1
|
Kurapati N, Janda DC, Balla RJ, Huang SH, Leonard KC, Amemiya S. Nanogap-Resolved Adsorption-Coupled Electron Transfer by Scanning Electrochemical Microscopy: Implications for Electrocatalysis. Anal Chem 2022; 94:17956-17963. [PMID: 36512745 DOI: 10.1021/acs.analchem.2c04008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we demonstrate for the first time that the mechanism of adsorption-coupled electron-transfer (ACET) reactions can be identified experimentally. The electron transfer (ET) and specific adsorption of redox-active molecules are coupled in many electrode reactions with practical importance and fundamental interest. ACET reactions are often represented by a concerted mechanism. In reductive adsorption, an oxidant is simultaneously reduced and adsorbed as a reductant on the electrode surface through the ACET step. Alternatively, the non-concerted mechanism mediates outer-sphere reduction and adsorption separately when the reductant adsorption is reversible. In electrocatalysis, reversibly adsorbed reductants are ubiquitous and crucial intermediates. Moreover, electrocatalysis is complicated by the mixed mechanism based on simultaneous ACET and outer-sphere ET steps. In this work, we reveal the non-concerted mechanism for ferrocene derivatives adsorbed at highly oriented pyrolytic graphite as simple models. We enable the transient voltammetric mode of nanoscale scanning electrochemical microscopy (SECM) to kinetically control the adsorption step, which is required for the discrimination of non-concerted, concerted, and mixed mechanisms. Experimental voltammograms are compared with each mechanism by employing finite element simulation. The non-concerted mechanism is supported to indicate that the ACET step is intrinsically slower than its outer-sphere counterpart by at least four orders of magnitude. This finding implies that an ACET step is facilitated thermodynamically but may not be necessarily accelerated or catalyzed by the adsorption of the reductant. SECM-based transient voltammetry will become a powerful tool to resolve and understand electrocatalytic ACET reactions at the elementary level.
Collapse
Affiliation(s)
- Niraja Kurapati
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Donald C Janda
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ryan J Balla
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin C Leonard
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Kurapati N, Pathirathna P, Ziegler CJ, Amemiya S. Adsorption and Electron‐Transfer Mechanisms of Ferrocene Carboxylates and Sulfonates at Highly Oriented Pyrolytic Graphite. ChemElectroChem 2019. [DOI: 10.1002/celc.201901664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Niraja Kurapati
- Department of Chemistry University of Pittsburgh Pittsburgh, PA 15260 USA
| | | | | | - Shigeru Amemiya
- Department of Chemistry University of Pittsburgh Pittsburgh, PA 15260 USA
| |
Collapse
|
3
|
Kurapati N, Pathirathna P, Chen R, Amemiya S. Voltammetric Measurement of Adsorption Isotherm for Ferrocene Derivatives on Highly Oriented Pyrolytic Graphite. Anal Chem 2018; 90:13632-13639. [PMID: 30350623 DOI: 10.1021/acs.analchem.8b03883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Reversible and specific adsorption of redox-active molecules from the electrolyte solution to the electrode surface is an important process and is often diagnosed by cyclic voltammetry (CV). The entire voltammogram, however, is rarely analyzed quantitatively, thereby completely missing or incorrectly extracting inherent information about the adsorption isotherm. Herein, we report CV measurements of the adsorption isotherm for ferrocene derivatives on the basal plane of highly oriented pyrolytic graphite (HOPG) to quantitatively understand the thermodynamics of ferrocene-HOPG and ferrocene-ferrocene interactions at HOPG/water interfaces. Specifically, reversible CV of (ferrocenylmethyl)trimethylammonium, ferrocenemethanol, and 1,1'-ferrocenedimethanol is obtained at 0.05-10 V/s to confirm that only reduced forms of ferrocene derivatives are adsorbed on HOPG. Finite element analysis of the entire voltammogram yields the Frumkin isotherm to separately parametrize ferrocene-HOPG and ferrocene-ferrocene interactions. Adsorption of all ferrocene derivatives is driven by similarly weak ferrocene-HOPG interactions with free energy changes of approximately -20 kJ/mol. Adsorption of ferrocenemethanol is strengthened by intermolecular hydrogen bonding, which is quantitatively represented by a free energy change of -8 kJ/mol for surface saturation and is qualitatively characterized by a pair of sharp adsorption and desorption peaks following a pair of diffusional peaks. By contrast, adsorption of (ferrocenylmethyl)trimethylammonium and 1,1'-ferrocenedimethanol remains weak because of electrostatic repulsion and weak hydrogen bonding, respectively, which correspond to the respective free energy changes of +0.7 and -3 kJ/mol for surface saturation. The unfavorable or weakly favorable intermolecular interactions broaden or narrow a diffusional peak during the forward scan, respectively, without yielding a post peak.
