1
|
Chatterjee P, Dutta SS, Agarwal M, Dey S, Chakraborty T. UV-A-Induced Photoisomerization and Photodimerization of Curcumin: An Ion Mobility Mass Spectrometry Study. J Phys Chem A 2024; 128:548-562. [PMID: 38206070 DOI: 10.1021/acs.jpca.3c05933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Curcumin, the bioactive compound present in spice plant turmeric, has been shown to exhibit selective phototoxic activities toward mammalian cancer cells, and it is being used extensively as a photosensitizer (PS) in photodynamic therapies (PDT). However, so far, the fate of curcumin toward photochemical transformations is not well understood. Here we report our findings of a number of novel photochemical reaction channels of curcumin in water-methanol mixture, like photoisomerization, photodimerization, and photooxidation (H2-loss). The reaction was performed by irradiating the curcumin solution with ultraviolet (UV) light of wavelength 350 nm, which is abundant in the earth's troposphere. Product identification and structure elucidation are done by employing an integrated method of drift tube ion mobility mass spectrometry (DTIMS) in combination with high-performance liquid chromatography (HPLC) and collision-induced dissociation (CID) of the mass-selected molecular ions. Two photoisomers of curcumin produced as a result of trans-cis configurational changes about C═C double bonds in the excited state have been identified, and it has been shown that they could serve as the precursors for formation of isomeric dimers via [2 + 2] cycloaddition and H2-loss products. Comparisons of the experimentally measured collision cross-section (CCS) values of the reactant and product ions obtained by the DTIMS method with those predicted by the electronic structure theory are found to be very effective for the discrimination of the produced photoisomers. The observed photochemical reaction channels are potentially significant toward uses of curcumin as a photosensitizer in photodynamic therapy.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Megha Agarwal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Supriyo Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Muramatsu S, Ohshimo K, Shi Y, Kida M, Shang R, Yamamoto Y, Misaizu F, Inokuchi Y. Gas-Phase Characterization of Hypervalent Carbon Compounds Bearing 7-6-7-Ring Skeleton: Penta- versus Tetra-Coordinate Isomers. Chemistry 2023; 29:e202203163. [PMID: 36417203 DOI: 10.1002/chem.202203163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/24/2022]
Abstract
In this study, we afford explicit characterizations of the electronic and geometrical structures of recently reported hypervalent penta-coordinate carbon compounds by using gas-phase characterization techniques: photodissociation spectroscopy (PDS) and ion mobility-mass spectrometry (IM-MS). In particular for a compound with moderately electron-donating ligands, bearing p-methylthiophenyl substituents, the coexistence of tetra- and penta-coordinate isomers is confirmed, consistent with solution characterizations. It is in sharp contrast to the exclusive tetra-coordinate form (with normal valence of the central carbon atom) in the single crystal. This suggests that a non-polar environment makes the penta-coordinate structure thermodynamically most stable. This delicate difference between the tetra- and penta-coordinate structures, which depends on the environment, is a close reflection of the lower activation barrier of the SN 2 reaction found in neutral solvent or gas-phase reactions.
Collapse
Affiliation(s)
- Satoru Muramatsu
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Keijiro Ohshimo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yuan Shi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Motoki Kida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| |
Collapse
|
3
|
Chatterjee P, Dutta SS, Chakraborty T. Tautomers and Rotamers of Curcumin: A Combined UV Spectroscopy, High-Performance Liquid Chromatography, Ion Mobility Mass Spectrometry, and Electronic Structure Theory Study. J Phys Chem A 2022; 126:1591-1604. [PMID: 35239351 DOI: 10.1021/acs.jpca.1c08612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The structures of tautomers and rotameric forms of curcumin, the bioactive compound present in spice plant turmeric, have been investigated using ion mobility mass spectrometry (IMMS) in conjunction with high-performance liquid chromatography (HPLC) and UV-visible spectroscopy. Two tautomeric forms of this β-diketone compound, keto-enol and diketo, have been chromatographically separated, and the electronic absorption spectra for these two tautomeric forms in methanol solution have been recorded separately for the first time. The molecular identity of the HPLC-separated solution fractions is established unambiguously by recording the mass and fragmentation spectra simultaneously. The ion mobility spectrum for the deprotonated curcumin anion, [Cur-H]-, corresponding to the diketo tautomer, displays only one peak (P), and the collision cross-section (CCS) value is measured to be 185.9 Å2. However, the ion mobility spectrum corresponding to the HPLC-separated keto-enol tautomer shows three distinctly separated peaks, P, Q, and R, with CCS values of 185.9, 194.8, and 203.4 Å2, respectively, whereby peak R appears to be the most intense one, followed by peaks P and Q. The theoretically calculated CCS values of different isomers of [Cur-H]-, optimized by electronic structure theory methods, display satisfactory correlation with the experimentally observed values, corroborating our assignments. The spectral attributes also indicate the occurrence of structural rearrangements in the electrospray ionization process. With the aid of the electronic structure calculation, low-energy pathways for the occurrence of the structural isomerization to surpass the energy barrier are suggested, which are consistent with the assignments of the peaks observed in the IM spectra.