1
|
Zheng C, Song L, Yu C, Zhu L, Zhang J, Wang N, Liu M, Li S, Wang L, Shen Z, Huang X. Palindrome-mediated DNA nanotubes with cell-specific aptamers to improve targeted antitumor effects and reduce toxicity on non-small cell lung cancer. SCIENCE CHINA. LIFE SCIENCES 2025; 68:454-466. [PMID: 39609362 DOI: 10.1007/s11427-023-2556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 11/30/2024]
Abstract
Chemotherapy is regarded as a widely used and effective treatment strategy for lung cancer, although most conventional chemotherapeutics cause severe toxic side-effects due to their indiscriminate attacks on both cancerous and normal cells. Although nucleic acid nanomaterials are emerging as a promising drug delivery strategy, their clinical applications are limited by rapid degradation by nucleases and difficulties in targeting cancer cells. In this study, we have developed a Rhein-loaded aptamer-based DNA nanotube (DNT-S6@Rhein) for the targeted and efficient therapy of non-small cell lung cancer. Through the palindrome segments, two specified oligonucleotides were hybridized and folded into the well-defined nanotubes (DNT-S6), with the S6 aptamer distributed outside. The obtained nanotubes exhibited excellent serum stability and targeting ability towards A549 cells due to the firm structure and decoration of the S6 aptamer. Rhein, as an antitumor drug and DNA intercalator, can be effectively inserted into the DNT-S6. The drug-loaded nanotubes rapidly disassembled in intracellular environment and then the released Rhein was found to activate cellular apoptotic process and significantly suppress proliferation, migration and invasion of A549 cells. Moreover, DNT-S6@Rhein could efficiently accumulate in tumor regions, offering compelling therapeutic efficacy and biocompatibility under both in vitro and in vivo settings. These findings of this study provide a promising strategy for mitigating the inevitable systemic side-effects of chemotherapy and expand the potential application of DNA nanostructure on targeted drug delivery.
Collapse
Affiliation(s)
- Cheng Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou, 325000, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lanlan Song
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou, 325000, China
| | - Chang Yu
- Intervention Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lingye Zhu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou, 325000, China
| | - Jing Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ning Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou, 325000, China
| | - Mengchu Liu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou, 325000, China
| | - Shini Li
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou, 325000, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou, 325000, China.
| | - Zhifa Shen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou, 325000, China.
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Han P, Jiang Y, Ruan Q, Feng J, Wang Q, Yin G, Li Z, Xiao Q, Ding D, Zhang J. Novel technetium-99m-labelled ribociclib isocyanide derivatives for imaging cyclin-dependent kinase 4/6 (CDK4/6) expression in cancer. Eur J Med Chem 2025; 286:117264. [PMID: 39827487 DOI: 10.1016/j.ejmech.2025.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6) plays a crucial role in cell cycle regulation, is overexpressed in various cancers and is an important target in the development of radiotracers for tumour imaging. Despite the increasing recognition of CDK4/6 inhibitors in cancer therapy, their application is limited by the lack of suitable biomarkers. Herein, we developed a series of technetium-99m-labelled CDK4/6 radiotracers and utilized a linker optimization strategy to reduce their abdominal uptake and enhance their imaging properties. By introducing polyethylene glycol chains (PEGn, n = 2, 3, or 4) of different lengths, we successfully prepared the first technetium-99m-labelled ribociclib isocyanide derivatives via a one-step method. After rapid screening, we selected [99mTc]Tc-RIB-PEG4-CN (LogD7.4 = 0.01 ± 0.01) because of its superior uptake in the cell lines and suitable nontarget uptake in vivo. Additionally, it displayed nanomolar affinity (5.887 ± 0.3579 nM). In HCT116 xenograft models, the probe exhibited significant tumour uptake (2.44 ± 0.29 % ID/g at 4 h p.i.) while maintaining reduced abdominal uptake. Moreover, the probe showed specificity in HCT116 xenograft models, as evidenced by a 49.2 % decrease in the tumour-to-muscle ratio in the presence of excess ribociclib for blocking. Micro-SPECT/CT images of HCT116 and MCF-7 xenografts revealed the liver metabolism of [99mTc]Tc-RIB-PEG4-CN, with robust tumour retention and comparatively low abdominal uptake at 4 h p.i. This novel radiotracer enables the noninvasive evaluation of CDK4/6 expression, providing valuable insights for clinical treatment strategies and further mechanistic studies.
