1
|
Ye C, Zhao Z, Lai P, Chen C, Jian F, Liang H, Guo Q. Strategies for the detection of site-specific DNA methylation and its application, opportunities and challenges in the field of electrochemical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5496-5508. [PMID: 39051422 DOI: 10.1039/d4ay00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various biological processes. Aberrant DNA methylation is closely associated with the onset of diseases, and the specific localization of methylation sites in the genome offers further insight into the connection between methylation and diseases. Currently, there are numerous methods available for site-specific methylation detection. Electrochemical biosensors have garnered significant attention due to their distinct advantages, such as rapidity, simplicity, high sensitivity, low cost, and the potential for miniaturization. In this paper, we present a systematic review of the primary sensing strategies utilized in the past decade for analyzing site-specific methylation and their applications in electrochemical sensors, from a novel perspective focusing on the localization analysis of site-specific methylation. These strategies include bisulfite treatment, restriction endonuclease treatment, other sensing strategies, and deamination without direct bisulfite treatment. We hope that this paper can offer ideas and references for establishing site-specific methylation electrochemical analysis in clinical practice.
Collapse
Affiliation(s)
- Chenliu Ye
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Zhibin Zhao
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Penghui Lai
- The Second Hospital of Longyan, Longyan 364000, China
| | - Chunmei Chen
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Fumei Jian
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Haiying Liang
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Qiongying Guo
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| |
Collapse
|
2
|
Khoshfetrat SM, Seyed Dorraji P, Shayan M, Khatami F, Omidfar K. Smartphone-Based Electrochemiluminescence for Visual Simultaneous Detection of RASSF1A and SLC5A8 Tumor Suppressor Gene Methylation in Thyroid Cancer Patient Plasma. Anal Chem 2022; 94:8005-8013. [PMID: 35616262 DOI: 10.1021/acs.analchem.2c01132] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Visual one-step simultaneous detection of low-abundance methylation is a crucial challenge in early cancer diagnosis in a simple manner. Through the design of a closed split bipolar electrochemistry system (BE), detection of promoter methylation of tumor suppressor genes in papillary thyroid cancer, RASSF1A and SLC5A8, was achieved using electrochemiluminescence. For this purpose, electrochemiluminescence of luminol loaded into the Fe3O4@UiO-66 and gold nanorod-functionalized graphite-like carbon nitride nanosheet (AuNRs@C3N4 NS), separately, on the anodic and cathodic pole bipolar electrodes (BPEs) in two different chambers of a bipolar cell were recorded on a smartphone camera. To provide the same electric potential (ΔEelec) through the BPEs to conduct simultaneous light emission, as well as to achieve higher sensitivity, anodic and cathodic poles BPEs were separately connected to ruthenium nanoparticles electrodeposited on nitrogen-doped graphene-coated Cu foam (fCu/N-GN/RuNPs) to provide a hydrogen evolution reaction (HER) and polycatechol-modified reduced graphene oxide/pencil graphite electrode (PC-rGO/PGE) to provide electrooxidation of hydrazine. Moreover, taking advantages of the strong cathodic ECL activity due to the roles of AuNRs, as well as the high density of capture probes on the UiO-66 and Fe3O4 roles in improving the signal-to-background ratio (S/B) in complicated plasma media, a sensitive visual ECL immunosensor was developed to detect two different genes as model target analytes in patient plasma samples. The ability of discrimination of methylation levels as low as 0.01% and above 90% clinical sensitivity in thyroid cancer patient plasma implies that the present strategy is able to diagnose cancer early, as well as monitor responses of patients to therapeutic agents.