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Marshall DL, Menzel JP, McKinnon BI, Blinco JP, Trevitt AJ, Barner-Kowollik C, Blanksby SJ. Laser Photodissociation Action Spectroscopy for the Wavelength-Dependent Evaluation of Photoligation Reactions. Anal Chem 2021; 93:8091-8098. [PMID: 34019383 DOI: 10.1021/acs.analchem.1c01584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nitrile imine-mediated tetrazole-ene cycloaddition is a widely used class of photoligation. Optimizing the reaction outcome requires detailed knowledge of the tetrazole photoactivation profile, which can only partially be ascertained from absorption spectroscopy, or otherwise involves laborious reaction monitoring in solution. Photodissociation action spectroscopy (PDAS) combines the advantages of optical spectroscopy and mass spectrometry in that only absorption events resulting in a mass change are recorded, thus revealing the desired wavelength dependence of product formation. Moreover, the sensitivity and selectivity afforded by the mass spectrometer enable reliable assessment of the photodissociation profile even on small amounts of crude material, thus accelerating the design and synthesis of next-generation substrates. Using this workflow, we demonstrate that the photodissociation onset for nitrile imine formation is red-shifted by ca. 50 nm with a novel N-ethylcarbazole derivative relative to a phenyl-substituted archetype. Benchmarked against solution-phase tunable laser experiments and supported by quantum chemical calculations, these discoveries demonstrate that PDAS is a powerful tool for rapidly screening the efficacy of new substrates in the quest toward efficient visible light-triggered ligation for biological applications.
Collapse
Affiliation(s)
- David L Marshall
- Central Analytical Research Facility, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Jan P Menzel
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Benjamin I McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - James P Blinco
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
5
|
Chatterjee P, Dutta SS, Chakraborty T. Isomers and Rotamers of DCM in Methanol and in Gas Phase Probed by Ion Mobility Mass Spectrometry in Combination with High Performance Liquid Chromatography. J Phys Chem B 2020; 124:4498-4511. [PMID: 32380830 DOI: 10.1021/acs.jpcb.0c00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An integrated method of ion mobility mass spectrometry and high-performance liquid chromatography (HPLC) has been used to investigate the isomeric distribution of a popular fluorescent dye DCM (4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran) in methanol solution. Chromatographic separation of DCM isomers in methanol has been performed by probing the molecular mass (DCMH+), and two distinctly separated peaks are observed at retention times 3.73 (peak-I) and 3.87 (peak-II) min, where the latter one appears nearly twice as intense as the former. However, peak-I appears much weaker compared to peak-II if the chromatogram is recorded by optical probing at the absorption maximum of this dye (467 nm). The ion mobility (IM) spectra of DCMH+ ions corresponding to each of the LC-separated factions show three common peaks A, B, and C, with collision cross-section (CCS) values of 174, 185, and 197 Å2, respectively, but their relative intensities in the two IM spectra appear in opposite sequences. The three IM peaks have been assigned by considering the theoretically calculated CCS values of 13 possible isomers of DCMH+ ions. The IM spectral features also reveal that isomeric interconversions occur during the ESI process. Electronic structure calculations have been used to optimize the geometries of the four isomers of solvated DCM and the corresponding protomeric structures of DCMH+. The isomerization pathways and associated energy barriers have also been calculated. The gas-phase protomers are found to follow a completely different sequence of stability as compared to the neutral isomers. The analysis reveals that peak-I corresponds to one of the cis isomers, whereas peak-II arises due to cumulative contributions of the other three isomers. The absorption spectrum of DCM in methanol is simulated from the computed spectral profiles of the isomers which indicates a distribution of trans1, trans2, cis1, and cis2 isomers as 33.5, 61.5, 2.0, and 3.0%, respectively. The fragmentation behavior of DCMH+ ions in a collision-induced dissociation experiment has been found to be isomer dependent.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
Urner LH, Schulze M, Maier YB, Hoffmann W, Warnke S, Liko I, Folmert K, Manz C, Robinson CV, Haag R, Pagel K. A new azobenzene-based design strategy for detergents in membrane protein research. Chem Sci 2020; 11:3538-3546. [PMID: 34109026 PMCID: PMC8152689 DOI: 10.1039/d0sc01022g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/02/2022] Open
Abstract
Mass spectrometry enables the in-depth structural elucidation of membrane protein complexes, which is of great interest in structural biology and drug discovery. Recent breakthroughs in this field revealed the need for design rules that allow fine-tuning the properties of detergents in solution and gas phase. Desirable features include protein charge reduction, because it helps to preserve native features of protein complexes during transfer from solution into the vacuum of a mass spectrometer. Addressing this challenge, we here present the first systematic gas-phase study of azobenzene detergents. The utility of gas-phase techniques for monitoring light-driven changes of isomer ratios and molecular properties are investigated in detail. This leads to the first azobenzene detergent that enables the native mass spectrometry analysis of membrane proteins and whose charge-reducing properties can be tuned by irradiation with light. More broadly, the presented work outlines new avenues for the high-throughput characterization of supramolecular systems and opens a new design strategy for detergents in membrane protein research.