Collapse
Affiliation(s)
- Peiwen Han
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China; College of Nuclear Science and Technology, Beijing Normal University, Beijing, 100875, China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China; Department of Isotopes, China Institute of Atomic Energy, P.O. Box 2108, Beijing, 102413, China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zuojie Li
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qingna Xiao
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Dajie Ding
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-Drug Delivery Systems Based on Natural Products. Int J Nanomedicine 2024; 19:541-569. [PMID: 38260243 PMCID: PMC10802180 DOI: 10.2147/ijn.s443692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Natural products have proven to have significant curative effects and are increasingly considered as potential candidates for clinical prevention, diagnosis, and treatment. Compared with synthetic drugs, natural products not only have diverse structures but also exhibit a range of biological activities against different disease states and molecular targets, making them attractive for development in the field of medicine. Despite advancements in the use of natural products for clinical purposes, there remain obstacles that hinder their full potential. These challenges include issues such as limited solubility and stability when administered orally, as well as short durations of effectiveness. To address these concerns, nano-drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. These systems offer notable advantages, such as a large specific surface area, enhanced targeting capabilities, and the ability to achieve sustained and controlled release. Extensive in vitro and in vivo studies have provided further evidence supporting the efficacy and safety of nanoparticle-based systems in delivering natural products in preclinical disease models. This review describes the limitations of natural product applications and the current status of natural products combined with nanotechnology. The latest advances in nano-drug delivery systems for delivery of natural products are considered from three aspects: connecting targeting warheads, self-assembly, and co-delivery. Finally, the challenges faced in the clinical translation of nano-drugs are discussed.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenqing Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wei Liao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Jiansheng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenfei Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| |
Collapse
|
4
|
Dialog beyond the Grave: Necrosis in the Tumor Microenvironment and Its Contribution to Tumor Growth. Int J Mol Sci 2023; 24:ijms24065278. [PMID: 36982351 PMCID: PMC10049335 DOI: 10.3390/ijms24065278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released from the necrotic cells dying after exposure to various stressors. After binding to their receptors, they can stimulate various signaling pathways in target cells. DAMPs are especially abundant in the microenvironment of malignant tumors and are suspected to influence the behavior of malignant and stromal cells in multiple ways often resulting in promotion of cell proliferation, migration, invasion, and metastasis, as well as increased immune evasion. This review will start with a reminder of the main features of cell necrosis, which will be compared to other forms of cell death. Then we will summarize the various methods used to assess tumor necrosis in clinical practice including medical imaging, histopathological examination, and/or biological assays. We will also consider the importance of necrosis as a prognostic factor. Then the focus will be on the DAMPs and their role in the tumor microenvironment (TME). We will address not only their interactions with the malignant cells, frequently leading to cancer progression, but also with the immune cells and their contribution to immunosuppression. Finally, we will emphasize the role of DAMPs released by necrotic cells in the activation of Toll-like receptors (TLRs) and the possible contributions of TLRs to tumor development. This last point is very important for the future of cancer therapeutics since there are attempts to use TLR artificial ligands for cancer therapeutics.
