1
|
Li C, Chen H, Fan T, Zhao J, Ding Z, Lin Z, Sun S, Tan C, Liu F, Jiang H, Tan Y. A visualized automatic particle counting strategy for single‐cell level telomerase activity quantification. VIEW 2023. [DOI: 10.1002/viw.20220078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Chen Li
- State Key Laboratory of Chemical Oncogenomics Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Jingru Zhao
- State Key Laboratory of Chemical Oncogenomics Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Zheng Ding
- Department of Urology Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
- Shenzhen Engineering and Technology Center of Minimally Invasive Urology Shenzhen People's Hospital Shenzhen China
| | - Zeyu Lin
- Department of Urology Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
- Shenzhen Engineering and Technology Center of Minimally Invasive Urology Shenzhen People's Hospital Shenzhen China
| | - Shuqing Sun
- State Key Laboratory of Chemical Oncogenomics Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Hongtao Jiang
- Department of Urology Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen China
- Shenzhen Engineering and Technology Center of Minimally Invasive Urology Shenzhen People's Hospital Shenzhen China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics Shenzhen International Graduate School Tsinghua University Shenzhen China
| |
Collapse
|
2
|
Yang L, Guo H, Hou T, Li F. Uncovering the Interaction between Intracellular Telomerase Activity and Hydrogen Peroxide during Cancer Cell Apoptosis Utilizing a Dual-Color Fluorescent Nanoprobe. Anal Chem 2022; 94:15162-15169. [PMID: 36256448 DOI: 10.1021/acs.analchem.2c03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uncovering the intrinsic interaction of different bioactive species, i.e., reactive oxygen species (ROS) and telomerase, is of great importance because they play interrelated and interdependent biological roles in living organisms. Nevertheless, exploration of the intracellular ROS/telomerase cross-talk by effective and noninvasive methods remains a great challenge, as it is difficult to simultaneously detect different types of biomolecules (i.e., active small molecules and proteins) in living cells. To address this issue, herein, we report, for the first time, a novel fluorescent nanoprobe for simultaneous determination and in situ imaging of telomerase activity and hydrogen peroxide (H2O2) in living cells. With the advantage of high sensitivity and good specificity, this newly fabricated nanoprobe was successfully applied to precisely visualize and monitor the changes in telomerase activity and H2O2 concentration in cancer cells. More significantly, by employing the nanoprobe as a one-step incubation tool, it is found that there is a cross-talk between H2O2 and telomerase activity in the drug-induced cancer cells' apoptosis process, which provides valuable information for gaining fundamental insights into the relationship between ROS and telomerase activity in cancer treatments. This work affords a promising method for revealing the relevant regulatory mechanisms and roles of ROS and telomerase activity in the occurrence, evolvement, and treatment of diseases.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Heng Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
3
|
Liu W, Fan Z, Li L, Li M. DNA-Based Nanoprobes for Simultaneous Detection of Telomerase and Correlated Biomolecules. Chembiochem 2022; 23:e202200307. [PMID: 35927933 DOI: 10.1002/cbic.202200307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Telomerase (TE), a ribonucleoprotein reverse transcriptase, is enzymatically activated in most tumor cells and is responsible for promoting tumor progression and malignancy by enabling replicative immortality of cancer cells. TE has become an important hallmark for cancer diagnosis and a potential therapy target. Therefore, accurate and in site detection of TE activity, especially the simultaneous imaging of TE activity and its correlated biomolecules, is highly essential to medical diagnostics and therapeutics. DNA-based nanoprobes, with their effective cell penetration capability and programmability, are the most advantageous for detection of intracellular TE activity. This concept article introduces the recent strategies for in situ sensing and imaging of TE activity, with a focus on simultaneous detection of TE and related biomolecules, and provides challenges and perspectives for the development of new strategies for such correlated imaging.
Collapse
Affiliation(s)
- Wenjing Liu
- Capital Medical University, Beijing Chest Hospital, CHINA
| | - Zetan Fan
- National Center for Nanoscience and Technology, cas key lab, CHINA
| | - Lele Li
- National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, 11 ZhongGuanCun BeiYiTiao, Haidian District, 100190, Beijing, CHINA
| | - Mengyuan Li
- University of Science and Technology Beijing, Chemistry, CHINA
| |
Collapse
|
4
|
Liu R, Hu JJ, Wu X, Hu Q, Jiang W, Zhao Z, Xia F, Lou X. Precisely Detecting the Telomerase Activities by an AIEgen Probe with Dual Signal Outputs after Cell-Cycle Synchronization. Anal Chem 2022; 94:4874-4880. [PMID: 35276037 DOI: 10.1021/acs.analchem.2c00583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
By maintaining the telomere lengths, telomerase can make the tumor cells avoid the apoptosis, thus, achieving the cell immortalization. In the past, a series of telomerase detection systems have been developed through utilizing the unique characteristic of telomerase extended primer. However, fluctuation of telomerase activity, along with the cell cycle progression, leads to ambiguous detection results. Here, we reported a dual signal output detection strategy based on cell-cycle synchronization for precisely detecting telomerase activities by using a new AIEgen probe SSNB. Experimental and simulating calculation results demonstrated that positively charged SSNB could interact with DNA through the electrostatic interaction and π-π interaction, as well as the hydrogen bonds. The aggregation of SSNB caused by the extended template strand primer (TP) could be observed in tumor cells, thus, indicating the telomerase activity in various cell lines. Furthermore, after cell cycle synchronization, it was found that the telomerase activity in the S phase was the highest, no matter from the fluorescence intensity or the ROS generation situation. Dual signal outputs of SSNB verified the significance and necessity of cell-cycle synchronization detection for telomerase activity. This strategy could open a new window for the biotargets of which activity is variational in time dimension.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xia Wu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Qinyu Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Wenlian Jiang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
5
|
Zhang R, Zhang R, Zhao C, Xu X. A DNA tetrahedron docking assembly for imaging telomerase activity in cancerous cells. Anal Chim Acta 2022; 1193:339395. [DOI: 10.1016/j.aca.2021.339395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/01/2022]
|
6
|
Chakravarty S, Roy Chowdhury S, Mukherjee S. AIE materials for cancer cell detection, bioimaging and theranostics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:19-44. [PMID: 34782105 DOI: 10.1016/bs.pmbts.2021.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
AIE materials exhibit weakly emissive or non-emissive properties in dilute solutions while emit powerful fluorescence in the aggregated/solid state. Recently, AIE based materials have gained immense attention due to their multifunctional role in cancer cell detection, bioimaging and cancer theranostics. In this present book chapter, we will highlight recent advancements of AIE materials for different cancer theranostics applications.