Collapse
Affiliation(s)
- Niraja Kurapati
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Pavithra Pathirathna
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Ran Chen
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Shigeru Amemiya
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
4
|
Chen R, Najarian AM, Kurapati N, Balla RJ, Oleinick A, Svir I, Amatore C, McCreery RL, Amemiya S. Self-Inhibitory Electron Transfer of the Co(III)/Co(II)-Complex Redox Couple at Pristine Carbon Electrode. Anal Chem 2018; 90:11115-11123. [PMID: 30118206 DOI: 10.1021/acs.analchem.8b03023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Applications of conducting carbon materials for highly efficient electrochemical energy devices require a greater fundamental understanding of heterogeneous electron-transfer (ET) mechanisms. This task, however, is highly challenging experimentally, because an adsorbing carbon surface may easily conceal its intrinsic reactivity through adventitious contamination. Herein, we employ nanoscale scanning electrochemical microscopy (SECM) and cyclic voltammetry to gain new insights into the interplay between heterogeneous ET and adsorption of a Co(III)/Co(II)-complex redox couple at the contamination-free surface of electron-beam-deposited carbon (eC). Specifically, we investigate the redox couple of tris(1,10-phenanthroline)cobalt(II), Co(phen)32+, as a promising mediator for dye-sensitized solar cells and redox flow batteries. A pristine eC surface overlaid with KCl is prepared in vacuum, protected from contamination in air, and exposed to an ultrapure aqueous solution of Co(phen)32+ by the dissolution of the protective KCl layer. We employ SECM-based nanogap voltammetry to quantitatively demonstrate that Co(phen)32+ is adsorbed on the pristine eC surface to electrostatically self-inhibit outer-sphere ET of nonadsorbed Co(phen)33+ and Co(phen)32+. Strong electrostatic repulsion among Co(phen)32+ adsorbates is also demonstrated by SECM-based nanogap voltammetry and cyclic voltammetry. Quantitatively, self-inhibitory ET is characterized by a linear decrease in the standard rate constant of Co(phen)32+ oxidation with a higher surface concentration of Co(phen)32+ at the formal potential. This unique relationship is consistent not with the Frumkin model of double layer effects, but with the Amatore model of partially blocked electrodes as extended for self-inhibitory ET. Significantly, the complicated coupling of electron transfer and surface adsorption is resolved by combining nanoscale and macroscale voltammetric methods.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Amin Morteza Najarian
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada
| | - Niraja Kurapati
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Ryan J Balla
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Alexander Oleinick
- PASTEUR, Département de Chimie , École Normale Supérieure, PSL Université, Sorbonne Université , CNRS, 75005 Paris , France
| | - Irina Svir
- PASTEUR, Département de Chimie , École Normale Supérieure, PSL Université, Sorbonne Université , CNRS, 75005 Paris , France
| | - Christian Amatore
- PASTEUR, Département de Chimie , École Normale Supérieure, PSL Université, Sorbonne Université , CNRS, 75005 Paris , France.,State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , China
| | - Richard L McCreery
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada
| | - Shigeru Amemiya
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
5
|
Schorr NB, Jiang AG, Rodríguez-López J. Probing Graphene Interfacial Reactivity via Simultaneous and Colocalized Raman–Scanning Electrochemical Microscopy Imaging and Interrogation. Anal Chem 2018; 90:7848-7854. [DOI: 10.1021/acs.analchem.8b00730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Noah B. Schorr
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Annie G. Jiang
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Morteza Najarian A, Chen R, Balla RJ, Amemiya S, McCreery RL. Ultraflat, Pristine, and Robust Carbon Electrode for Fast Electron-Transfer Kinetics. Anal Chem 2017; 89:13532-13540. [PMID: 29132207 DOI: 10.1021/acs.analchem.7b03903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron-beam (e-beam) deposition of carbon on a gold substrate yields a very flat (0.43 nm of root-mean-square roughness), amorphous carbon film consisting of a mixture of sp2- and sp3-hybridized carbon with sufficient conductivity to avoid ohmic potential error. E-beam carbon (eC) has attractive properties for conventional electrochemistry, including low background current and sufficient transparency for optical spectroscopy. A layer of KCl deposited by e-beam to the eC surface without breaking vacuum protects the surface from the environment after fabrication until dissolved by an ultrapure electrolyte solution. Nanogap voltammetry using scanning electrochemical microscopy (SECM) permits measurement of heterogeneous standard electron-transfer rate constants (k°) in a clean environment without exposure of the electrode surface to ambient air. The ultraflat eC surface permitted nanogap voltammetry with very thin electrode-to-substrate gaps, thus increasing the diffusion limit for k° measurement to >14 cm/s for a gap of 44 nm. Ferrocene trimethylammonium as the redox mediator exhibited a diffusion-limited k° for the previously KCl-protected eC surface, while k° was 1.45 cm/s for unprotected eC. The k° for Ru(NH3)63+/2+ increased from 1.7 cm/s for unprotected eC to above the measurable limit of 6.9 cm/s for a KCl-protected eC electrode.
Collapse
Affiliation(s)
- Amin Morteza Najarian
- Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2R3, Canada.,National Institute for Nanotechnology, National Research Council Canada , Edmonton, Alberta T6G 2G2, Canada
| | - Ran Chen
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Ryan J Balla
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Richard L McCreery
- Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2R3, Canada.,National Institute for Nanotechnology, National Research Council Canada , Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
7
|
Bhat MA, Nioradze N, Kim J, Amemiya S, Bard AJ. In Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of Magnetite Electrodeposition by Scanning Electrochemical Microscopy. J Am Chem Soc 2017; 139:15891-15899. [DOI: 10.1021/jacs.7b08835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mohsin A. Bhat
- Center
for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department
of Chemistry, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Nikoloz Nioradze
- The
R. Agladze Institute of Inorganic Chemistry and Electrochemistry, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Jiyeon Kim
- Department
of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Shigeru Amemiya
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Allen J. Bard
- Center
for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Tan SY, Zhang J, Bond AM, Macpherson JV, Unwin PR. Influence of Tip and Substrate Properties and Nonsteady-State Effects on Nanogap Kinetic Measurements: Response to Comment on “Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements”. Anal Chem 2017. [PMID: 28644008 DOI: 10.1021/acs.analchem.7b01664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sze-yin Tan
- Department
of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jie Zhang
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Alan M. Bond
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Julie V. Macpherson
- Department
of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| |
Collapse
|