1
|
Veeramachaneni RJ, Donelan CA, Tomcho KA, Aggarwal S, Lapinsky DJ, Cascio M. Structural studies of the human α 1 glycine receptor via site-specific chemical cross-linking coupled with mass spectrometry. BIOPHYSICAL REPORTS 2024; 4:100184. [PMID: 39393591 DOI: 10.1016/j.bpr.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
By identifying distance constraints, chemical cross-linking coupled with mass spectrometry (CX-MS) can be a powerful complementary technique to other structural methods by interrogating macromolecular protein complexes under native-like conditions. In this study, we developed a CX-MS approach to identify the sites of chemical cross-linking from a single targeted location within the human α1 glycine receptor (α1 GlyR) in its apo state. The human α1 GlyR belongs to the family of pentameric ligand-gated ion channel receptors that function in fast neurotransmission. A single chemically reactive cysteine was reintroduced into a Cys null α1 GlyR construct at position 41 within the extracellular domain of human α1 homomeric GlyR overexpressed in a baculoviral system. After purification and reconstitution into vesicles, methanethiosulfonate-benzophenone-alkyne, a heterotrifunctional cross-linker, was site specifically attached to Cys41 via disulfide bond formation. The resting receptor was then subjected to UV photocross-linking. Afterward, monomeric and oligomeric α1 GlyR bands from SDS-PAGE gels were trypsinized and analyzed by tandem MS in bottom-up studies. Dozens of intrasubunit and intersubunit sites of α1 GlyR cross-linking were differentiated and identified from single gel bands of purified protein, showing the utility of this experimental approach to identify a diverse array of distance constraints of the α1 GlyR in its resting state. These studies highlight CX-MS as an experimental approach to identify chemical cross-links within full-length integral membrane protein assemblies in a native-like lipid environment.
Collapse
Affiliation(s)
- Rathna J Veeramachaneni
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania
| | - Chelsee A Donelan
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania
| | - Kayce A Tomcho
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania; Department of Chemistry, Ohio Wesleyan University, Delaware, Ohio
| | - Shaili Aggarwal
- Graduate School of Pharmaceutical Sciences, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania
| | - David J Lapinsky
- Graduate School of Pharmaceutical Sciences, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Cascio
- Department of Chemistry and Biochemistry, Duquesne University Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Jiang Y, Zhang X, Nie H, Fan J, Di S, Fu H, Zhang X, Wang L, Tang C. Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping. Nat Commun 2024; 15:6060. [PMID: 39025860 PMCID: PMC11258254 DOI: 10.1038/s41467-024-50315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We address this challenge by developing an in-line system with systematic modulation of light intensity and irradiation time, which allows for a quantitative evaluation of diazirine photolysis and photo-reaction mechanism. Our results reveal a two-step pathway with mainly sequential generation of diazo and carbene intermediates. Diazo intermediate preferentially targets buried polar residues, many of which are inaccessible with known CXL probes for their limited reactivity. Moreover, we demonstrate that tuning light intensity and duration enhances selectivity towards polar residues by biasing diazo-mediated cross-linking reactions over carbene ones. This mechanistic dissection unlocks the full potential of PXL, paving the way for accurate distance mapping against protein structures and ultimately, unveiling protein dynamic behaviors.
Collapse
Affiliation(s)
- Yida Jiang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xinghe Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jianxiong Fan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shuangshuang Di
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hui Fu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiu Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lijuan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
3
|
Zhang B, Gao H, Gong Z, Zhao L, Zhong B, Sui Z, Liang Z, Zhang Y, Zhao Q, Zhang L. Improved Cross-Linking Coverage for Protein Complexes Containing Low Levels of Lysine by Using an Enrichable Photo-Cross-Linker. Anal Chem 2023. [PMID: 37303169 DOI: 10.1021/acs.analchem.2c05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical cross-linking coupled with mass spectrometry (XL-MS) is an important technique for the structural analysis of protein complexes where the coverage of amino acids and the identification of cross-linked sites are crucial. Photo-cross-linking has multisite reactivity and is valuable for the structural analysis of chemical cross-linking. However, a high degree of heterogeneity results from this multisite reactivity, which results in samples with higher complexity and lower abundance. Additionally, the applicability of photo-cross-linking is limited to purified protein complexes. In this work, we demonstrate a photo-cross-linker, alkynyl-succinimidyl-diazirine (ASD) with the reactive groups of N-hydroxysuccinimide ester and diazirine, as well as the click-enrichable alkyne group. Photo-cross-linkers can provide higher site reactivity for proteins that contain only a small number of lysine residues, thereby complementing the more commonly used lysine-targeting cross-linkers. By systematically analyzing proteins with differing lysine contents and differing flexibilities, we demonstrated clear enhancement in structure elucidation for proteins containing less lysine and with high flexibility. In addition, enrichment approaches of alkynyl-azide click chemistry conjugated with biotin-streptavidin purification (coinciding with parallel orthogonal digestion) improved the identification coverage of cross-links. We show that this photo-cross-linking approach can be used for membrane proteome-wide complex analysis. This method led to the identification of a total of 14066 lysine-X cross-linked site pairs from a total of 2784 proteins. Thus, this cross-linker is a valuable addition to a photo-cross-linking toolkit and improves the identification coverage of XL-MS in functional structure analysis.