Collapse
Affiliation(s)
- Sudesna Chakravarty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, United States
| | - Sayan Roy Chowdhury
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
7
|
Zhou X, Zhang JL, Chang MH, Fan GT, Liu XZ, Wu SJ, Shi X. Sensitive osteosarcoma diagnosis through five-base telomerase product-triggered CRISPR-Cas12a enhanced rolling circle amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4063-4068. [PMID: 34555130 DOI: 10.1039/d1ay00952d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Osteosarcoma is the most frequent primary malignant bone tumor, composed of mesenchymal cells producing osteoid and immature bone. The sensitive detection of telomerase plays a pivotal role in the early diagnosis and therapeutic treatment of osteosarcoma. We report here an in vitro strategy for sensitive telomerase activity detection through the integration of rolling circle amplification (RCA) and a clustered regularly spaced short palindrome repeats (CRISPR)-Cas12a system. In the proposed strategy, telomerase substrate (TS) primers are easily controlled to extend five bases (GGGTT) to give short telomerase extension products (TEP) with definite lengths without adding dATP. The resulting short TEPs can then cyclize the padlock through hybridizing with its two terminals and thus initiate the following RCA. To obtain an improved sensitivity, the CRISPR-Cas12a system is attached to collaterally cut surrounding DNA reporter probes after recognizing the target single strand DNA sequence in the RCA products. The highlights of this strategy are as follows: (i) the short TEP triggered strategy is excellent at detecting low telomerase activity and thus contributes to the early diagnosis of malignant tumors; (ii) highly sensitive telomerase activity detection which is easy to operate from RCA initiated CRISPR-Cas12a; (iii) opening up of a new avenue for telomerase activity detection with a CRISPR-Cas12a system. Finally, the proposed strategy exhibited sensitive telomerase activity detection under optimized experimental parameters and has great application potential for the clinical diagnosis of malignant tumors and the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, China.
| | - Jun-Liang Zhang
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, China.
| | - Meng-Han Chang
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, China.
| | - Gen-Tao Fan
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, China.
| | - Xiao-Zhou Liu
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, China.
| | - Su-Jia Wu
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, China.
| | - Xin Shi
- Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, China.
| |
Collapse
|
8
|
Hu JJ, Dong X, Jiang W, Xia F, Lou X. Multifunctional aggregates for precise cellular analysis. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1051-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Zhang R, Zhang R, Jiang W, Xu X. A multicolor DNA tetrahedron nanoprobe for analyzing human telomerase in living cells. Chem Commun (Camb) 2021; 57:2188-2191. [PMID: 33527950 DOI: 10.1039/d0cc07893j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein, we report the in situ analysis of human telomerase by a multicolor DNA tetrahedron nanoprobe. The elongated telomeric repeats can hybridize with settled molecular beacons in order, accompanied by sequentially lighted up fluorescence. Imaging telomerase activity, real-time monitoring telomerase action and determining product length distribution in living cells are realized. It detects multiple information of intracellular telomerase and provides deeper insights into the function of telomerase.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | | | | | | |
Collapse
|
10
|
|
11
|
Li J, Zhang Y, Wang P, Yu L, An J, Deng G, Sun Y, Seung Kim J. Reactive oxygen species, thiols and enzymes activable AIEgens from single fluorescence imaging to multifunctional theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213559] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Chen J, Yan J, Feng Q, Miao X, Dou B, Wang P. Label-free and enzyme-free fluorescence detection of microRNA based on sulfydryl-functionalized carbon dots via target-initiated hemin/G-quadruplex-catalyzed oxidation. Biosens Bioelectron 2021; 176:112955. [PMID: 33412427 DOI: 10.1016/j.bios.2020.112955] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Carbon dots (CDs)-based biosensors have attracted considerable interest in reliable and sensitive detection of microRNA (miRNA) because of their merits of ultra-small size, excellent biosafety and tunable emission, whereas complicated labeling procedure and expensive bioenzyme associated with current strategies significantly limit their practical application. Herein, we developed a label-free and enzyme-free fluorescence strategy based on strand displaced amplification (SDA) for highly sensitive detection of miRNA using sulfydryl-functionalized CDs (CDs-SH) as probe. CDs-SH displayed excellent response to G-quadruplex DNA against other DNAs based on based on the catalytic oxidation of -SH into -S-S- by hemin/G-quadruplex. Further, CDs-SH were employed to detect miRNA, using miRNA-21 as target model, which triggered the SDA reaction of P1 and P2 to generate hemin/G-quadruplex, subsequently making CDs-SH transform from dot to aggresome along with the quenched fluorescence. Therefore, label-free, enzyme-free, and highly sensitive analysis of miRNA-21 was readily acquired with a limit of detection at 0.03 pM. This proposed biosensor couples the advantages of CDs and label-free/enzyme-free strategy, and thus has a significant potential to be used in early and accurate diagnosis of cancer.
Collapse
Affiliation(s)
- Jianling Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China; School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ji Yan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Xiangmin Miao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
13
|
Wang D, Xue W, Ren X, Xu Z. A review on sensing mechanisms and strategies for telomerase activity detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Shen F, Zhang C, Cai Z, Wang J, Zhang X, Machuki JO, Cui L, Li S, Gao F. Carbon Nanocage/Fe 3O 4/DNA-Based Magnetically Targeted Intracellular Imaging of Telomerase via Catalyzed Hairpin Assembly and Photodynamic-Photothermal Combination Therapy of Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53624-53633. [PMID: 33211962 DOI: 10.1021/acsami.0c13925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Human telomerase has been identified as a potential tumor biomarker for early cancer diagnosis and cancer progression monitoring. We construct a novel magnetic targeting carbon nanocage/Fe3O4/DNA (CNC/Fe3O4/DNA) nanoprobe for intracellular imaging of telomerase via the signal amplification strategy catalyzed hairpin assembly (CHA) and for photodynamic-photothermal therapy of tumor cells. Telomerase primer DNA, trigger DNA, hairpin DNA1 (H1), and hairpin DNA2 (H2) were adsorbed to the surface of CNC/Fe3O4 nanoparticles (CNC/Fe3O4 NPs), and the fluorescence of (chlorin e6) Ce6 was quenched by CNC/Fe3O4 NPs. After entering the living cell through magnetic targeting, the telomerase primer DNA can be extended in the presence of highly activated telomerase, leading to the issue of trigger DNA, which can initiate the CHA cycling process followed by the amplification of the fluorescence intensity. The in vitro detection results justified that the proposed nanoprobe showed good sensitivity and selectivity for telomerase. Confocal microscopy studies indicated that such a nanoprobe can be used to detect the activity of telomerase in living cells and the fluorescence signal was stronger under the guidance of a magnetic field. We successfully employed this nanoprobe to monitor the dynamic activity of telomerase in various types of tumor cells and normal cells and to damage tumor cells by photodynamic-photothermal combination therapy, which evidenced that this is a promising biological method for early cancer diagnosis and tumor cell therapy.