Collapse
|
5
|
Jiang C, Zhang J, Hu S, Gao M, Zhang D, Yao N, Jin Q. Target identification and occupancy measurement of necrosis avid agent rhein using bioorthogonal chemistry-enabling probes. RSC Adv 2022; 12:16491-16495. [PMID: 35754899 PMCID: PMC9169075 DOI: 10.1039/d2ra02844a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/27/2022] [Indexed: 12/03/2022] Open
Abstract
Necrosis is an important biomarker, which only occurs in pathological situations. Tracking of necrosis avid agents is of crucial importance toward understanding their mechanisms. Herein, we developed a modular probe strategy based on bioorthogonal copper-free click chemistry. Structural modification of rhein with transcyclooctene (TCO) led to the identification of rhein-TCO2 as the most active probe with specific necrosis affinity. In a systematic evaluation, the colocalization of rhein-TCO2 in the nucleus (exposed DNA and rRNA) of necrotic cells was observed. This work provides a foundation for the development of target-identified of rhein compounds, and binding to exposed DNA and rRNA may be an important target of rhein compounds in necrotic cells. Structural modification of rhein with transcyclooctene (TCO) led to the identification of rhein-TCO2 as the most active probe with specific necrosis affinity.![]()
Collapse
Affiliation(s)
- Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Shihe Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Nan Yao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 Jiangsu China .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 Jiangsu China
| |
Collapse
|
6
|
China’s radiopharmaceuticals on expressway: 2014–2021. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This review provides an essential overview on the progress of rapidly-developing China’s radiopharmaceuticals in recent years (2014–2021). Our discussion reflects on efforts to develop potential, preclinical, and in-clinical radiopharmaceuticals including the following areas: (1) brain imaging agents, (2) cardiovascular imaging agents, (3) infection and inflammation imaging agents, (4) tumor radiopharmaceuticals, and (5) boron delivery agents (a class of radiopharmaceutical prodrug) for neutron capture therapy. Especially, the progress in basic research, including new radiolabeling methodology, is highlighted from a standpoint of radiopharmaceutical chemistry. Meanwhile, we briefly reflect on the recent major events related to radiopharmaceuticals along with the distribution of major R&D forces (universities, institutions, facilities, and companies), clinical study status, and national regulatory supports. We conclude with a brief commentary on remaining limitations and emerging opportunities for China’s radiopharmaceuticals.
Collapse
|
7
|
Stroet MCM, de Blois E, Haeck J, Seimbille Y, Mezzanotte L, de Jong M, Löwik CWGM, Panth KM. In Vivo Evaluation of Gallium-68-Labeled IRDye800CW as a Necrosis Avid Contrast Agent in Solid Tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:2853522. [PMID: 34987318 PMCID: PMC8687856 DOI: 10.1155/2021/2853522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Necrosis only occurs in pathological situations and is directly related to disease severity and, therefore, is an important biomarker. Tumor necrosis occurs in most solid tumors due to improperly functioning blood vessels that cannot keep up with the rapid growth, especially in aggressively growing tumors. The amount of necrosis per tumor volume is often correlated to rapid tumor proliferation and can be used as a diagnostic tool. Furthermore, efficient therapy against solid tumors will directly or indirectly lead to necrotic tumor cells, and detection of increased tumor necrosis can be an early marker for therapy efficacy. We propose the application of necrosis avid contrast agents to detect therapy-induced tumor necrosis. Herein, we advance gallium-68-labeled IRDye800CW, a near-infrared fluorescent dye that exhibits excellent necrosis avidity, as a potential PET tracer for in vivo imaging of tumor necrosis. We developed a reliable labeling procedure to prepare [68Ga]Ga-DOTA-PEG4-IRDye800CW ([68Ga]Ga-1) with a radiochemical purity of >96% (radio-HPLC). The prominent dead cell binding of fluorescence and radioactivity from [68Ga]Ga-1 was confirmed with dead and alive cultured 4T1-Luc2 cells. [68Ga]Ga-1 was injected in 4T1-Luc2 tumor-bearing mice, and specific fluorescence and PET signal were observed in the spontaneously developing tumor necrosis. The ip injection of D-luciferin enabled simultaneous bioluminescence imaging of the viable tumor regions. Tumor necrosis binding was confirmed ex vivo by colocalization of fluorescence uptake with TUNEL dead cell staining and radioactivity uptake in dichotomized tumors and frozen tumor sections. Our presented study shows that [68Ga]Ga-1 is a promising PET tracer for the detection of tumor necrosis.