Collapse
Affiliation(s)
- Beirong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhou Gong
- CAS Innovation Academy for Precision Measurement Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|
4
|
Diecker J, Dörner W, Rüschenbaum J, Mootz HD. Unraveling Structural Information of Multi-Domain Nonribosomal Peptide Synthetases by Using Photo-Cross-Linking Analysis with Genetic Code Expansion. Methods Mol Biol 2023; 2670:165-185. [PMID: 37184704 DOI: 10.1007/978-1-0716-3214-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large, multifunctional enzymes that facilitate the stepwise synthesis of modified peptides, many of which serve as important pharmaceutical products. Typically, NRPSs contain one module for the incorporation of one amino acid into the growing peptide chain. A module consists of the domains required for activation, covalent binding, condensation, termination, and optionally modification of the aminoacyl or peptidyl moiety. We here describe a protocol using genetically encoded photo-cross-linking amino acids to probe the 3D architecture of NRPSs by determining spatial proximity constraints. p-benzoyl-L-phenylalanine (BpF) is incorporated at positions of presumed contact interfaces between domains. The covalent cross-link products are visualized by SDS-PAGE-based methods and precisely mapped by tandem mass spectrometry. Originally intended to study the communication (COM) domains, a special pair of docking domains of unknown structure between two interacting subunits of one NRPS system, this cross-linking approach was also found to be useful to interrogate the spatial proximity of domains that are not connected on the level of the primary structure. The presented photo-cross-linking technique thus provides structural insights complementary to those obtained by protein crystallography and reports on the protein in solution.
Collapse
Affiliation(s)
- Julia Diecker
- University of Münster, Institute of Biochemistry, Münster, Germany
| | - Wolfgang Dörner
- University of Münster, Institute of Biochemistry, Münster, Germany
| | | | - Henning D Mootz
- University of Münster, Institute of Biochemistry, Münster, Germany.
| |
Collapse
|
5
|
Brüninghoff K, Wulff S, Dörner W, Geiss-Friedlander R, Mootz HD. A Photo-Crosslinking Approach to Identify Class II SUMO-1 Binders. Front Chem 2022; 10:900989. [PMID: 35707458 PMCID: PMC9191277 DOI: 10.3389/fchem.2022.900989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) is involved in various cellular processes and mediates known non-covalent protein-protein interactions by three distinct binding surfaces, whose interactions are termed class I to class III. While interactors for the class I interaction, which involves binding of a SUMO-interacting motif (SIM) to a hydrophobic groove in SUMO-1 and SUMO-2/3, are widely abundant, only a couple of examples have been reported for the other two types of interactions. Class II binding is conveyed by the E67 loop region on SUMO-1. Many previous studies to identify SUMO binders using pull-down or microarray approaches did not strategize on the SUMO binding mode. Identification of SUMO binding partners is further complicated due to the typically transient and low affinity interactions with the modifier. Here we aimed to identify SUMO-1 binders selectively enriched for class II binding. Using a genetically encoded photo-crosslinker approach, we have designed SUMO-1 probes to covalently capture class II SUMO-1 interactors by strategically positioning the photo-crosslinking moiety on the SUMO-1 surface. The probes were validated using known class II and class I binding partners. We utilized the probe with p-benzoyl-phenylalanine (BzF, also termed BpF or Bpa) at the position of Gln69 to identify binding proteins from mammalian cell extracts using mass spectrometry. By comparison with results obtained with a similarly designed SUMO-1 probe to target SIM-mediated binders of the class I type, we identified 192 and 96 proteins specifically enriched by either probe, respectively. The implicated preferential class I or class II binding modes of these proteins will further contribute to unveiling the complex interplay of SUMO-1-mediated interactions.