Collapse
Affiliation(s)
- Fuzhi Shen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiheng Cai
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiwei Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xing Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Cui
- Chemical Engineering and Materials Science, Shandong Normal University, 250014 Jinan, China
| | - Shibao Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
15
|
Wu J, Hu Q, Chen Q, Dai J, Wu X, Wang S, Lou X, Xia F. Modular DNA-Incorporated Aggregation-Induced Emission Probe for Sensitive Detection and Imaging of DNA Methyltransferase. ACS APPLIED BIO MATERIALS 2020; 3:9002-9011. [DOI: 10.1021/acsabm.0c01249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jun Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Qinyu Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Qing Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
16
|
Dai Z, Su Y, Gao Z, Song YY. “Black body” effect of carbon nanospheres: A broadband energy acceptor in constructing electrochemiluminescence resonance energy transfer for biosensing. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Lin Y, Huang Y, Yang Y, Jiang L, Xing C, Li J, Lu C, Yang H. Functional Self-Assembled DNA Nanohydrogels for Specific Telomerase Activity Imaging and Telomerase-Activated Antitumor Gene Therapy. Anal Chem 2020; 92:15179-15186. [PMID: 33112598 DOI: 10.1021/acs.analchem.0c03746] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Engineering a functional nanoplatform that integrates dynamic monitoring of endogenous biomarkers and a stimuli-activated therapeutic mode is promising for early diagnosis and treatment of cancers. In this study, we developed an intelligent DNA nanohydrogel with specific targeting capability that can be stimuli-activated for both in vitro telomerase detection and in vivo telomerase-triggered gene therapy. The DNA nanohydrogel was formed simply by the self-assembly of two Y-shaped DNA units and a double-stranded DNA linker labeled with fluorophores and loaded with therapeutic siRNA. When intracellular telomerase was overexpressed, the DNA nanohydrogel collapsed owing to the prolongation of the telomeric primer at the terminal sequence of one of the Y-shaped DNA units. As a result, the quenched fluorescence due to fluorescence resonance energy transfer (FRET) of the DNA nanohydrogel recovered and the trapped siRNA was released, enabling the accurate detection and imaging of intracellular telomerase activity as well as effective gene therapy of tumors. Benefiting from the great biocompatibility, specificity, and stimuli-responsive property, the developed DNA nanoplatform provides a new opportunity for precise cancer diagnosis and treatment as well as other biological applications.
Collapse
Affiliation(s)
- Yuhong Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Yuqing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Yuling Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Lili Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, People's Republic of China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| |
Collapse
|
18
|
Tang RH, Xu Z, Nie YX, Xiao XQ, Yang KF, Xie JL, Guo B, Yin GW, Yang XM, Xu LW. Catalytic Asymmetric trans-Selective Hydrosilylation of Bisalkynes to Access AIE and CPL-Active Silicon-Stereogenic Benzosiloles. iScience 2020; 23:101268. [PMID: 32599559 PMCID: PMC7326740 DOI: 10.1016/j.isci.2020.101268] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Chirality widely exists in a diverse array of biologically active molecules and life forms, and the catalytic constructions of chiral molecules have triggered a heightened interest in the fields of chemistry and materials and pharmaceutical sciences. However, the synthesis of silicon-stereogenic organosilicon compounds is generally recognized as a much more difficult task than that of carbon-stereogenic centers because of no abundant organosilicon-based chiral sources in nature. Herein, we reported a highly enantioselective rhodium-catalyzed trans-selective hydrosilylation of silicon-tethered bisalkynes to access chiral benzosiloles bearing a silicon-stereogenic center. This protocol featured with chiral Ar-BINMOL-Phos bearing hydrogen-bond donors as a privileged P-ligand for catalytic asymmetric hydrosilylation that is operationally simple and has 100% atom-economy with good functional group tolerability as well as high enantioselectivity (up to >99:1 er). Benefiting from the trans-selective hydrosilylation with the aid of Rh/Ar-BINMOL-Phos-based asymmetric catalysis, the Si-stereogenic benzosiloles exhibited pronounced aggregation-induced emission (AIE) and circularly polarized luminescence (CPL) activity.
Collapse
Affiliation(s)
- Ren-He Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yi-Xue Nie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xu-Qiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jia-Le Xie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Bin Guo
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Guan-Wu Yin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xue-Min Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute (SRI), Lanzhou Institute of Chemical Physics (LICP), University of the Chinese Academy of Sciences (UCAS), Lanzhou 730000, P. R. China.
| |
Collapse
|
19
|
Dai Z, Guo J, Xu J, Liu C, Gao Z, Song YY. Target-Driven Nanozyme Growth in TiO 2 Nanochannels for Improving Selectivity in Electrochemical Biosensing. Anal Chem 2020; 92:10033-10041. [PMID: 32603589 DOI: 10.1021/acs.analchem.0c01815] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanozymes have been used in colorimetric and electrochemical sensing because of their low cost and high stability. However, the wide applications of nanozymes in sensing devices are largely limited due to their poor selectivity. In this study, unlike traditional methods using prepared nanozymes for target detection, we designed a target-driven nanozyme growth strategy in TiO2 nanochannels to detect analytes. Using telomerase as an example, the established recognition event was used to expand the photocatalytic activity of TiO2 to visible-light region, thus triggering Prussian blue nanoparticle (PBNP) growth in visible light. Benefiting from the peroxidase (POD)-like activity of PBNPs, the uncharged 3,5,3',5'-tetramethylbenzidine (TMB) is oxidized to positively charged oxTMB, which induces significant ionic transport changes in nanochannels, and thus in turn provides information about telomerase activity. Such a nanozyme-triggered sensing system exhibited excellent performance in telomerase detection in urine specimens from patients with bladder cancer. This innovative target-driven signal generation strategy might provide a new method for applying nanozymes in developing sensitive, rapid, and accurate biological sensing systems.
Collapse
Affiliation(s)
- Zhenqing Dai
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Jing Xu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chen Liu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunication, Xi'an 710121, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
20
|
Ma Y, Mao G, Wu G, He Z, Huang W. Magnetic bead-enzyme assemble for triple-parameter telomerase detection at single-cell level. Anal Bioanal Chem 2020; 412:5283-5289. [PMID: 32494916 DOI: 10.1007/s00216-020-02741-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 01/11/2023]
Abstract
In this work, we developed a triple-parameter strategy for the detection of telomerase activity from cancer cells and urine samples. This strategy was developed based on magnetic bead-enzyme hybrids combined with fluorescence analysis, colorimetric assay, or adenosine triphosphate (ATP) meter as readout. The application of magnetic bead-enzyme hybrids has the advantages of magnetic separation and signal amplification. These detection methods can be used individually or in combination to achieve the optimal sensing performance and make the results more convincing. Among them, the ATP meter with portable size had easy operation and low cost, and this response strategy provided a higher sensitivity at the single-cell level. The designed strategy was suitable as naked-eye sensor and point-of-care testing (POCT) for rapid assaying of telomerase activity. Graphical abstract Magnetic bead-enzyme assemble for triple-parameter telomerase detection.