Collapse
Affiliation(s)
- Marcus C. M. Stroet
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology & Nuclear Medicine, Rotterdam, Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Rotterdam, Netherlands
| | - Erik de Blois
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology & Nuclear Medicine, Rotterdam, Netherlands
| | - Joost Haeck
- AMIE Core Facility, Erasmus MC, Rotterdam, Netherlands
| | - Yann Seimbille
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology & Nuclear Medicine, Rotterdam, Netherlands
- Life Sciences Division, TRIUMF, Vancouver, Canada
| | - Laura Mezzanotte
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology & Nuclear Medicine, Rotterdam, Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Rotterdam, Netherlands
| | - Marion de Jong
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology & Nuclear Medicine, Rotterdam, Netherlands
| | - Clemens W. G. M. Löwik
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology & Nuclear Medicine, Rotterdam, Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Rotterdam, Netherlands
- CHUV Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Kranthi M. Panth
- Erasmus MC, University Medical Center Rotterdam, Department of Radiology & Nuclear Medicine, Rotterdam, Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Rotterdam, Netherlands
| |
Collapse
|
8
|
Li Y, Wang S, Jiang X, Wang X, Zhou X, Wan L, Zhao H, Zhou Z, Gao L, Huang G, Ni Y, He X. Preparation and validation of cyclodextrin-based excipients for radioiodinated hypericin applied in a targeted cancer radiotherapy. Int J Pharm 2021; 599:120393. [PMID: 33639227 DOI: 10.1016/j.ijpharm.2021.120393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Iodine-131 labeled hypericin (131I-Hyp) has been utilized as a necrosis-avid theragnostic tracer in a dual targeting pan-anticancer strategy called OncoCiDia. Widespread use of previously-tested solvent dimethyl sulfoxide (DMSO) is limited by safety concerns. To tackle this, the present study was designed to explore a clinically feasible excipient for the formulation of the hydrophobic 131I-Hyp for intravenous administration. METHOD Solubility of Hyp in serial solutions of already-approved hydroxypropyl-β-cyclodextrin (HP-β-CD) was evaluated by UVspectrophotometry and 50% HP-β-CD was chosen for further experiments. Two novel HP-β-CD-based formulations of 131I-Hyp were compared with previous DMSO-based formulation, with regards to necrosis-targetability and biodistribution, by magnetic resonance imaging, single-photon emission computed tomography (SPECT), gamma counting, autoradiography, fluorescence microscopy and histopathology. RESULTS Hyp solubility was enhanced with increasing HP-β-CD concentrations. The radiochemical purity of 131I-Hyp was higher than 90% in all formulations. The necrosis-targetability of 131I-Hyp in the novel formulations was confirmed in vivo by SPECT and in vitro by autoradiography, fluorescence microscopy and histopathology. The plasma clearance of radioactivity was faster in the novel formulations. CONCLUSION The novel 131I-Hyp formulations with HP-β-CD could be a suitable pharmaceutical excipient for 131I-Hyp for intravenous administration.
Collapse
Affiliation(s)
- Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Shuncong Wang
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Xiao Jiang
- PET/CT Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China; China Institute of Atomic Energy, Beijing 102413, China
| | - Xiaoxiong Wang
- PET/CT Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China; China Institute of Atomic Energy, Beijing 102413, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Liangrong Wan
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - LingJie Gao
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Xiaoyan He
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
9
|
Simulation study of the pH sensitive directed self-assembly of rheins for sustained drug release hydrogel. Colloids Surf B Biointerfaces 2020; 195:111260. [DOI: 10.1016/j.colsurfb.2020.111260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
|
10
|
Su C, Xu Y. The evolving roles of radiolabeled quinones as small molecular probes in necrotic imaging. Br J Radiol 2020; 93:20200034. [PMID: 32374626 DOI: 10.1259/bjr.20200034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Necrosis plays vital roles in living organisms which is related closely with various diseases. Non-invasively necrotic imaging can be of great values in clinical decision-making, evaluation of individualized treatment responses, and prediction of patient prognosis. This narrative review will demonstrate how the evolution of quinones for necrotic imaging has been promoted by searching for their active centers. In this review, we summarized the recent developments of various quinones with the continuous simplified π-conjugated cores in necrotic imaging and speculated their possible molecular mechanisms might be attributed to their intercalations with exposed DNA in necrotic tissues. We discussed their clinical challenges of necrotic imaging with quinones and their future translation studies deserved to be explored in personalized patient treatment.