Collapse
Affiliation(s)
- Kira Brüninghoff
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Stephanie Wulff
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Wolfgang Dörner
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Ruth Geiss-Friedlander
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Henning D. Mootz
- Institute of Biochemistry, University of Münster, Münster, Germany
- *Correspondence: Henning D. Mootz,
| |
Collapse
|
6
|
Klykov O, Kopylov M, Carragher B, Heck AJR, Noble AJ, Scheltema RA. Label-free visual proteomics: Coupling MS- and EM-based approaches in structural biology. Mol Cell 2022; 82:285-303. [PMID: 35063097 PMCID: PMC8842845 DOI: 10.1016/j.molcel.2021.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Combining diverse experimental structural and interactomic methods allows for the construction of comprehensible molecular encyclopedias of biological systems. Typically, this involves merging several independent approaches that provide complementary structural and functional information from multiple perspectives and at different resolution ranges. A particularly potent combination lies in coupling structural information from cryoelectron microscopy or tomography (cryo-EM or cryo-ET) with interactomic and structural information from mass spectrometry (MS)-based structural proteomics. Cryo-EM/ET allows for sub-nanometer visualization of biological specimens in purified and near-native states, while MS provides bioanalytical information for proteins and protein complexes without introducing additional labels. Here we highlight recent achievements in protein structure and interactome determination using cryo-EM/ET that benefit from additional MS analysis. We also give our perspective on how combining cryo-EM/ET and MS will continue bridging gaps between molecular and cellular studies by capturing and describing 3D snapshots of proteomes and interactomes.
Collapse
Affiliation(s)
- Oleg Klykov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Mykhailo Kopylov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Bridget Carragher
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands
| | - Alex J Noble
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
7
|
Piersimoni L, Kastritis PL, Arlt C, Sinz A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons. Chem Rev 2021; 122:7500-7531. [PMID: 34797068 DOI: 10.1021/acs.chemrev.1c00786] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mass spectrometry (MS) has become one of the key technologies of structural biology. In this review, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined. We summarize the most important cross-linking reagents, software tools, and XL-MS workflows and highlight prominent examples for characterizing proteins, their assemblies, and interaction networks in vitro and in vivo. Computational modeling plays a crucial role in deriving 3D-structural information from XL-MS data. Integrating XL-MS with other techniques of structural biology, such as cryo-electron microscopy, has been successful in addressing biological questions that to date could not be answered. XL-MS is therefore expected to play an increasingly important role in structural biology in the future.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Biozentrum, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
8
|
Gutierrez C, Salituro LJ, Yu C, Wang X, DePeter SF, Rychnovsky SD, Huang L. Enabling Photoactivated Cross-Linking Mass Spectrometric Analysis of Protein Complexes by Novel MS-Cleavable Cross-Linkers. Mol Cell Proteomics 2021; 20:100084. [PMID: 33915260 PMCID: PMC8214149 DOI: 10.1016/j.mcpro.2021.100084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cross-linking mass spectrometry (XL-MS) is a powerful tool for studying protein-protein interactions and elucidating architectures of protein complexes. While residue-specific XL-MS studies have been very successful, accessibility of interaction regions nontargetable by specific chemistries remain difficult. Photochemistry has shown great potential in capturing those regions because of nonspecific reactivity, but low yields and high complexities of photocross-linked products have hindered their identification, limiting current studies predominantly to single proteins. Here, we describe the development of three novel MS-cleavable heterobifunctional cross-linkers, namely SDASO (Succinimidyl diazirine sulfoxide), to enable fast and accurate identification of photocross-linked peptides by MSn. The MSn-based workflow allowed SDASO XL-MS analysis of the yeast 26S proteasome, demonstrating the feasibility of photocross-linking of large protein complexes for the first time. Comparative analyses have revealed that SDASO cross-linking is robust and captures interactions complementary to residue-specific reagents, providing the foundation for future applications of photocross-linking in complex XL-MS studies.