Collapse
Affiliation(s)
- Yingxin Ma
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Guobin Mao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Guoqiang Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518039, Guangdong, China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518039, Guangdong, China.
| |
Collapse
|
21
|
Chen J, Morihiro K, Fukui D, Guo L, Okamoto A. Live-Cell Sensing of Telomerase Activity by Using Hybridization-Sensitive Fluorescent Oligonucleotide Probes. Chembiochem 2020; 21:1022-1027. [PMID: 31840916 DOI: 10.1002/cbic.201900555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Live-cell sensing of telomerase activity with simple and efficient strategies remains a challenging target. In this work, a strategy for telomerase sensing by using hybridization-sensitive fluorescent oligonucleotide probes is reported. In the presence of telomerase and dNTPs, the designed supporting strand was extended and generated the hairpin structure that catalyzed the next telomerase extending reaction. The special extension mechanism increased the local concentration of another supporting strand and telomerase, which resulted in enhanced telomerase activity. The hybridization-sensitive oligonucleotide probes bound to the hairpin catalyst and generated turn-on fluorescence. This method realized the sensing of telomerase activity in HeLa cell extract with a detection limit below 1.6×10-6 IU μL-1 . The real-time in situ observation of telomerase extension was achieved in living HeLa cells. This strategy has been applied to monitor the efficiency of telomerase-targeting anticancer drugs in situ.
Collapse
Affiliation(s)
- Jiazhuo Chen
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Fukui
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Lihao Guo
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| |
Collapse
|
22
|
Xue T, Shen J, Shao K, Wang W, Wu B, He Y. Strategies for Tumor Hypoxia Imaging Based on Aggregation-Induced Emission Fluorogens. Chemistry 2020; 26:2521-2528. [PMID: 31692097 DOI: 10.1002/chem.201904327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 01/13/2023]
Abstract
Hypoxia, as a crucial characteristic of cancer, has become an extremely significant direction for researchers to construct fluorescent probes for early diagnosis of tumors. Aggregation-induced emission fluorogens (AIEgens) possess many superior properties to those of conventional fluorophores due to aggregation-induced emission (AIE) features, such as a linear concentration-dependent increase in brightness, remarkable resistance to photobleaching, and the long-term tracking and imaging of cells. Constructing hypoxic response AIEgen-based probes will be very useful for the early diagnosis of tumors. Herein, several hypoxia-responsive probes based on AIEgens reported in the last three years are reported; these examples may lead to the construction of hypoxia-responsive AIE probes used for tumor hypoxia imaging in the future. In addition, typical, conventional hypoxia-responsive bioprobes are presented to further understand hypoxia-responsive fluorescent probes based on AIEgens.
Collapse
Affiliation(s)
- Tianhao Xue
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Jiajia Shen
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Kuanchun Shao
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Wei Wang
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Bing Wu
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Yaning He
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
23
|
Wang L, Meng T, Zhao D, Jia H, An S, Yang X, Wang H, Zhang Y. An enzyme-free electrochemical biosensor based on well monodisperse Au nanorods for ultra-sensitive detection of telomerase activity. Biosens Bioelectron 2020; 148:111834. [DOI: 10.1016/j.bios.2019.111834] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 01/24/2023]
|
24
|
Xia F, Wu J, Wu X, Hu Q, Dai J, Lou X. Modular Design of Peptide- or DNA-Modified AIEgen Probes for Biosensing Applications. Acc Chem Res 2019; 52:3064-3074. [PMID: 31657899 DOI: 10.1021/acs.accounts.9b00348] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorophore probes are widely used for bioimaging in cells, tissues, and animals as well as for monitoring of multiple biological processes in complex environments. Such imaging properties allow scientists to make direct visualizations of pathological events and cellular targets. Conventional fluorescent molecules have been developed for several decades and achieved great successes, but their emissions are often weakened or quenched at high concentrations that might suffer from the aggregation-caused quenching (ACQ) effect, which reduces the efficiencies of their applications. In contrast to the ACQ effect, aggregation-induced emission (AIE) luminogens (AIEgens) display much higher fluorescence in aggregated states and possess various advantages such as low background, long-term tracking ability, and strong resistance to photobleaching. Therefore, AIEgens are employed as unique fluorescence molecules and building blocks for biosensing applications in the fields of ions, amino acids, carbohydrates, DNAs/RNAs, peptides/proteins, cellular organelles, cancer cells, bacteria, and so on. Quite a few of the above biosensing missions are accomplished by modular peptide-modified AIEgen probes (MPAPs) or modular DNA-modified AIEgen probes (MDAPs) because of the multiple capabilities of peptide and DNA modules, including solubility, biocompatibility, and recognition. Meanwhile, both electrostatic interactions and coupling reactions could provide efficient methods to construct different MPAPs and MDAPs, finally resulting in a large variety of biosensing probes. Those probes exhibit leading features of detecting nucleic acids or proteins and imaging mass biomolecules. For example, under modular design, peptide modules possessing versatile recognition abilities enable MPAPs to detect numerous targets, such as integrin αvβ3, aminopeptidase N, MMP-2, MPO, H2O2, and so forth; MDAP could allow the imaging of mRNA in cells and tissue chips, suggesting the diagnostic functions of MDAP in clinical samples. Modular design offers a novel strategy to generate AIEgen-based probes and expedites functional biomacromolecules research. In this vein, here we review the progress on MPAPs and MDAPs in the most recent 10 years and highlight the modular design strategy as well as their advanced biosensing applications including briefly two aspects: (1) detection and (2) imaging. By the use of MPAPs/MDAPs, multiple bioanalytes can be efficiently analyzed at low concentrations and directly visualized through high-contrast and luminous imaging. Compared with MPAPs, the quantities of MDAPs are limited because of the difficult synthesis of long-length DNA strands. In future work, multifunctional of DNA sequences are needed to explore varieties of MDAPs for diverse biosensing purposes. At the end of this Account, some deficiencies and challenges are mentioned for briging more attention to accelerate the development of AIEgen-based probes.