Collapse
Affiliation(s)
- Chang Su
- Office of Good Clinical Practice, The Affiliated Sir Run Run Hospital of Nanjing Medical University (the Third Affiliated Hospital of Nanjing Medical University), Nanjing 211166, Jiangsu Province, P.R.China
| | - Yan Xu
- Office of Good Clinical Practice, The Affiliated Sir Run Run Hospital of Nanjing Medical University (the Third Affiliated Hospital of Nanjing Medical University), Nanjing 211166, Jiangsu Province, P.R.China
| |
Collapse
|
11
|
Zhang D, Jin Q, Ni Y, Zhang J. Discovery of necrosis avidity of rhein and its applications in necrosis imaging. J Drug Target 2020; 28:904-912. [PMID: 32314601 DOI: 10.1080/1061186x.2020.1759079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Necrosis-avid agents possess exploitable theragnostic utilities including evaluation of tissue viability, monitoring of therapeutic efficacy as well as diagnosis and treatment of necrosis-related disorders. Rhein (4,5-dihydroxyl-2-carboxylic-9,10-dihydrodiketoanthracene), a naturally occurring monomeric anthraquinone compound extensively found in medicinal herbs, was recently demonstrated to have a newly discovered necrosis-avid trait and to show promising application in necrosis imaging. In this overview, we present the discovering process of rhein as a new necrosis-avid agent as well as its potential imaging applications in visualisation of myocardial necrosis and early evaluation of tumour response to therapy. Moreover, the molecular mechanism exploration of necrosis avidity behind rhein are also presented. The discovery of necrosis avidity with rhein and the development of rhein-based molecular probes may further expand the scope of necrosis-avid compounds and highlight the potential utility of necrosis-avid molecular probes in necrosis imaging.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, KU Leuven, Leuven, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
12
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
13
|
Zhang D, Jiang C, Feng Y, Ni Y, Zhang J. Molecular imaging of myocardial necrosis: an updated mini-review. J Drug Target 2020; 28:565-573. [PMID: 32037899 DOI: 10.1080/1061186x.2020.1725769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acute myocardial infarction (AMI) remains the most severe and common cardiac emergency among various ischaemic heart diseases. Both unregulated (necrosis) and regulated (apoptosis, autophagy and necroptosis et al.) forms of cell death can occur during AMI. Non-invasive imaging of cardiomyocyte death represents an attractive approach to acquire insights into the pathophysiology of AMI, track the temporal and spatial evolution of MI, guide therapeutic decision-making, evaluate response to therapeutic intervention and predict prognosis. Although several forms of cell death have been identified during AMI, to date, only apoptosis- and necrosis-detecting probes compatible with currently available tomographic imaging modalities have been successfully developed for non-invasive visualisation of cardiomyocyte death. Myocardial apoptosis imaging has gained more attention because of its potential controllability while less attention has been paid to myocardial necrosis imaging. In our opinion, although cardiomyocyte necrosis is unsalvageable, imaging necrosis can play an important role in early diagnosis, risk stratification, prognostic prediction and guidance in therapeutic decision-making of AMI. In this mini-review, we summarise the updated advances achieved by us and others and discuss the challenges in the development of molecular imaging probes for visualisation of myocardial necrosis.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Yuanbo Feng
- Theragnostic Laboratory, KU Leuven, Leuven, Belgium
| | - Yicheng Ni
- Theragnostic Laboratory, KU Leuven, Leuven, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
14
|