Collapse
Affiliation(s)
- Seyyed Mehdi Khoshfetrat
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd 6869199-69737, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Islamic Republic of Iran
| | - Parisa Seyed Dorraji
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 199389373, Iran
| | - Mohsen Shayan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road B3H 4R2 Halifax, Canada
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Islamic Republic of Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Iran
| |
Collapse
|
3
|
Zhou L, Kasai N, Nakajima H, Kato S, Mao S, Uchiyama K. In Situ Single-Cell Stimulation and Real-Time Electrochemical Detection of Lactate Response Using a Microfluidic Probe. Anal Chem 2021; 93:8680-8686. [PMID: 34107213 DOI: 10.1021/acs.analchem.1c01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolism of a single cell, even within the same organization, differs from other cells by orders of magnitude. Single-cell analysis provides key information for early diagnosis of cancer as well as drug screening. Any slight change in the microenvironment may affect the state of a single cell. Timely and effective cell monitoring is conducive to better understand the behavior of single cells. The immediate response of a single cell described in this study is a liquid transfer-based approach for real-time electrochemical detection. The cell was in situ stimulated by continuous flow with glucose, and lactate secreted from the cell would diffuse into the microflow. The microflow was aspirated into the detection channel where lactate was then decomposed by coupled enzyme reactions and detected by an electrode. This work provides a novel approach for detecting lactate response from a single cell by noninvasive measurements, and the position resolution of the microfluidic probe reaches the level of a single cell and permits individual heterogeneity in cells to be explored in the diagnosis and treatment of cancer as well as in many other situations.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Nahoko Kasai
- University Education Center, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Shungo Kato
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Sifeng Mao
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Katsumi Uchiyama
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| |
Collapse
|
4
|
Zhang S, Huang J, Lu J, Liu M, Chen X, Su S, Mo F, Zheng J. Electrochemical and Optical Biosensing Strategies for DNA Methylation Analysis. Curr Med Chem 2020; 27:6159-6187. [DOI: 10.2174/0929867326666190903161750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
DNA methylation is considered as a crucial part of epigenetic modifications and a popular
research topic in recent decades. It usually occurs with a methyl group adding to the fifth carbon
atom of cytosine while the base sequence of DNA remains unchanged. DNA methylation has significant
influences on maintaining cell functions, genetic imprinting, embryonic development and
tumorigenesis procedures and hence the analysis of DNA methylation is of great medical significance.
With the development of analytical techniques and further research on DNA methylation,
numerous DNA methylation detection strategies based on biosensing technology have been developed
to fulfill various study requirements. This article reviewed the development of electrochemistry
and optical biosensing analysis of DNA methylation in recent years; in addition, we also reviewed
some recent advances in the detection of DNA methylation using new techniques, such as
nanopore biosensors, and highlighted the key technical and biological challenges involved in these
methods. We hope this paper will provide useful information for the selection and establishment of
analysis of DNA methylation.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Jian Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jingrun Lu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Min Liu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Xi Chen
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Shasha Su
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
5
|
Feng Q, Qin L, Wang M, Wang P. Signal-on electrochemical detection of DNA methylation based on the target-induced conformational change of a DNA probe and exonuclease III-assisted target recycling. Biosens Bioelectron 2019; 149:111847. [PMID: 31733487 DOI: 10.1016/j.bios.2019.111847] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022]
Abstract
A promising electrochemical system was explored for DNA methylation detection according to the construction of a signal-on biosensor. Based on the ingenious design of probe DNA and auxiliary DNA, methylated target DNA triggered the exonuclease III (Exo III) digestion of auxiliary DNA from 3'-terminus, resulting in the conformational change of probe DNA with an electroactive methylene blue (MB) tag at 5'-terminus. Consequently, the MB tag in the probe DNA was close to the electrode surface for electron transfer, generating an increased current signal. Because of the target recycling of methylated DNA, significant signal amplification was obtained. Moreover, bisulfite conversion conferred an efficient approach for the universal analysis of any CpG sites without the restriction of specific DNA sequence. As a result, the target DNA with different methylation statuses were clearly recognized, and the fully methylated DNA was quantified in a wide range from 10 fM to 100 pM, with a detection limit of 4 fM. The present work realized the assay of methylated target DNA in serum samples with satisfactory results, illustrating the application performance of the system in complex sample matrix.