Collapse
Affiliation(s)
- Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jun Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qinyu Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, and Institute of Pathology of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
25
|
Díaz-Cartagena D, Hernández-Cancel G, Bracho-Rincón DP, González-Feliciano JA, Cunci L, González CI, Cabrera CR. Label-Free Telomerase Activity Detection via Electrochemical Impedance Spectroscopy. ACS OMEGA 2019; 4:16724-16732. [PMID: 31646217 PMCID: PMC6796945 DOI: 10.1021/acsomega.9b00783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 05/14/2023]
Abstract
In the last decade, researchers have been searching for innovative platforms, methods, and techniques able to address recurring problems with the current cancer detection methods. Early disease detection, fast results, point-of-care sensing, and cost are among the most prevalent issues that need further exploration in this field. Herein, studies are focused on overcoming these problems by developing an electrochemical device able to detect telomerase as a cancer biomarker. Electrochemical platforms and techniques are more appealing for cancer detection, offering lower costs than the established cancer detection methods, high sensitivity inherent to the technique, rapid signal processing, and their capacity of being miniaturized. Therefore, Au interdigital electrodes and electrochemical impedance spectroscopy were used to detect telomerase activity in acute T cell leukemia. Different cancer cell concentrations were evaluated, and a detection limit of 1.9 × 105 cells/mL was obtained. X-ray photoelectron spectroscopy was used to characterize the telomerase substrate (TS) DNA probe self-assembled monolayer on gold electrode surfaces. Atomic force microscopy displayed three-dimensional images of the surface to establish a height difference of 9.0 nm between the bare electrode and TS-modified Au electrodes. The TS probe is rich in guanines, thus forming secondary structures known as G-quadruplex that can be triggered with a fluorescence probe. Confocal microscopy fluorescence images showed the formation of DNA G-quadruplex because of TS elongation by telomerase on the Au electrode surface. Moreover, electrodes exposed to telomerase containing 2',3'-dideoxyguanosine-5'-triphosphate (ddGTP) did not exhibit high fluorescence, as ddGTP is a telomerase inhibitor, thus making this device suitable for telomerase inhibitors capacity studies. The electrochemical method and Au microchip device may be developed as a biosensor for a point-of-care medical device.
Collapse
Affiliation(s)
- Diana
C. Díaz-Cartagena
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00925-2537, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - Griselle Hernández-Cancel
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - Dina P. Bracho-Rincón
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan, Puerto Rico 00926, United States
- Department
of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - José A. González-Feliciano
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - Lisandro Cunci
- School
of Natural Sciences and Technology, Universidad
Ana G. Méndez, Gurabo Campus, Gurabo, Puerto
Rico 00778, United
States
| | - Carlos I. González
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan, Puerto Rico 00926, United States
- Department
of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Carlos R. Cabrera
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00925-2537, United States
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan, Puerto Rico 00926, United States
- E-mail:
| |
Collapse
|
26
|
Zhu L, Li Y, Zhang L, Wen Y, Ju H, Lei J. Controlled assembly of AIEgens based on a super-quadruplex scaffold for detection of plasma membrane proteins. Anal Chim Acta 2019; 1094:130-135. [PMID: 31761039 DOI: 10.1016/j.aca.2019.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
Quantification of plasma membrane proteins (PMPs) is crucial for understanding the fundamentals of cellular signaling systems and their related diseases. In this work, a super-quadruplex scaffold was designed to regulate assembly of oligonucleotide-grafted AIEgens for detection of PMPs. The nonfluorescence oligonucleotide-grafted AIEgen (Oligo-AIEgen) was firstly synthesized by attaching the AIEgen to 3'-terminus of the oligonucleotide through click chemistry. Meanwhile, the tetramolecular hairpin-conjugated super-quadruplex (THP-G4) as cleavage element and signal enhancement scaffold composited of three elements: a substrate sequence of DNAzyme in the loop region, partial hybridization region in the stem, and six guanine nucleotides to form G-quadruplex. Once the DNAzyme was anchored on the specific PMPs through aptamer-protein recognition, the substrate sequence on the loop of THP-G4 was cleaved by DNAzyme with the aid of cofactor MnII, resulting in the conformation switch of THP-G4 to the activated G-quadruplex scaffold. The latter could assemble Oligo-AIEgens to generate aggregation-induced emission (AIE) enhancement, resulting in a simple and sensitive strategy for detection of membrane proteins. Moreover, the DNAzyme continuously cut the next THP-G4 to achieve recycling amplification. Under the optimized conditions, this AIE-based strategy exhibited good linear relationship with the logarithm of MUC1 concentration from 0.01 to 10 μg mL-1 with the limit of detection down to 4.3 ng mL-1. The G4-assembled AIEgens provides a universal platform for detecting various biomolecules and a proof-of concept for AIE biosensing.
Collapse
Affiliation(s)
- Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yunjie Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
27
|
Ye S, Wu Y, Wan F, Li Y. A seesaw ratiometric probe for dual-spectrum imaging and detection of telomerase activity in single living cells. Chem Commun (Camb) 2019; 55:9967-9970. [PMID: 31367705 DOI: 10.1039/c9cc03870a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, a seesaw ratiometric (SR) probe is designed which integrates fluorescence and surface enhanced Raman scattering (SERS) technology. Fluorescence imaging enables tracking of the spatiotemporal dynamic behaviour of telomerase. Meanwhile, SERS reverse ratiometric measurement can enable sensitive detection of telomerase activity in single living cells.
Collapse
Affiliation(s)
- Sujuan Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | |
Collapse
|
28
|
Wang X, Dai J, Wang X, Hu Q, Huang K, Zhao Z, Lou X, Xia F. MnO2-DNAzyme-photosensitizer nanocomposite with AIE characteristic for cell imaging and photodynamic-gene therapy. Talanta 2019; 202:591-599. [DOI: 10.1016/j.talanta.2019.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023]
|
29
|
Wu F, Wu X, Duan Z, Huang Y, Lou X, Xia F. Biomacromolecule-Functionalized AIEgens for Advanced Biomedical Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804839. [PMID: 30740889 DOI: 10.1002/smll.201804839] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The advances in bioinformatics and biomedicine have promoted the development of biomedical imaging and theranostic systems to respectively extend the endogenous biomarker imaging with high contrast and enhance the therapeutic effect with high efficiency. The emergence of biomacromolecule-functionalized aggregation-induced emitters (AIEgens), utilizing AIEgens, and biomacromolecules (nucleic acids, peptides, glycans, and lipids), displays specific targeting ability to cancer cell, improved biocompatibility, reduced toxicity, enhanced therapeutic effect, and so forth. This review summarizes the rational design of biomacromolecule-functionalized AIEgens and their biomedical applications in recent ten years, including high-resolution optical imaging of cell, tissue, and small animal model with low background; the biomarker detection for early diagnosis and prognosis; the delivery and monitoring of prodrugs; image-guide photodynamic therapy and its combination with chemotherapy. Through illustrating their functional mechanisms and application, it is hoped that this review would open up a completely new train of research thought for attracted researchers in various fields.
