of the different separation mechanisms. As an alternative concept, dual detection approaches are reviewed using the common detectors of CE such as UV/VIS, laser-induced fluorescence, capacitively coupled contactless conductivity (C4D), electrochemical detection, and mass spectrometry. Special emphasis is given to dual detection systems implementing the highly flexible C4D as one detection component. Selectivity enhancement can be achieved in case of complementarity of the different detection techniques.
Collapse
Affiliation(s)
- Andrea Beutner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Thomas Herl
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
19
|
Leclerc S, Arntz Y, Taniguchi Y. Extending Single Molecule Imaging to Proteome Analysis by Quantitation of Fluorescent Labeling Homogeneity in Complex Protein Samples. Bioconjug Chem 2018; 29:2541-2549. [PMID: 29975043 DOI: 10.1021/acs.bioconjchem.8b00226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence-based electrophoresis has been widely used for proteome analysis in which every protein species in cells is labeled with a fluorescent dye, separated by electric migration, and quantified using fluorescence detection. The ultimate limit of sensitivity for this approach could be reached by single-molecule fluorescence imaging and counting individual proteins, requiring exhaustive fluorescent labeling of proteins across molecular populations and species. However, it remains unclear how homogeneous the fluorescence labeling of individual protein molecules of each species is across the proteome. To address this question, we developed a method to measure the labeling homogeneity based on a single-molecule fluorescence counting assay. Our results reveal that the proportion of proteins labeled with at least one dye, called labeling occupancy (LO), was 35% for fluorescently labeled BSA using existing protocols. We then found that the LO could be improved to 82% under high pH and surfactant-rich conditions. Furthermore, when a proteome sample from a human cell lysate was analyzed, the total LO was 71%, whereby the values varied between 50 and 90% for low and high molecular weight proteome fractions, respectively. The results support the possibility of sensitive detection of proteins using single-molecule counting with fluorescent labeling at the proteome scale.
Collapse
Affiliation(s)
- Simon Leclerc
- Laboratory for Cell Systems Control , RIKEN Center for Biosystems Dynamics Research , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan.,Laboratoire de Biomatériaux et Bioimagerie , INSERM 1121 Université de Strasbourg, Faculté de Médecine , 4 rue Human , F-67000 Strasbourg , France
| | - Youri Arntz
- Laboratoire de Biomatériaux et Bioimagerie , INSERM 1121 Université de Strasbourg, Faculté de Médecine , 4 rue Human , F-67000 Strasbourg , France
| | - Yuichi Taniguchi
- Laboratory for Cell Systems Control , RIKEN Center for Biosystems Dynamics Research , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan.,PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
20
|
Islinger M, Wildgruber R, Völkl A. Preparative free-flow electrophoresis, a versatile technology complementing gradient centrifugation in the isolation of highly purified cell organelles. Electrophoresis 2018; 39:2288-2299. [DOI: 10.1002/elps.201800187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim; University of Heidelberg; Heidelberg Germany
| | | | - Alfred Völkl
- Department of Medical Cell Biology; Institute of Anatomy; University of Heidelberg; Heidelberg Germany
| |
Collapse
|
21
|
Voeten RLC, Ventouri IK, Haselberg R, Somsen GW. Capillary Electrophoresis: Trends and Recent Advances. Anal Chem 2018; 90:1464-1481. [PMID: 29298038 PMCID: PMC5994730 DOI: 10.1021/acs.analchem.8b00015] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robert L C Voeten
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam , de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.,TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Iro K Ventouri
- TI-COAST , Science Park 904, 1098 XH Amsterdam, The Netherlands.,Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam , de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam , de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
Abstract
Micro free-flow electrophoresis (μFFE) is a continuous separation technique in which analytes are streamed through a perpendicularly applied electric field in a planar separation channel. Analyte streams are deflected laterally based on their electrophoretic mobilities as they flow through the separation channel. A number of μFFE separation modes have been demonstrated, including free zone (FZ), micellar electrokinetic chromatography (MEKC), isoelectric focusing (IEF) and isotachophoresis (ITP). Approximately 60 articles have been published since the first μFFE device was fabricated in 1994. We anticipate that recent advances in device design, detection, and fabrication, will allow μFFE to be applied to a much wider range of applications. Applications particularly well suited for μFFE analysis include continuous, real time monitoring and microscale purifications.
Collapse
Affiliation(s)
- Alexander C Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
23
|
Continuous purification of reaction products by micro free-flow electrophoresis enabled by large area deep-UV fluorescence imaging. Anal Bioanal Chem 2017; 410:853-862. [DOI: 10.1007/s00216-017-0697-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
24
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2017; 39:209-234. [PMID: 28836681 DOI: 10.1002/elps.201700295] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
The review brings a comprehensive overview of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) to analysis, microscale isolation, purification, and physicochemical and biochemical characterization of peptides in the years 2015, 2016, and ca. up to the middle of 2017. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, and detection) are described. New developments in particular CE and CEC methods are presented and several types of their applications to peptide analysis are reported: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC methods to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
25
|
Nagl S. Micro free-flow isoelectric focusing with integrated optical pH sensors. Eng Life Sci 2017; 18:114-123. [PMID: 32624893 DOI: 10.1002/elsc.201700035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/07/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023] Open
Abstract
Recently, a new observation method for monitoring of pH gradients in microfluidic free-flow electrophoresis has emerged. It is based on the use of chip-integrated fluorescent or luminescent micro sensor layers. These are able to monitor pH gradients in miniaturized separations in real time and spatially resolved; this is particularly useful in isoelectric focusing. Here these multifunctional microdevices that feature continuous separation, monitoring, and in some instances other functionalities, are reviewed. The employed microfabrication procedures to produce these devices are discussed and the different pH sensor matrices that were integrated and their applications in the separation of different types of biomolecules. The procedures for obtaining spatially resolved information about the separated molecules and the pH at the same time and different detection modalities to achieve this such as deep UV fluorescence as well as time-resolved referenced pH sensing and the integration of a precolumn labeling step into these platforms are also highlighted.
Collapse
Affiliation(s)
- Stefan Nagl
- Department of Chemistry The Hong Kong University of Science and Technology Kowloon Hong Kong SAR P. R. China
| |
Collapse
|