Collapse
Affiliation(s)
- Leonhard H Urner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
- Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road OX13QZ Oxford UK
| | - Maiko Schulze
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Yasmine B Maier
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Waldemar Hoffmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Stephan Warnke
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Idlir Liko
- Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road OX13QZ Oxford UK
| | - Kristin Folmert
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Christian Manz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road OX13QZ Oxford UK
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6 14195 Berlin Germany
| |
Collapse
|
7
|
Carrascosa E, Bull JN, Buntine JT, da Silva G, Santos PF, Bieske EJ. Near-infrared reversible photoswitching of an isolated azobenzene-stilbene dye. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Bull JN, West CW, Anstöter CS, da Silva G, Bieske EJ, Verlet JRR. Ultrafast photoisomerisation of an isolated retinoid. Phys Chem Chem Phys 2019; 21:10567-10579. [PMID: 31073587 DOI: 10.1039/c9cp01624d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The photoinduced excited state dynamics of gas-phase trans-retinoate (deprotonated trans-retinoic acid, trans-RA-) are studied using tandem ion mobility spectrometry coupled with laser spectroscopy, and frequency-, angle- and time-resolved photoelectron imaging. Photoexcitation of the bright S3(ππ*) ← S0 transition leads to internal conversion to the S1(ππ*) state on a ≈80 fs timescale followed by recovery of S0 and concomitant isomerisation to give the 13-cis (major) and 9-cis (minor) photoisomers on a ≈180 fs timescale. The sub-200 fs stereoselective photoisomerisation parallels that for the retinal protonated Schiff base chromophore in bacteriorhodopsin. Measurements on trans-RA- in methanol using the solution photoisomerisation action spectroscopy technique show that 13-cis-RA- is also the principal photoisomer, although the 13-cis and 9-cis photoisomers are formed with an inverted branching ratio with photon energy in methanol when compared with the gas phase, presumably due to solvent-induced modification of potential energy surfaces and inhibition of electron detachment processes. Comparison of the gas-phase time-resolved data with transient absorption spectroscopy measurements on retinoic acid in methanol suggest that photoisomerisation is roughly six times slower in solution. This work provides clear evidence that solvation significantly affects the photoisomerisation dynamics of retinoid molecules.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Christopher W West
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
9
|
Galanti A, Santoro J, Mannancherry R, Duez Q, Diez-Cabanes V, Valášek M, De Winter J, Cornil J, Gerbaux P, Mayor M, Samorì P. A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. J Am Chem Soc 2019; 141:9273-9283. [DOI: 10.1021/jacs.9b02544] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Agostino Galanti
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jasmin Santoro
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Rajesh Mannancherry
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
| | - Quentin Duez
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Valentin Diez-Cabanes
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Michal Valášek
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Marcel Mayor
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
- Lehn Institute of Functional Materials (LFM), School of Chemistry, Sun Yat-Sen University (SYSU), Guangzhou 510275, China
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
10
|
Xie X, Xia Y. Analysis of Conjugated Fatty Acid Isomers by the Paternò-Büchi Reaction and Trapped Ion Mobility Mass Spectrometry. Anal Chem 2019; 91:7173-7180. [DOI: 10.1021/acs.analchem.9b00374] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaobo Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
|
12
|
Bull JN, Carrascosa E, Giacomozzi L, Bieske EJ, Stockett MH. Ion mobility action spectroscopy of flavin dianions reveals deprotomer-dependent photochemistry. Phys Chem Chem Phys 2018; 20:19672-19681. [PMID: 30014081 PMCID: PMC6063075 DOI: 10.1039/c8cp03244k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Photo-induced proton transfer, deprotomer-dependent photochemistry, and intramolecular charge transfer in flavin anions are investigated using action spectroscopy.