Collapse
Affiliation(s)
- Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhijuan Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
30
|
Li X, Cui Y, Du Y, Tang A, Kong D. Label-Free Telomerase Detection in Single Cell Using a Five-Base Telomerase Product-Triggered Exponential Rolling Circle Amplification Strategy. ACS Sens 2019; 4:1090-1096. [PMID: 30945529 DOI: 10.1021/acssensors.9b00334] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Telomerase is a universal biomarker of malignant tumors. Sensitive and reliable analysis for telomerase activity is of vital importance for both early diagnosis and therapy of malignant tumors. Herein, a novel fluorescent strategy was proposed for sensitive and label-free detection of telomerase activity. One highlight of this strategy is that an exponential signal amplification can be triggered by a very short telomerase extension product (TEP). Without adding dATP, the designed telomerase primer can be easily controlled to extend five bases (GGGTT) to give short TEP with definite length. The resulting short TEP can then be constructed as a circular rolling circle amplification (RCA) template and thus initiate a nicking enzyme-mediated exponential RCA, producing G-rich amplification products that can be sensitively probed via specific binding between the fluorescent dye Thioflavin T (ThT) and the nucleic acid G-quadruplexes. Elevated telomerase translocation efficiency, combined with exponential signal amplification and specific probing of RCA products by ThT, endow the sensing platform with extraordinarily high detection sensitivity. The requirement for short TEP increases the possibility to analyze telomerase with low activity. The proposed sensing platform can achieve sensitive telomerase activity detection in individual cells, even with the interference of accumulated normal cells. It was also demonstrated to show excellent capability in screening for the inhibitors of telomerase. Therefore, the proposed sensing platform has great potential for not only clinical diagnosis but also anticancer drug development.
Collapse
Affiliation(s)
- XiaoYu Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - YunXi Cui
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - YiChen Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - AnNa Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - DeMing Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, P. R. China
| |
Collapse
|
31
|
Wang J, Zhang J, Li T, Shen R, Li G, Ling L. Strand displacement amplification-coupled dynamic light scattering method to detect urinary telomerase for non-invasive detection of bladder cancer. Biosens Bioelectron 2019; 131:143-148. [PMID: 30826649 DOI: 10.1016/j.bios.2019.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 11/28/2022]
Abstract
Despite huge successes achieved by strand displacement amplification (SDA) and gold nanoparticles (AuNPs) in biomolecules sensing, the strategy of combination of SDA and AuNPs-based dynamic light scattering (DLS) for a biomolecule sensing is unexplored. Here we developed a non-invasive, SDA-based DLS method for the diagnosis of bladder cancer by detecting telomerase activity in human urine. In the presence of telomerase, the telomerase substrate (TS) primer was elongated with repeating sequences of (TTAGGG)n, and the resulting product triggers SDA between the hairpin deoxyribonucleic acid (DNA) and the Primer. The SDA product can be recognized by the oligonucleotide-modified AuNPs probes, resulting in DLS measurable AuNPs aggregation. The assay displayed a detection limit of 3 MCF-7 cells with a signal-to-noise ratio of 3 in a dynamic range of 5-1000 cells. The method was simple, reliable and has been successfully applied in the detection of telomerase in urine with good accuracy, selectivity and reproducibility. Moreover, only urine samples from bladder cancer patients induced a significant change in the average hydrodynamic diameter, indicating practical applicability of the method for the non-invasive diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ji Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Tingting Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ruidi Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
32
|
Yang B, Shi L, Lei J, Li B, Jin Y. Advances in optical assays for detecting telomerase activity. LUMINESCENCE 2019; 34:136-152. [PMID: 30706686 DOI: 10.1002/bio.3595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022]
Abstract
Telomerase uses its RNA as template and its protein unit as reverse transcriptase to synthesize TTAGGG repeats at the ends of the eukaryotic chromosome to maintain the lengths of telomeres. Telomerase activity up-regulates in about 85% of human tumors compared with somatic cells, which indicates that telomerase is a tumor biomarker. Reliable assay of telomerase activity is thus essential in diagnosis and management of malignant tumors. In this review, recent developed optical assays are summarized based on the readout signal, including chemiluminescence assay, colorimetric assay, and fluorescence assay.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Jing Lei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
33
|
Wang X, Xu M, Huang K, Lou X, Xia F. AIEgens/Nucleic Acid Nanostructures for Bioanalytical Applications. Chem Asian J 2019; 14:689-699. [PMID: 30489015 DOI: 10.1002/asia.201801595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/29/2018] [Indexed: 12/27/2022]
Abstract
DNA occupies significant roles in life processes, which include encoding the sequences of proteins and accurately transferring genetic information from generation to generation. Recent discoveries have demonstrated that a variety of biological functions are correlated with DNA's conformational transitions. The non-B form has attained great attention among the diverse forms of DNA over the past several years. The main reason for this is that a large number of studies have shown that the non-B form of DNA is associated with gross deletions, inversions, duplications, translocations as well as simple repeating sequences, which therefore causes human diseases. Consequently, the conformational transition of DNA between the B-form and the non-B form is important for biology. Conventional fluorescence probes based on the conformational transitions of DNA usually need a fluorophore and a quencher group, which suffers from the complex design of the structure and tedious synthetic procedures. Moreover, conventional fluorescence probes are subject to the aggregation-caused quenching (ACQ) effect, which limits their application toward imaging and analyte detection. Fluorogens exhibiting aggregation-induced emission (AIE) have attracted tremendous attention over the past decade. By taking advantage of this unique behavior, plenty of fluorescent switch-on probes without the incorporation of fluorescent quenchers/fluorophore pairs have been widely developed as biosensors for imaging a variety of analytes. Herein, the recent progress in bioanalytical applications on the basis of aggregation-induced emission luminogens (AIEgens)/nucleic acid nanostructures are presented and discussed.
Collapse
Affiliation(s)
- Xudong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Xu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
34
|
Yang H, Li Y, Wang D, Liu Y, Wei W, Zhang Y, Liu S, Li P. Quartz crystal microbalance for telomerase sensing based on gold nanoparticle induced signal amplification. Chem Commun (Camb) 2019; 55:5994-5997. [DOI: 10.1039/c9cc02610j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mass-sensitive quartz crystal microbalance biosensor was constructed for telomerase sensing based on gold nanoparticle induced signal amplification.
Collapse
Affiliation(s)
- Haitang Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Ying Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute of CNTC
- Zhengzhou 450001
- China
| | - Yong Liu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC
- Zhengzhou 450001
- China
| |
Collapse
|
35
|
Meng F, Chai H, Ma X, Tang Y, Miao P. FRET investigation toward DNA tetrahedron-based ratiometric analysis of intracellular telomerase activity. J Mater Chem B 2019; 7:1926-1932. [DOI: 10.1039/c9tb00001a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ratiometric sensing of telomerase activity is realized at a single-cell level based on a novel DNA nanoprobe reconciling an extension primer, a DNA tetrahedron and a flare probe.