Collapse
Affiliation(s)
- Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Li Qin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mengying Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
6
|
Feng Q, Wang M, Qin L, Wang P. Dual-Signal Readout of DNA Methylation Status Based on the Assembly of a Supersandwich Electrochemical Biosensor without Enzymatic Reaction. ACS Sens 2019; 4:2615-2622. [PMID: 31507174 DOI: 10.1021/acssensors.9b00720] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly sensitive and selective biosensing system was designed to analyze DNA methylation using a dual-signal readout technique in combination with the signal amplification of supersandwich DNA structure. Through the ingenious design of target-triggered cascade of hybridization chain reaction, one target DNA could initiate the formation of supersandwich structure with multiple signal probes. As a result, one-to-multiple amplification effect was achieved, which conferred high sensitivity to target molecular recognition. Based on probe 1 labeled with ferrocene and probe 2 modified with methylene blue, the target DNA was clearly recognized by two electrochemical signals at independent potentials, which was helpful for the acquisition of more accurate detection results. Taking advantage of bisulfite conversion, the methylation status of cytosine (C) was changed to nucleic acid sequence status, which facilitated the hybridization-based detection without enzymatic reaction. Consequently, the methylated DNA was detected at the femtomolar level with satisfactory analytical parameters. The proposed system was effectively used to assess methylated DNA in human blood serum samples, illuminating the possibility of the sensing platform for applications in disease diagnosis and biochemistry research.
Collapse
Affiliation(s)
- Qiumei Feng
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengying Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Li Qin
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
7
|
Hu Y, Ma P, Feng Y, Li P, Wang H, Guo Y, Mao Q, Xue W. Predictive value of the serum RASSF10 promoter methylation status in gastric cancer. J Int Med Res 2019; 47:2890-2900. [PMID: 31119967 PMCID: PMC6683939 DOI: 10.1177/0300060519848924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background This study aimed to investigate whether the detection of methylation in the promoter of the Ras association domain family 10 gene (RASSF10) in the serum of patients with gastric cancer (GC) by methylation-specific PCR (MSP) can be used as a diagnostic and prognostic indicator of GC. Methods We used MSP to examine RASSF10 methylation levels in the serum and/or tumor samples from 100 GC patients, 50 patients with chronic atrophic gastritis (CAG), and 45 healthy controls (HC). We also analyzed clinicopathological and follow-up data. Results Our results showed that the rate of serum RASFF10 promoter methylation among patients with GC (49/100) was higher than in those with CAG (1/50) or HC (0/45). Moreover, the RASSF10 methylation status was consistent between serum and tumor tissues. GC patients with serum RASSF10 promoter methylation had significantly shorter overall survival and disease-free survival times than GC patients without serum RASSF10 promoter methylation. Multivariable Cox regression analysis showed that serum RASSF10 promoter methylation and lymph node metastasis both correlated with reduced survival in GC patients. Conclusions Detection of the serum RASSF10 methylation status by MSP is feasible as a diagnostic and prognostic indicator of GC.
Collapse
Affiliation(s)
- Yilin Hu
- 1 Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China.,2 Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Ma
- 1 Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Feng
- 1 Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Li
- 1 Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Wang
- 3 Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yibing Guo
- 2 Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qinsheng Mao
- 1 Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wanjiang Xue
- 1 Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China.,2 Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
8
|
Li W, Chen S, Xu D, Wen Q, Yang T, Liu J. A DNA as a Substrate and an Enzyme: Direct Profiling of Methyltransferase Activity by Cytosine Methylation of a DNAzyme. Chemistry 2018; 24:14500-14505. [DOI: 10.1002/chem.201802822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Wang Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
- Department of Chemistry, Water Institute and Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Siyi Chen
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Dong Xu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Qian Wen
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Tao Yang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose; College of Food Science and Engineering; Central South University of Forestry and Technology; Changsha 410004 P. R. China
| | - Juewen Liu
- Department of Chemistry, Water Institute and Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|