Wu T, Zhang J, Jin Q, Gao M, Zhang D, Zhang L, Feng Y, Ni Y, Yin Z. Rhein-based necrosis-avid MRI contrast agents for early evaluation of tumor response to microwave ablation therapy. Magn Reson Med 2019; 82:2212-2224. [PMID: 31418484 DOI: 10.1002/mrm.27887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/05/2019] [Accepted: 06/11/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Early evaluation of tumor response to thermal ablation therapy can help identify untreated tumor cells and then perform repeated treatment as soon as possible. The purpose of this work was to explore the potential of rhein-based necrosis-avid contrast agents (NACAs) for early evaluation of tumor response to microwave ablation (MWA). METHODS 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to test the cytotoxicity of rhein-based NACAs against HepG2 cells. Rat models of liver MWA were used for investigating the effectiveness of rhein-based NACAs in imaging the MWA lesion, the optimal time period for post-MWA MRI examination, and the metabolic behaviors of 68 Ga-labeled rhein-based NACAs. Rat models of orthotopic liver W256 tumor MWA were used for investigating the time window of rhein-based NACAs for imaging the MWA lesion, the effectiveness of these NACAs in distinguishing the residual tumor and the MWA lesion, and their feasibility in early evaluating the tumor response to MWA. RESULTS Gadolinium 2,2',2''-(10-(2-((4-(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxamido)butyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (GdL2 ) showed low cytotoxicity and high quality in imaging the MWA region. The optimal time period for post-MWA MRI examination using GdL2 was 2 to 24 h after the treatment. During 2.5 to 3.5 h postinjection, GdL2 can better visualize the MWA lesion in comparison with gadolinium 2-[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl]acetic acid (Gd-DOTA), and the residual tumor would not be enhanced. The tumor response to MWA as evaluated by using GdL2 -enhanced MRI was consistent with histological examination. CONCLUSION GdL2 appears to be a promising NACA for the tumor response assessment after thermal ablation therapies.
Collapse
Affiliation(s)
- Tianze Wu
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China.,Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Qiaomei Jin
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Meng Gao
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Dongjian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Libang Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China.,Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yuanbo Feng
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China.,Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Yicheng Ni
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, People's Republic of China.,Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
15
|
Synthesis and Evaluation of Diindole-Based MRI Contrast Agent for In Vivo Visualization of Necrosis. Mol Imaging Biol 2019; 22:593-601. [PMID: 31332630 DOI: 10.1007/s11307-019-01399-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Noninvasive imaging of cell necrosis can provide an early evaluation of tumor response to treatments. Here, we aimed to design and synthesize a novel diindole-based magnetic resonance imaging (MRI) contrast agent (Gd-bis-DOTA-diindolylmethane, Gd-DIM) for assessment of tumor response to therapy at an early stage. PROCEDURES The oil-water partition coefficient (Log P) and relaxivity of Gd-DIM were determined in vitro. Then, its necrosis avidity was examined in necrotic cells in vitro and in rat models with microwave ablation-induced muscle necrosis (MAMN) and ischemia reperfusion-induced liver necrosis (IRLN) by MRI. Visualization of tumor necrosis induced by combretastatin A-4 disodium phosphate (CA4P) was evaluated in rats bearing W256 orthotopic liver tumor by MRI. Finally, DNA binding assay was performed to explore the possible necrosis-avidity mechanism of Gd-DIM. RESULTS The Log P value and T1 relaxivity of Gd-DIM is - 2.15 ± 0.01 and 6.61 mM-1 s-1, respectively. Gd-DIM showed predominant necrosis avidity in vitro and in vivo. Clear visualization of the tumor necrosis induced by CA4P was achieved at 60 min after administration of Gd-DIM. DNA binding study indicated that the necrosis-avidity mechanism of Gd-DIM may be due to its binding to exposed DNA in necrotic cells. CONCLUSION Gd-DIM may serve as a promising necrosis-avid MRI contrast agent for early assessment of tumor response to therapy.