Collapse
Affiliation(s)
- Craig Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Leah J Salituro
- Department of Chemistry, University of California, Irvine, California, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Sadie F DePeter
- Department of Chemistry, University of California, Irvine, California, USA
| | - Scott D Rychnovsky
- Department of Chemistry, University of California, Irvine, California, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| |
Collapse
|
9
|
Congdon MD, Gildersleeve JC. Enhanced Binding and Reduced Immunogenicity of Glycoconjugates Prepared via Solid-State Photoactivation of Aliphatic Diazirine Carbohydrates. Bioconjug Chem 2020; 32:133-142. [PMID: 33325683 DOI: 10.1021/acs.bioconjchem.0c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological conjugation is an important tool employed for many basic research and clinical applications. While useful, common methods of biological conjugation suffer from a variety of limitations, such as (a) requiring the presence of specific surface-exposed residues, such as lysines or cysteines, (b) reducing protein activity, and/or (c) reducing protein stability and solubility. Use of photoreactive moieties including diazirines, azides, and benzophenones provide an alternative, mild approach to conjugation. Upon irradiation with UV and visible light, these functionalities generate highly reactive carbenes, nitrenes, and radical intermediates. Many of these will couple to proteins in a non-amino-acid-specific manner. The main hurdle for photoactivated biological conjugation is very low yield. In this study, we developed a solid-state method to increase conjugation efficiency of diazirine-containing carbohydrates to proteins. Using this methodology, we produced multivalent carbohydrate-protein conjugates with unaltered protein charge and secondary structure. Compared to carbohydrate conjugates prepared with amide linkages to lysine residues using standard NHS conjugation, the photoreactive prepared conjugates displayed up to 100-fold improved binding to lectins and diminished immunogenicity in mice. These results indicate that photoreactive bioconjugation could be especially useful for in vivo applications, such as lectin targeting, where high binding affinity and low immunogenicity are desired.
Collapse
Affiliation(s)
- Molly D Congdon
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
10
|
Brüninghoff K, Aust A, Taupitz KF, Wulff S, Dörner W, Mootz HD. Identification of SUMO Binding Proteins Enriched after Covalent Photo-Cross-Linking. ACS Chem Biol 2020; 15:2406-2414. [PMID: 32786267 DOI: 10.1021/acschembio.0c00609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Post-translational modification with the small ubiquitin-like modifier (SUMO) affects thousands of proteins in the human proteome and is implicated in numerous cellular processes. The main outcome of SUMO conjugation is a rewiring of protein-protein interactions through recognition of the modifier's surface by SUMO binding proteins. The SUMO-interacting motif (SIM) mediates binding to a groove on SUMO; however, the low affinity of this interaction and the poor conservation of SIM sequences complicates the isolation and identification of SIM proteins. To address these challenges, we have designed and biochemically characterized monomeric and multimeric SUMO-2 probes with a genetically encoded photo-cross-linker positioned next to the SIM binding groove. Following photoinduced covalent capture, even weak SUMO binders are not washed away during the enrichment procedure, and very stringent washing conditions can be applied to remove nonspecifically binding proteins. A total of 329 proteins were isolated from nuclear HeLa cell extracts and identified using mass spectrometry. We found the molecular design of our probes was corroborated by the presence of many established SUMO interacting proteins and the high percentage (>90%) of hits containing a potential SIM sequence, as predicted by bioinformatic analyses. Notably, 266 of the 329 proteins have not been previously reported as SUMO binders using traditional noncovalent enrichment procedures. We confirmed SUMO binding with purified proteins and mapped the position of the covalent cross-links for selected cases. We postulate a new SIM in MRE11, involved in DNA repair. The identified SUMO binding candidates will help to reveal the complex SUMO-mediated protein network.
Collapse
|
11
|
Belsom A, Rappsilber J. Anatomy of a crosslinker. Curr Opin Chem Biol 2020; 60:39-46. [PMID: 32829152 DOI: 10.1016/j.cbpa.2020.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Crosslinking mass spectrometry has become a core technology in structural biology and is expanding its reach towards systems biology. Its appeal lies in a rapid workflow, high sensitivity and the ability to provide data on proteins in complex systems, even in whole cells. The technology depends heavily on crosslinking reagents. The anatomy of crosslinkers can be modular, sometimes comprising combinations of functional groups. These groups are defined by concepts including: reaction selectivity to increase information density, enrichability to improve detection, cleavability to enhance the identification process and isotope-labelling for quantification. Here, we argue that both concepts and functional groups need more thorough experimental evaluation, so that we can show exactly how and where they are useful when applied to crosslinkers. Crosslinker design should be driven by data, not only concepts. We focus on two crosslinker concepts with large consequences for the technology, namely reactive group reaction kinetics and enrichment groups.
