1
|
Kimura Y, Kashima D, Kawahara M. A growth-based platform for detecting domain-peptide interactions in the cytoplasm of mammalian cells. Sci Rep 2022; 12:18028. [PMID: 36302843 PMCID: PMC9607845 DOI: 10.1038/s41598-022-22770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/19/2022] [Indexed: 01/20/2023] Open
Abstract
Development of a method for detecting protein-protein interactions (PPIs) in living cells is important for therapeutic drug screening against various diseases including infectious diseases. We have recently developed a method named SOS localization-based interaction screening (SOLIS), in which we designed membrane-anchored and SOS-fused chimeric proteins, whose PPI-dependent association triggers membrane localization of the SOS-fused chimeric protein, activates the Ras/MAPK pathway, and induces cell growth. While SOLIS was able to detect relatively strong PPIs, further sensitivity was required for detecting intracellular endogenous PPIs typically having a micromolar order of dissociation constant (Kd). Here we develop high-sensitive SOLIS (H-SOLIS) that could universally detect PPIs with lower affinities. In order to improve the sensitivity, H-SOLIS introduces a heterodimeric helper interaction, in which addition of a small-molecule helper ligand could accommodate association of the two chimeric proteins and regulate the sensitivity. Four types of domain-peptide interactions having known Kd values are employed to examine the versatility and detection limit of H-SOLIS. Consequently, the heterodimer-inducible helper ligand dramatically enhances detection sensitivity, lowering the detection limit to a ten-micromolar order of Kd. Thus, H-SOLIS could be a platform to detect disease-related domain-peptide interactions for drug discovery screening.
Collapse
Affiliation(s)
- Yosuke Kimura
- grid.26999.3d0000 0001 2151 536XDepartment of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656 Japan
| | - Daiki Kashima
- grid.26999.3d0000 0001 2151 536XDepartment of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656 Japan
| | - Masahiro Kawahara
- grid.26999.3d0000 0001 2151 536XDepartment of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656 Japan ,Laboratory of Cell Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-Shi, Osaka, 567-0085 Japan
| |
Collapse
|
2
|
Nakajima K, Nakabayashi H, Kawahara M. Cell fate‐inducing CARs orthogonally control multiple signaling pathways. Biotechnol J 2022; 17:e2100463. [DOI: 10.1002/biot.202100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kyoko Nakajima
- Laboratory of Cell Vaccine Center for Vaccine and Adjuvant Research (CVAR) National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) 7‐6‐8 Saito‐Asagi Ibaraki‐shi Osaka 567‐0085 Japan
| | - Hideto Nakabayashi
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113–8656 Japan
| | - Masahiro Kawahara
- Laboratory of Cell Vaccine Center for Vaccine and Adjuvant Research (CVAR) National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) 7‐6‐8 Saito‐Asagi Ibaraki‐shi Osaka 567‐0085 Japan
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113–8656 Japan
| |
Collapse
|
3
|
Horikawa M, Kakiuchi Y, Kashima D, Ogawa K, Kawahara M. Thrombopoietin receptor-based protein-protein interaction screening (THROPPIS). Biotechnol Bioeng 2021; 119:287-298. [PMID: 34708875 DOI: 10.1002/bit.27975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022]
Abstract
As protein-protein interactions (PPIs) are involved in many cellular events, development of mammalian cytosolic PPI detection systems is important for drug discovery as well as understanding biological phenomena. We have previously reported a c-kit-based PPI screening (KIPPIS) system, in which proteins of interest were fused with a receptor tyrosine kinase c-kit, leading to intracellular PPI-dependent cell growth. However, it has not been investigated whether PPI can be detected using other receptors. In this study, we employed a thrombopoietin receptor, which belongs to the Type I cytokine receptor family, to develop a thrombopoietin receptor-based PPI screening (THROPPIS) system. To improve the sensitivity of THROPPIS, we examined two strategies of (i) localization of the chimeric receptors on the cell membrane, and (ii) addition of a helper module to the chimeric receptors. Intriguingly, the nonlocalized chimeric receptor showed the best performance of THROPPIS. Furthermore, the addition of the helper module dramatically improved the detection sensitivity. In total, 5 peptide-domain interactions were detected successfully, demonstrating the versatility of THROPPIS. In addition, a peptide-domain interaction was detected even when insulin receptor or epidermal growth factor receptor was used as a signaling domain, demonstrating that this PPI detection system can be extended to other receptors.