Collapse
|
16
|
Synthesis and Evaluation of Ga-68-Labeled Rhein for Early Assessment of Treatment-Induced Tumor Necrosis. Mol Imaging Biol 2019; 22:515-525. [DOI: 10.1007/s11307-019-01365-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Zhang D, Gao M, Jin Q, Ni Y, Zhang J. Updated developments on molecular imaging and therapeutic strategies directed against necrosis. Acta Pharm Sin B 2019; 9:455-468. [PMID: 31193829 PMCID: PMC6543088 DOI: 10.1016/j.apsb.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cell death plays important roles in living organisms and is a hallmark of numerous disorders such as cardiovascular diseases, sepsis and acute pancreatitis. Moreover, cell death also plays a pivotal role in the treatment of certain diseases, for example, cancer. Noninvasive visualization of cell death contributes to gained insight into diseases, development of individualized treatment plans, evaluation of treatment responses, and prediction of patient prognosis. On the other hand, cell death can also be targeted for the treatment of diseases. Although there are many ways for a cell to die, only apoptosis and necrosis have been extensively studied in terms of cell death related theranostics. This review mainly focuses on molecular imaging and therapeutic strategies directed against necrosis. Necrosis shares common morphological characteristics including the rupture of cell membrane integrity and release of cellular contents, which provide potential biomarkers for visualization of necrosis and necrosis targeted therapy. In the present review, we summarize the updated joint efforts to develop molecular imaging probes and therapeutic strategies targeting the biomarkers exposed by necrotic cells. Moreover, we also discuss the challenges in developing necrosis imaging probes and propose several biomarkers of necrosis that deserve to be explored in future imaging and therapy research.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yicheng Ni
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
18
|
Jin Q, Jiang C, Gao M, Zhang D, Yao N, Feng Y, Wu T, Zhang J. Target exploration of rhein as a small-molecule necrosis avid agent by post-treatment click modification. NEW J CHEM 2019. [DOI: 10.1039/c8nj06006a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-labeling of compound 3 indicated that binding to exposed DNA may be an important mechanism of targeting of rhein compounds to necrotic cells.
Collapse
Affiliation(s)
- Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| | - Nan Yao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| | - Yuanbo Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| | - Tianze Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210028
- China
- Laboratories of Translational Medicine
| |
Collapse
|
19
|
Ma L, Cai L, Jin Q, Liang J, Zhang D, Liu W, Ni Y, Yin Z, Zhang J, Pan K. Evaluation of necrosis avidity of radioiodinated 5-hydroxytryptophan and its potential applications in myocardial infarction imaging. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Bian L, Gao M, Zhang D, Ji A, Su C, Duan X, Luo Q, Huang D, Feng Y, Ni Y, Yin Z, Jin Q, Zhang J. Synthesis and Biological Evaluation of Rhein-Based MRI Contrast Agents for in Vivo Visualization of Necrosis. Anal Chem 2018; 90:13249-13256. [DOI: 10.1021/acs.analchem.8b01868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Li Bian
- Afliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
| | - Meng Gao
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
| | - Dongjian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
| | - Aiyan Ji
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Chang Su
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Xinghua Duan
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Qi Luo
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Dejian Huang
- Afliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
| | - Yuanbo Feng
- Afliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
| | - Yicheng Ni
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P. R. China
| | - Qiaomei Jin
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
| | - Jian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P. R. China
| |
Collapse
|
21
|