Collapse
Affiliation(s)
- Adam Belsom
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
12
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
13
|
Zhao B, Reilly CP, Reilly JP. ETD-Cleavable Linker for Confident Cross-linked Peptide Identifications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1631-1642. [PMID: 31098958 DOI: 10.1007/s13361-019-02227-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Peptide cross-links formed using the homobifunctional-linker diethyl suberthioimidate (DEST) are shown to be ETD-cleavable. DEST has a spacer arm consisting of a 6-carbon alkyl chain and it cleaves at the amidino groups created upon reaction with primary amines. In ETD MS2 spectra, DEST cross-links can be recognized based on mass pairs consisting of peptide-NH2• and peptide+linker+NH3 ions, and backbone cleavages are more equally distributed over the two constituent peptides compared with collisional activation. Dead ends that are often challenging to distinguish from cross-links are diagnosed by intense reporter ions. ETD mass pairs can be used in MS3 experiments to confirm cross-link identifications. These features provide a simple but reliable approach to identify cross-links that should facilitate studies of protein complexes.
Collapse
Affiliation(s)
- Bingqing Zhao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Colin P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA.
| |
Collapse
|
14
|
Müller F, Graziadei A, Rappsilber J. Quantitative Photo-crosslinking Mass Spectrometry Revealing Protein Structure Response to Environmental Changes. Anal Chem 2019; 91:9041-9048. [PMID: 31274288 PMCID: PMC6639777 DOI: 10.1021/acs.analchem.9b01339] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Protein structures respond to changes in their chemical and physical environment. However, studying such conformational changes is notoriously difficult, as many structural biology techniques are also affected by these parameters. Here, the use of photo-crosslinking, coupled with quantitative crosslinking mass spectrometry (QCLMS), offers an opportunity, since the reactivity of photo-crosslinkers is unaffected by changes in environmental parameters. In this study, we introduce a workflow combining photo-crosslinking using sulfosuccinimidyl 4,4'-azipentanoate (sulfo-SDA) with our recently developed data-independent acquisition (DIA)-QCLMS. This novel photo-DIA-QCLMS approach is then used to quantify pH-dependent conformational changes in human serum albumin (HSA) and cytochrome C by monitoring crosslink abundances as a function of pH. Both proteins show pH-dependent conformational changes resulting in acidic and alkaline transitions. 93% and 95% of unique residue pairs (URP) were quantifiable across triplicates for HSA and cytochrome C, respectively. Abundance changes of URPs and hence conformational changes of both proteins were visualized using hierarchical clustering. For HSA we distinguished the N-F and the N-B form from the native conformation. In addition, we observed for cytochrome C acidic and basic conformations. In conclusion, our photo-DIA-QCLMS approach distinguished pH-dependent conformers of both proteins.
Collapse
Affiliation(s)
- Fränze Müller
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
| | - Andrea Graziadei
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics,
Institute of Biotechnology, Technische Universität
Berlin, 13355 Berlin, Germany
- Wellcome
Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom
| |
Collapse
|
15
|
de Graaf SC, Klykov O, van den Toorn H, Scheltema RA. Cross-ID: Analysis and Visualization of Complex XL-MS-Driven Protein Interaction Networks. J Proteome Res 2019; 18:642-651. [PMID: 30575379 PMCID: PMC6407916 DOI: 10.1021/acs.jproteome.8b00725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein interactions enable much more complex behavior than the sum of the individual protein parts would suggest and represents a level of biological complexity requiring full understanding when unravelling cellular processes. Cross-linking mass spectrometry has emerged as an attractive approach to study these interactions, and recent advances in mass spectrometry and data analysis software have enabled the identification of thousands of cross-links from a single experiment. The resulting data complexity is, however, difficult to understand and requires interactive software tools. Even though solutions are available, these represent an agglomerate of possibilities, and each features its own input format, often forcing manual conversion. Here we present Cross-ID, a visualization platform that links directly into the output of XlinkX for Proteome Discoverer but also plays well with other platforms by supporting a user-controllable text-file importer. The platform includes features like grouping, spectral viewer, gene ontology (GO) enrichment, post-translational modification (PTM) visualization, domains and secondary structure mapping, data set comparison, previsualization overlap check, and more. Validation of detected cross-links is available for proteins and complexes with known structure or for protein complexes through the DisVis online platform ( http://milou.science.uu.nl/cgi/services/DISVIS/disvis/ ). Graphs are exportable in PDF format, and data sets can be exported in tab-separated text files for evaluation through other software.