Collapse
Affiliation(s)
- Makiko Horikawa
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yosuke Kakiuchi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daiki Kashima
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenichiro Ogawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masahiro Kawahara
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Laboratory of Cell Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| |
Collapse
|
4
|
Evolution of KIPPIS as a versatile platform for evaluating intracellularly functional peptide aptamers. Sci Rep 2021; 11:11758. [PMID: 34083659 PMCID: PMC8175380 DOI: 10.1038/s41598-021-91287-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Chimeric proteins have been widely used to evaluate intracellular protein–protein interactions (PPIs) in living cells with various readouts. By combining an interleukin-3-dependent murine cells and chimeric proteins containing a receptor tyrosine kinase c-kit, we previously established a c-kit-based PPI screening (KIPPIS) system to evaluate and select protein binders. In the KIPPIS components, proteins of interest are connected with a chemically inducible helper module and the intracellular domain of the growth-signaling receptor c-kit, which detects PPIs based on cell proliferation as a readout. In this system, proteins of interest can be incorporated into chimeric proteins without any scaffold proteins, which would be advantageous for evaluating interaction between small peptides/domains. To prove this superiority, we apply KIPPIS to 6 peptide aptamer–polypeptide pairs, which are derived from endogenous, synthetic, and viral proteins. Consequently, all of the 6 peptide aptamer–polypeptide interactions are successfully detected by cell proliferation. The detection sensitivity can be modulated in a helper ligand-dependent manner. The assay results of KIPPIS correlate with the activation levels of Src, which is located downstream of c-kit-mediated signal transduction. Control experiments reveal that KIPPIS clearly discriminates interacting aptamers from non-interacting ones. Thus, KIPPIS proves to be a versatile platform for evaluating the binding properties of peptide aptamers.
Collapse
|
5
|
Kashima D, Kageoka M, Kimura Y, Horikawa M, Miura M, Nakakido M, Tsumoto K, Nagamune T, Kawahara M. A Novel Cell-Based Intracellular Protein-Protein Interaction Detection Platform (SOLIS) for Multimodality Screening. ACS Synth Biol 2021; 10:990-999. [PMID: 33909409 DOI: 10.1021/acssynbio.0c00483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intervention in protein-protein interactions (PPIs) has tremendous effects in the molecular therapy of many diseases. To fulfill the requirements for targeting intracellular proteins, here we develop SOS-localization-based interaction screening (SOLIS), which elaborately mimics signaling via the Ras-mitogen-activated protein kinase pathway. SOLIS employs two chimeric proteins in which a membrane localization motif (CaaX) is fused at the C-terminus of a protein of interest and the catalytic domain of SOS is fused at the C-terminus of another protein of interest. Interaction between the two proteins of interest induces membrane localization of the SOS chimera and cell proliferation. Thus, the SOLIS system enables enrichment of superior binders based on cell proliferation in an intracellular PPI-dependent manner. This was verified by three major modalities against intracellular PPIs (small molecules, peptide aptamers, and intrabodies). The system worked over a broad range of affinities (KD = 0.32-140 nM). In a screening of a site-directed randomized library, novel intrabody clones were selected on the basis of the potency of cell proliferation. Three other PPI detection methods (NanoBiT, SPR, and pull-down assays) were employed to characterize the SOLIS system, and several intrabody clones were judged as false negatives in these assays. SOLIS signals would be less sensitive to the orientation/conformation of the chimeric proteins, and this feature emerges as the advantage of SOLIS as a mammalian cytosolic PPI detection system with few false negatives.
Collapse
Affiliation(s)
- Daiki Kashima
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Miho Kageoka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yosuke Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makiko Horikawa
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masashi Miura
- Laboratory of Cell Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-shi, Osaka 567-0085, Japan
| | - Makoto Nakakido
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Laboratory of Cell Vaccine, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-shi, Osaka 567-0085, Japan
| |
Collapse
|
6
|
Lin T, Scott BL, Hoppe AD, Chakravarty S. FRETting about the affinity of bimolecular protein-protein interactions. Protein Sci 2019; 27:1850-1856. [PMID: 30052312 DOI: 10.1002/pro.3482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 01/19/2023]
Abstract
Fluorescence resonance energy transfer (FRET) is a powerful tool to study macromolecular interactions such as protein-protein interactions (PPIs). Fluorescent protein (FP) fusions enable FRET-based PPI analysis of signaling pathways and molecular structure in living cells. Despite FRET's importance in PPI studies, FRET has seen limited use in quantifying the affinities of PPIs in living cells. Here, we have explored the relationship between FRET efficiency and PPI affinity over a wide range when expressed from a single plasmid system in Escherichia coli. Using live-cell microscopy and a set of 20 pairs of small interacting proteins, belonging to different structural folds and interaction affinities, we demonstrate that FRET efficiency can reliably measure the dissociation constant (KD ) over a range of mM to nM. A 10-fold increase in the interaction affinity results in 0.05 unit increase in FRET efficiency, providing sufficient resolution to quantify large affinity differences (> 10-fold) using live-cell FRET. This approach provides a rapid and simple strategy for assessment of PPI affinities over a wide range and will have utility for high-throughput analysis of protein interactions.
Collapse
Affiliation(s)
- Tao Lin
- Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, 57007
| | - Brandon L Scott
- Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, 57007
| | - Adam D Hoppe
- Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, 57007.,BioSNTR, Brookings, South Dakota, 57007
| | - Suvobrata Chakravarty
- Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, 57007.,BioSNTR, Brookings, South Dakota, 57007
| |
Collapse
|