The intrinsic optical properties and photochemistry of flavin adenine dinucleotide (FAD) dianions are investigated using a combination of tandem ion mobility spectrometry and action spectroscopy. Two principal isomers are observed, the more stable form being deprotonated on the isoalloxazine group and a phosphate (N-3,PO4 deprotomer), and the other on the two phosphates (PO4,PO4 deprotomer). Ion mobility data and electronic action spectra suggest that photo-induced proton transfer occurs from the isoalloxazine group to a phosphate group, converting the PO4,PO4 deprotomer to the N-3,PO4 deprotomer. Comparisons of the isomer selective action spectra of FAD dianions and flavin monoanions with solution spectra and gas-phase photodissociation action spectra suggests that solvation shifts the electronic absorption of the deprotonated isoalloxazine group to higher energy. This is interpreted as evidence for significant charge transfer in the lowest optical transition of deprotonated isoalloxazine. Overall, this work demonstrates that the site of deprotonation of flavin anions strongly affects their electronic absorptions and photochemistry.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eduardo Carrascosa
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Evan J Bieske
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mark H Stockett
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia and Department of Physics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
13
|
Bull JN, Scholz MS, Carrascosa E, da Silva G, Bieske EJ. Double Molecular Photoswitch Driven by Light and Collisions. PHYSICAL REVIEW LETTERS 2018; 120:223002. [PMID: 29906145 DOI: 10.1103/physrevlett.120.223002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Indexed: 06/08/2023]
Abstract
The shapes of many molecules can be transformed by light or heat. Here we investigate collision- and photon-induced interconversions of EE, EZ, and ZZ isomers of the isolated Congo red (CR) dianion, a double molecular switch containing two ─N═N─ azo groups, each of which can have the E or Z configuration. We find that collisional activation of CR dianions drives a one-way ZZ→EZ→EE cascade towards the lowest-energy isomer, whereas the absorption of a single photon over the 270-600 nm range can switch either azo group from E to Z or Z to E, driving the CR dianion to lower- or higher-energy forms. The experimental results, which are interpreted with the aid of calculated statistical isomerization rates, indicate that photoisomerization of CR in the gas phase involves a passage through conical intersection seams linking the excited and ground state potential energy surfaces rather than through isomerization on the ground state potential energy surface following internal conversion.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael S Scholz
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eduardo Carrascosa
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
14
|
Choi CM, MacAleese L, Dugourd P, Choi MC, Chirot F. Photo-induced linkage isomerization in the gas phase probed by tandem ion mobility and laser spectroscopy. Phys Chem Chem Phys 2018; 20:12223-12228. [PMID: 29687123 DOI: 10.1039/c8cp01833b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ruthenium complexes involving sulfoxide ligands can undergo linkage isomerization upon light absorption, accompanied by dramatic changes in their optical properties. These remarkable photochromic properties are sensitive to the nature of the ligand as well as to that of the solvent. We used tandem ion mobility spectrometry coupled to mass spectrometry to gain direct experimental insight into the isomerization pathways connecting the different linkage isomers of an isolated ruthenium complex with two dimethyl-sulfoxide ligands. We find that the isomerization behavior of the solvent-free complex differs from that previously reported in the solution-phase, which is in line with recent theoretical predictions.