Collapse
Affiliation(s)
- Sebastiaan C de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Centre , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Oleg Klykov
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Centre , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Henk van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Centre , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Centre , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| |
Collapse
|
16
|
Tokmina-Lukaszewska M, Patterson A, Berry L, Scott L, Balasubramanian N, Bothner B. The Role of Mass Spectrometry in Structural Studies of Flavin-Based Electron Bifurcating Enzymes. Front Microbiol 2018; 9:1397. [PMID: 30026733 PMCID: PMC6041385 DOI: 10.3389/fmicb.2018.01397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/07/2018] [Indexed: 12/01/2022] Open
Abstract
For decades, biologists and biochemists have taken advantage of atomic resolution structural models of proteins from X-ray crystallography, nuclear magnetic resonance spectroscopy, and more recently cryo-electron microscopy. However, not all proteins relent to structural analyses using these approaches, and as the depth of knowledge increases, additional data elucidating a mechanistic understanding of protein function is desired. Flavin-based electron bifurcating enzymes, which are responsible for producing high energy compounds through the simultaneous endergonic and exergonic reduction of two intercellular electron carriers (i.e., NAD+ and ferredoxin) are one class of proteins that have challenged structural biologists and in which there is great interest to understand the mechanism behind electron gating. A limited number of X-ray crystallography projects have been successful; however, it is clear that to understand how these enzymes function, techniques that can reveal detailed in solution information about protein structure, dynamics, and interactions involved in the bifurcating reaction are needed. In this review, we cover a general set of mass spectrometry-based techniques that, combined with protein modeling, are capable of providing information on both protein structure and dynamics. Techniques discussed include surface labeling, covalent cross-linking, native mass spectrometry, and hydrogen/deuterium exchange. We cover how biophysical data can be used to validate computationally generated protein models and develop mechanistic explanations for regulation and performance of enzymes and protein complexes. Our focus will be on flavin-based electron bifurcating enzymes, but the broad applicability of the techniques will be showcased.
Collapse
Affiliation(s)
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Luke Berry
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Liam Scott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | | | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| |
Collapse
|
17
|
Fischer L, Rappsilber J. False discovery rate estimation and heterobifunctional cross-linkers. PLoS One 2018; 13:e0196672. [PMID: 29746514 PMCID: PMC5944926 DOI: 10.1371/journal.pone.0196672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022] Open
Abstract
False discovery rate (FDR) estimation is a cornerstone of proteomics that has recently been adapted to cross-linking/mass spectrometry. Here we demonstrate that heterobifunctional cross-linkers, while theoretically different from homobifunctional cross-linkers, need not be considered separately in practice. We develop and then evaluate the impact of applying a correct FDR formula for use of heterobifunctional cross-linkers and conclude that there are minimal practical advantages. Hence a single formula can be applied to data generated from the many different non-cleavable cross-linkers.