SPECT Imaging of Treatment-Related Tumor Necrosis Using Technetium-99m-Labeled Rhein. Mol Imaging Biol 2018; 21:660-668. [DOI: 10.1007/s11307-018-1285-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Li J, Peng C, Guo Z, Shi C, Zhuang R, Hong X, Wang X, Xu D, Zhang P, Zhang D, Liu T, Su X, Zhang X. Radioiodinated Pentixather for SPECT Imaging of Expression of the Chemokine Receptor CXCR4 in Rat Myocardial-Infarction-Reperfusion Models. Anal Chem 2018; 90:9614-9620. [PMID: 29996650 DOI: 10.1021/acs.analchem.8b02553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The purpose of this study is to develop a specific CXCR4-targeting radioiodinated agent (125I- or 131I-pentixather) for single-photon-emission-computed-tomography (SPECT) imaging of CXCR4 expression in myocardial-infarction-reperfusion (MI/R) rat models. After SPECT-CT imaging with 125I-pentixather at 4, 12, and 36 h and 3 and 7 days after MI/R, the models were validated by ex vivo autoradiography, TTC staining, and immunohistochemistry and in vivo echocardiography and classical 99mTc-MIBI perfusion imaging. The SPECT-CT images showed that the infarcted myocardium (IM) could be visualized with high quality as early as 4 h and reached the maximum at 3 days after MI/R and that CXCR4 upregulation was still visible at 7 days after MI/R. In the biodistribution study, high uptakes in the IM (0.99 ± 0.13, 1.52 ± 0.29, 1.75 ± 0.22, 1.94 ± 0.27, and 0.61 ± 0.14% ID/g at 4, 12, and 36 h and 3 and 7 days after MI/R, respectively) were observed that were much higher than that of normal myocardium. The highest uptake was reached at 3 days after MI/R, which agreed well with the SPECT results. In addition, the radioactivity uptakes of the IM in both the biodistribution and SPECT imaging could be blocked effectively by excess amounts of AMD3465, indicating the high specificity of radioiodinated pentixather to CXCR4. On the basis of its promising properties, 125I-pentixather may serve as a powerful CXCR4-expression diagnostic probe for evaluating lesions and monitoring therapy responses in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jindian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Chenyu Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences , Dali University , Dali 671000 , China
| | - Xiangyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Pu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Deliang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Ting Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Xinhui Su
- Zhongshan Hospital Affiliated to Xiamen University , Xiamen 361004 , China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| |
Collapse
|
23
|
Preclinical Evaluation of Radioiodinated Hoechst 33258 for Early Prediction of Tumor Response to Treatment of Vascular-Disrupting Agents. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5237950. [PMID: 29681781 PMCID: PMC5846351 DOI: 10.1155/2018/5237950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/17/2017] [Accepted: 12/04/2017] [Indexed: 11/17/2022]
Abstract
This study aimed to explore the use of 131I-Hoechst 33258 (131I-H33258) for early prediction of tumor response to vascular-disrupting agents (VDAs) with combretastatin-A4 phosphate (CA4P) as a representative. Necrosis avidity of 131I-H33258 was evaluated in mouse models with muscle necrosis and blocking was used to confirm the tracer specificity. Therapy response was evaluated by 131I-H33258 SPECT/CT imaging 24 h after CA4P therapy in W256 tumor-bearing rats. Radiotracer uptake in tumors was validated ex vivo using γ-counting, autoradiography, and histopathological staining. Results showed that 131I-H33258 had predominant necrosis avidity and could specifically bind to necrotic tissue. SPECT/CT imaging demonstrated that an obvious “hot spot” could be observed in the CA4P-treated tumor. Ex vivo γ-counting revealed 131I-H33258 uptake in tumors was increased 2.8-fold in rats treated with CA4P relative to rats treated with vehicle. Autoradiography and corresponding H&E staining suggested that 131I-H33258 was mainly localized in necrotic tumor area and the higher overall uptake in the treated tumors was attributed to the increased necrosis. These results suggest that 131I-H33258 can be used to image induction of cell necrosis 24 h after CA4P therapy, which support further molecular design of probes based on scaffold H33258 for monitoring of tumor response to VDAs treatment.
Collapse
|
24
|
Liang J, Sun Z, Zhang D, Jin Q, Cai L, Ma L, Liu W, Ni Y, Zhang J, Yin Z. First Evaluation of Radioiodinated Flavonoids as Necrosis-Avid Agents and Application in Early Assessment of Tumor Necrosis. Mol Pharm 2017; 15:207-215. [PMID: 29226682 DOI: 10.1021/acs.molpharmaceut.7b00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiajia Liang
- Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Ziping Sun
- Radiation
Medical Institute, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Dongjian Zhang
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Qiaomei Jin
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Lingqiao Cai
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Lin Ma
- Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Wei Liu
- Department
of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yicheng Ni
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Theragnostic
Laboratory, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Jian Zhang
- Laboratories
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|