Collapse
Affiliation(s)
- Fanyu Meng
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- University of Science and Technology of China
| | - Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- University of Science and Technology of China
| | - Xiaoyi Ma
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- University of Science and Technology of China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- University of Science and Technology of China
| |
Collapse
|
36
|
Wu T, Zhang Y, Hou T, Zhang Y, Wang S. A simple and sensitive fluorescence method for detection of telomerase activity using fusion protein bouquets. Anal Chim Acta 2018; 1038:120-125. [DOI: 10.1016/j.aca.2018.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
|
37
|
A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Commun Biol 2018; 1:202. [PMID: 30480103 PMCID: PMC6249255 DOI: 10.1038/s42003-018-0204-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Combination of photodynamic therapy and chemotherapy has been emerging as a new strategy for cancer treatment. Conventional photosensitizer tends to aggregate in aqueous media, which causes fluorescence quenching, reduces reactive oxygen species (ROS) production, and limits its clinical application to photodynamic therapy. Traditional nanoparticle drug delivery system for chemotherapy also has its disadvantages, such as low drug loading content, drug leakage, and off-target toxicity for normal tissues. Here, we developed a reduction-sensitive co-delivery micelles TB@PMP for combinational therapy, which composed of entrapping a red aggregation-induced emission fluorogen (AIEgen) for photodynamic therapy and PMP that contains a reduction-sensitive paclitaxel polymeric prodrug for chemotherapy. AIEgen photosensitizer illustrates a much improved photostability and ROS production efficiency in aggregate state and PMP loads a high dose of paclitaxel and carries a smart stimuli-triggered drug release property. This co-delivery system provides a better option that replaces AIEgen photosensitizer for cancer diagnosis and therapy. Xiaoqing Yi et al. report a co-drug delivery micelle system that demonstrates a high therapeutic efficacy for cancer. This system shows a much improved drug load, photostability, and production of reactive oxygen species, compared to traditional photosensitizer-loaded nanoparticles.
Collapse
|
38
|
Zhao Z, Tan Q, Zhan X, Lin J, Fan Z, Xiao K, Li B, Liao Y, Huang X. Cascaded Electrochemiluminescence Signal Amplifier for the Detection of Telomerase Activity from Tumor Cells and Tissues. Am J Cancer Res 2018; 8:5625-5633. [PMID: 30555568 PMCID: PMC6276299 DOI: 10.7150/thno.27680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/16/2018] [Indexed: 12/26/2022] Open
Abstract
Telomerase is closely linked to the physiological transformation of tumor cells and is commonly overexpressed in most types of tumor cells. Therefore, telomerase has become a potential biomarker for the process of tumorigenesis, progression, prognosis and metastasis. Thus, it is important to develop a simple, accurate and reliable method for detecting telomerase activity. As a high signal-to-noise ratio mode, electrochemiluminescence (ECL) has been widely applied in the field of biomedical analysis. Here, our objective was to construct an improved ECL signal amplifier for the detection of telomerase activity. Methods: A cascaded ECL signal amplifier was constructed to detect telomerase activity with high selectivity via controllable construction of a lysine-based dendric Ru(bpy)3 2+ polymer (DRP). The sensitivity, specificity and performance index were simultaneously evaluated by standard substance and cell and tissue samples. Results: With this cascaded ECL signal amplifier, high sensitivities of 100, 50, and 100 cells for three tumor cell lines (A549, MCF7 and HepG2 cell lines) were simultaneously achieved, and desirable specificity was also obtained. Furthermore, the excellent performance of this platform was also demonstrated in the detection of telomerase in tumor cells and tissues. Conclusion: This cascaded ECL signal amplifier has the potential to be a technological innovation in the field of telomerase activity detection.
Collapse
|
39
|
Wang C, Yang H, Wu S, Liu Y, Wei W, Zhang Y, Wei M, Liu S. Manifold methods for telomerase activity detection based on various unique probes. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Zhang X, Wang B, Xia Y, Zhao S, Tian Z, Ning P, Wang Z. In Vivo and in Situ Activated Aggregation-Induced Emission Probes for Sensitive Tumor Imaging Using Tetraphenylethene-Functionalized Trimethincyanines-Encapsulated Liposomes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25146-25153. [PMID: 29984571 DOI: 10.1021/acsami.8b07727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The design and exploration of fluorescent probes with high-sensitivity and low-background are essential for noninvasive optical molecular imaging. The in vivo and in situ activated aggregation-induced emission (AIE) probes were found to be ideal for achieving higher signal-to-background ratios for tumor detections. We herein developed novel tetraphenylethene-encapsulated liposomes (TPE-LPs) constructed by loading TPE-trimethincyanine into liposomes for the first time, and the probes were applied to tumor bioimaging in vivo. TPE-functionalized trimethincyanines were synthesized with a new and efficient one-pot reaction. In TPE-LPs, TPE-functionalized bicarboxylic acids benzoindole trimethinecyanine (TPE-BICOOH) fluorophores were found to be well dispersed in lipid bilayers (with non-restricted rotation) during the blood circulation, and then aggregated (with restriction of intramolecular rotation) upon liposome rupture in the tumor tissue, achieving a low-background and high-target signal for tumor imaging. The in situ activated AIE probes not only had great accumulation at the tumor site after intravenous injection in 4T1 tumor-bearing mice but also demonstrated excellent signal-to-background ratios, as well as low cytotoxicity and excellent biocompatibility. The proposed strategy is believed to be a simple and powerful tool for the sensitive detection of tumors.
Collapse
Affiliation(s)
- Xianghan Zhang
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| | - Bo Wang
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| | - Yuqiong Xia
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| | - Sumei Zhao
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| | - Zuhong Tian
- Institute of Digestive Diseases, Xijing Hospital , Fourth Military Medical University , Xi'an , Shaanxi 710032 , China
| | - Pengbo Ning
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| | - Zhongliang Wang
- Engineering Research Center of Molecular-Imaging and Neuro-Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710026 , China
| |
Collapse
|
41
|
Chen D, Yang J, Dai J, Lou X, Zhong C, Yu X, Xia F. A low background D-A-D type fluorescent probe for imaging of biothiols in living cells. J Mater Chem B 2018; 6:5248-5255. [PMID: 32254762 DOI: 10.1039/c8tb01340c] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two probes, structurally symmetric CBFB and asymmetric CBFM, constructed by a D-A-D (donor-acceptor-donor) type curcuminoid as the fluorophore and the DNBS (2,4-dinitrobenzenesulfonyl) group as the biothiol recognition site were designed and synthesized here. The DNBS group can quench the emission of the fluorophore by the PET (photoinduced electron transfer) process, and in the presence of biothiols, the emission of the probe was switched on as a result of the cleavage of the quencher by a nucleophilic aromatic substitution reaction. Experimental analyses and theoretical calculations revealed that two recognition moieties in the molecule can quench the fluorescence more efficiently, therefore, CBFB showed a much higher SNR (signal to noise ratio) than CBFM in biothiol detection with an emission maximum at 610 nm. This "low background" and "turn-on" fluorescent probe, CBFB, was successfully utilized to map endogenous biothiols in living cells.