Collapse
Affiliation(s)
- Lutz Fischer
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
18
|
Ogorzalek TL, Hura GL, Belsom A, Burnett KH, Kryshtafovych A, Tainer JA, Rappsilber J, Tsutakawa SE, Fidelis K. Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy. Proteins 2018; 86 Suppl 1:202-214. [PMID: 29314274 DOI: 10.1002/prot.25452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/18/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022]
Abstract
Experimental data offers empowering constraints for structure prediction. These constraints can be used to filter equivalently scored models or more powerfully within optimization functions toward prediction. In CASP12, Small Angle X-ray Scattering (SAXS) and Cross-Linking Mass Spectrometry (CLMS) data, measured on an exemplary set of novel fold targets, were provided to the CASP community of protein structure predictors. As solution-based techniques, SAXS and CLMS can efficiently measure states of the full-length sequence in its native solution conformation and assembly. However, this experimental data did not substantially improve prediction accuracy judged by fits to crystallographic models. One issue, beyond intrinsic limitations of the algorithms, was a disconnect between crystal structures and solution-based measurements. Our analyses show that many targets had substantial percentages of disordered regions (up to 40%) or were multimeric or both. Thus, solution measurements of flexibility and assembly support variations that may confound prediction algorithms trained on crystallographic data and expecting globular fully-folded monomeric proteins. Here, we consider the CLMS and SAXS data collected, the information in these solution measurements, and the challenges in incorporating them into computational prediction. As improvement opportunities were only partly realized in CASP12, we provide guidance on how data from the full-length biological unit and the solution state can better aid prediction of the folded monomer or subunit. We furthermore describe strategic integrations of solution measurements with computational prediction programs with the aim of substantially improving foundational knowledge and the accuracy of computational algorithms for biologically-relevant structure predictions for proteins in solution.
Collapse
Affiliation(s)
- Tadeusz L Ogorzalek
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Greg L Hura
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Adam Belsom
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, U.K
| | - Kathryn H Burnett
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Andriy Kryshtafovych
- Protein Structure Prediction Center, Genome and Biomedical Sciences Facilities, University of California, Davis, CA, 95616, USA
| | - John A Tainer
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.,Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, U.K.,Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Susan E Tsutakawa
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Krzysztof Fidelis
- Protein Structure Prediction Center, Genome and Biomedical Sciences Facilities, University of California, Davis, CA, 95616, USA
| |
Collapse
|
19
|
Protein Tertiary Structure by Crosslinking/Mass Spectrometry. Trends Biochem Sci 2018; 43:157-169. [PMID: 29395654 PMCID: PMC5854373 DOI: 10.1016/j.tibs.2017.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022]
Abstract
Observing the structures of proteins within the cell and tracking structural changes under different cellular conditions are the ultimate challenges for structural biology. This, however, requires an experimental technique that can generate sufficient data for structure determination and is applicable in the native environment of proteins. Crosslinking/mass spectrometry (CLMS) and protein structure determination have recently advanced to meet these requirements and crosslinking-driven de novo structure determination in native environments is now possible. In this opinion article, we highlight recent successes in the field of CLMS with protein structure modeling and challenges it still holds. The earliest structural studies on proteins using crosslinking/mass spectrometry aimed to elucidate their tertiary three-dimensional structure. Tertiary structure modeling using crosslinking fell out of favor for almost two decades because crosslink data were not informative to aid structure modeling. Two game-changing trends emerged: using short-range crosslinkers that capture relevant modeling information and high-density crosslinking. High-density crosslinking uses unspecific crosslinkers to dramatically increase crosslink numbers. In addition, computational structure modeling methods made significant progress in exploiting CLMS data. The combination of high-density crosslinking and computational structure modeling enables the elucidation of tertiary protein structure in native environments. This sidesteps the key limitation of today’s structure determination methods, which are unable (except for a few, specialized methods) to probe the structure of proteins in cell lysates or even intact cells.
Collapse
|
20
|
Yu C, Huang L. Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal Chem 2018; 90:144-165. [PMID: 29160693 PMCID: PMC6022837 DOI: 10.1021/acs.analchem.7b04431] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
21
|
Piotrowski C, Sinz A. Structural Investigation of Proteins and Protein Complexes by Chemical Cross-Linking/Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:101-121. [PMID: 30617826 DOI: 10.1007/978-981-13-2200-6_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the last two decades, cross-linking combined with mass spectrometry (MS) has evolved as a valuable tool to gain structural insights into proteins and protein assemblies. Structural information is obtained by introducing covalent connections between amino acids that are in spatial proximity in proteins and protein complexes. The distance constraints imposed by the cross-linking reagent provide information on the three-dimensional arrangement of the covalently connected amino acid residues and serve as basis for de-novo or homology modeling approaches. As cross-linking/MS allows investigating protein 3D-structures and protein-protein interactions not only in-vitro, but also in-vivo, it is especially appealing for studying protein systems in their native environment. In this chapter, we describe the principles of cross-linking/MS and illustrate its value for investigating protein 3D-structures and for unraveling protein interaction networks.
Collapse
Affiliation(s)
- Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|