Collapse
Affiliation(s)
- Chang Min Choi
- Mass Spectrometry and Advanced Instrumentation Research Group, Div. of Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Republic of Korea
| | | | | | | | | |
Collapse
|
15
|
Yu H, Wang J, Guo X, Zhang R, He C, Duan C. Diversity of metal-organic macrocycles assembled from carbazole based ligands with different lengths. Dalton Trans 2018; 47:4040-4044. [PMID: 29473087 DOI: 10.1039/c8dt00252e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of carbazole based ligands with different lengths were assembled with nickel ions to construct metal-organic macrocycles. High-resolution mass spectrometry and ion mobility-mass spectrometry have been used to analyse the resulting MnLn assembly coexisting in solution. Combining with the structural analysis of their solid confirmation, it was revealed that the diversity of the metal-organic macrocycles was increased with the flexibility of the ligands.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Xiangyang Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| |
Collapse
|
16
|
Bull JN, Carrascosa E, Mallo N, Scholz MS, da Silva G, Beves JE, Bieske EJ. Photoswitching an Isolated Donor-Acceptor Stenhouse Adduct. J Phys Chem Lett 2018; 9:665-671. [PMID: 29356541 DOI: 10.1021/acs.jpclett.7b03402] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are a new class of photoswitching molecules with excellent fatigue resistance and synthetic tunability. Here, tandem ion mobility mass spectrometry coupled with laser excitation is used to characterize the photocyclization reaction of isolated, charge-tagged DASA molecules over the 450-580 nm range. The experimental maximum response at 530 nm agrees with multireference perturbation theory calculations for the S1 ← S0 transition maximum at 533 nm. Photocyclization in the gas phase involves absorption of at least two photons; the first photon induces Z-E isomerization from the linear isomer to metastable intermediate isomers, while the second photon drives another E-Z isomerization and 4π-electrocyclization reaction. Cyclization is thermally reversible in the gas phase with collisional excitation.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Eduardo Carrascosa
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Neil Mallo
- School of Chemistry, UNSW Sydney , High Street, Kensington, New South Wales 2052, Australia
| | - Michael S Scholz
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jonathon E Beves
- School of Chemistry, UNSW Sydney , High Street, Kensington, New South Wales 2052, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Bull JN, Scholz MS, Carrascosa E, Bieske EJ. FromEtoZand back again: reversible photoisomerisation of an isolated charge-tagged azobenzene. Phys Chem Chem Phys 2018; 20:509-513. [DOI: 10.1039/c7cp07278c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Substituted azobenzenes serve as chromophores and actuators in a wide range of molecular photoswitches.
Collapse
Affiliation(s)
- James N. Bull
- School of Chemistry
- University of Melbourne
- Parkville
- Australia
| | | | | | - Evan J. Bieske
- School of Chemistry
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
18
|
Ivanova B, Spiteller M. Quantitative collision induced mass spectrometry of substituted piperazines – A correlative analysis between theory and experiment. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Scholz MS, Bull JN, Coughlan NJA, Carrascosa E, Adamson BD, Bieske EJ. Photoisomerization of Protonated Azobenzenes in the Gas Phase. J Phys Chem A 2017; 121:6413-6419. [DOI: 10.1021/acs.jpca.7b05902] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - James N. Bull
- School
of Chemistry, University of Melbourne, Melbourne, Australia
| | - Neville J. A. Coughlan
- School
of Chemistry, University of Melbourne, Melbourne, Australia
- Department
of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | - Brian D. Adamson
- School
of Chemistry, University of Melbourne, Melbourne, Australia
- Sandia National Laboratories, Livermore, California 94551, United States
| | - Evan J. Bieske
- School
of Chemistry, University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Bull JN, Coughlan NJA, Bieske EJ. Protomer-Specific Photochemistry Investigated Using Ion Mobility Mass Spectrometry. J Phys Chem A 2017; 121:6021-6027. [DOI: 10.1021/acs.jpca.7b05800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- James N. Bull
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Evan J. Bieske
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
21
|
Bull JN, Carrascosa E, Scholz MS, Coughlan NJA, Bieske EJ. Online measurement of photoisomerisation efficiency in solution using ion mobility mass spectrometry. Analyst 2017; 142:2100-2103. [DOI: 10.1039/c7an00398f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new method for probing the photoisomerisation of molecules in solution using ion mobility mass spectrometry is described and demonstrated with a azoheteroarene photoswitch.
Collapse
Affiliation(s)
- James N. Bull
- School of Chemistry
- University of Melbourne
- Melbourne
- Australia
| | | | | | | | - Evan J. Bieske
- School of Chemistry
- University of Melbourne
- Melbourne
- Australia
| |
Collapse
|
22
|
Bull JN, Scholz MS, Coughlan NJA, Bieske EJ. Isomerisation of an intramolecular hydrogen-bonded photoswitch: protonated azobis(2-imidazole). Phys Chem Chem Phys 2017; 19:12776-12783. [DOI: 10.1039/c7cp01733b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reversible E–Z photoswitching of a protonated azoheteroarene is demonstrated using ion mobility mass spectrometry.
Collapse
Affiliation(s)
- James N. Bull
- School of Chemistry
- University of Melbourne
- Parkville
- Australia
| | | | | | - Evan J. Bieske
- School of Chemistry
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|