Collapse
Affiliation(s)
- Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | | | | | | | | | | | | |
Collapse
|
42
|
Wang X, Dai J, Min X, Yu Z, Cheng Y, Huang K, Yang J, Yi X, Lou X, Xia F. DNA-Conjugated Amphiphilic Aggregation-Induced Emission Probe for Cancer Tissue Imaging and Prognosis Analysis. Anal Chem 2018; 90:8162-8169. [PMID: 29893116 DOI: 10.1021/acs.analchem.8b01456] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xudong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital Tongji Medical College, Institute of Pathology of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jun Dai
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital Tongji Medical College, Institute of Pathology of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xuehong Min
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital Tongji Medical College, Institute of Pathology of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhihua Yu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital Tongji Medical College, Institute of Pathology of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yong Cheng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital Tongji Medical College, Institute of Pathology of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital Tongji Medical College, Institute of Pathology of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Juliang Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China
| | - Xiaoqing Yi
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Department of Obstetrics and Gynecology, Tongji Hospital Tongji Medical College, Institute of Pathology of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China
| |
Collapse
|
43
|
Srivastava P, Hira SK, Sharma A, Kashif M, Srivastava P, Srivastava DN, Singh RA, Manna PP. Telomerase Responsive Delivery of Doxorubicin from Mesoporous Silica Nanoparticles in Multiple Malignancies: Therapeutic Efficacies against Experimental Aggressive Murine Lymphoma. Bioconjug Chem 2018; 29:2107-2119. [DOI: 10.1021/acs.bioconjchem.8b00342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Sumit Kumar Hira
- Department of Zoology, The University of Burdwan, Purba Bardhhaman-713104, India
| | - Amod Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462 066, India
| | | | | | | | | | | |
Collapse
|
44
|
Shi J, Li Y, Li Q, Li Z. Enzyme-Responsive Bioprobes Based on the Mechanism of Aggregation-Induced Emission. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12278-12294. [PMID: 29231713 DOI: 10.1021/acsami.7b14943] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Enzymes play an indispensable role in maintaining normal life activities. The abnormalities of content and activity in specific enzymes are usually associated with the occurrence and the development of major diseases. Correspondingly, fluorescent bioprobes with distinctive sensing mechanisms and different functionalities have attracted growing attention as convenient tools for optical probing and monitoring the activity of enzymes. Ideally and excitedly, the recently emerged luminogens with an aggregation-induced emission (AIE) feature could perfectly overcome the aggregation-caused quenching (ACQ) effect of conventional bioprobes. Based on the fantastic characteristics of AIE luminogens (AIEgens), specific enzyme bioprobes have been designed through integration with recognition units, demonstrating many advantages including low background interference, a high signal-to-noise ratio (SNR), and superior photostability. In this review, by presenting some typical examples, we summarize the working principle and structural design of specific AIEgen-based bioprobes that are triggered by enzymes and discuss their great potential in biomedical applications, with the aim to promote the future research of fluorescent bioprobes involving enzymes.
Collapse
Affiliation(s)
- Jie Shi
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Ya Li
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Qianqian Li
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , China
| | - Zhen Li
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
45
|
Li H, Chang J, Gai P, Li F. Label-Free and Ultrasensitive Biomolecule Detection Based on Aggregation Induced Emission Fluorogen via Target-Triggered Hemin/G-Quadruplex-Catalyzed Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4561-4568. [PMID: 29337530 DOI: 10.1021/acsami.7b18676] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluorescence biosensing strategy has drawn substantial attention due to their advantages of simplicity, convenience, sensitivity, and selectivity, but unsatisfactory structure stability, low fluorescence quantum yield, high cost of labeling, and strict reaction conditions associated with current fluorescence methods severely prohibit their potential application. To address these challenges, we herein propose an ultrasensitive label-free fluorescence biosensor by integrating hemin/G-quadruplex-catalyzed oxidation reaction with aggregation induced emission (AIE) fluorogen-based system. l-Cysteine/TPE-M, which is carefully and elaborately designed and developed, obviously contributes to strong fluorescence emission. In the presence of G-rich DNA along with K+ and hemin, efficient destruction of l-cysteine occurs due to hemin/G-quadruplex-catalyzed oxidation reactions. As a result, highly sensitive fluorescence detection of G-rich DNA is readily realized, with a detection limit down to 33 pM. As a validation for the further development of the proposed strategy, we also successfully construct ultrasensitive platforms for microRNA by incorporating the l-cysteine/TPE-M system with target-triggered cyclic amplification reaction. Thus, this proposed strategy is anticipated to find use in basic biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences and ‡Key Laboratory of Applied Mycology of Shandong Province, Qingdao Agricultural University , Qingdao 266109, China
| | - Jiafu Chang
- College of Chemistry and Pharmaceutical Sciences and ‡Key Laboratory of Applied Mycology of Shandong Province, Qingdao Agricultural University , Qingdao 266109, China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences and ‡Key Laboratory of Applied Mycology of Shandong Province, Qingdao Agricultural University , Qingdao 266109, China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences and ‡Key Laboratory of Applied Mycology of Shandong Province, Qingdao Agricultural University , Qingdao 266109, China
| |
Collapse
|
46
|
Gao F, Yao Y, Wu J, Cui L, Zhang Y, Geng D, Tang D, Yu Y. A robust fluorescent probe for detection of telomerase activityin vitroand imaging in living cellsviatelomerase-triggering primer extension to desorb DNA from graphene oxide. Analyst 2018; 143:3651-3660. [DOI: 10.1039/c8an00815a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel strategy for telomerase imaging was developed based on telomerase-triggering primer extension to desorb fluorophore labeled DNA from graphene oxide.
Collapse
Affiliation(s)
- Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Yao Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Jing Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Lin Cui
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- China
| | - Yu Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Deqin Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| |
Collapse
|
47
|
Liu S, Zhao S, Tu W, Wang X, Wang X, Bao J, Wang Y, Han M, Dai Z. A “Signal On” Photoelectrochemical Biosensor Based on Bismuth@N,O-Codoped-Carbon Core-Shell Nanohybrids for Ultrasensitive Detection of Telomerase in HeLa Cells. Chemistry 2017; 24:3677-3682. [DOI: 10.1002/chem.201704251] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Shanshan Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Shulin Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Wenwen Tu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Xiaoying Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Xiao Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Jianchun Bao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Min Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| |
Collapse
|
48
|
Abstract
Telomerase plays a significantly important role in keeping the telomere length of a chromosome. Telomerase overexpresses in nearly all tumor cells, suggesting that telomerase could be not only a promising biomarker but also a potential therapeutic target for cancers. Therefore, numerous efforts focusing on the detection of telomerase activity have been reported from polymerase chain reaction (PCR)-based telomeric repeat amplification protocol (TRAP) assays to PCR-free assays such as isothermal amplification in recent decade. In this review, we highlight the strategies for the detection of telomerase activity using isothermal amplification and discuss some of the challenges in designing future telomerase assays as well.
Collapse
|