1
|
Bender J, Kundlacz T, Rudden LSP, Frick M, Bieber J, Degiacomi MT, Schmidt C. Ca 2+-dependent lipid preferences shape synaptotagmin-1 C2A and C2B dynamics: Insights from experiments and simulations. Structure 2024; 32:1691-1704.e5. [PMID: 39173623 DOI: 10.1016/j.str.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/04/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
Signal transmission between neurons requires exocytosis of neurotransmitters from the lumen of synaptic vesicles into the synaptic cleft. Following an influx of Ca2+, this process is facilitated by the Ca2+ sensor synaptotagmin-1. The underlying mechanisms involve electrostatic and hydrophobic interactions tuning the lipid preferences of the two C2 domains of synaptotagmin-1; however, the details are still controversially discussed. We, therefore, follow a multidisciplinary approach and characterize lipid and membrane binding of the isolated C2A and C2B domains. We first target interactions with individual lipid species, and then study interactions with model membranes of liposomes. Finally, we perform molecular dynamics simulations to unravel differences in membrane binding. We found that both C2 domains, as a response to Ca2+, insert into the lipid membrane; however, C2A adopts a more perpendicular orientation while C2B remains parallel. These findings allow us to propose a mechanism for synaptotagmin-1 during membrane fusion.
Collapse
Affiliation(s)
- Julian Bender
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle, Germany
| | - Til Kundlacz
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle, Germany; Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Lucas S P Rudden
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Melissa Frick
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle, Germany
| | - Julia Bieber
- Department of Chemistry - Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Matteo T Degiacomi
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle, Germany; Department of Chemistry - Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Jayasekera HS, Mohona FA, Ewbank M, Marty MT. Simultaneous Native Mass Spectrometry Analysis of Single and Double Mutants To Probe Lipid Binding to Membrane Proteins. Anal Chem 2024; 96:10426-10433. [PMID: 38859611 PMCID: PMC11215972 DOI: 10.1021/acs.analchem.4c01704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Lipids are critical modulators of membrane protein structure and function. However, it is challenging to investigate the thermodynamics of protein-lipid interactions because lipids can simultaneously bind membrane proteins at different sites with different specificities. Here, we developed a native mass spectrometry (MS) approach using single and double mutants to measure the relative energetic contributions of specific residues on Aquaporin Z (AqpZ) toward cardiolipin (CL) binding. We first mutated potential lipid-binding residues on AqpZ, and mixed mutant and wild-type proteins together with CL. By using native MS to simultaneously resolve lipid binding to the mutant and wild-type proteins in a single spectrum, we directly determined the relative affinities of CL binding, thereby revealing the relative Gibbs free energy change for lipid binding caused by the mutation. Comparing different mutants revealed that W14 contributes to the tightest CL binding site, with R224 contributing to a lower affinity site. Using double mutant cycling, we investigated the synergy between W14 and R224 sites on CL binding. Overall, this novel native MS approach provides unique insights into the binding of lipids to specific sites on membrane proteins.
Collapse
Affiliation(s)
- Hiruni S. Jayasekera
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Farhana Afrin Mohona
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Megan Ewbank
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Michael T. Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
3
|
Han Z, Hishida S, Chen LC. Formation of Alternating Surfactant-Enriched and Surfactant-Depleted Phases in the Taylor Cone of a Nanoelectrospray. Anal Chem 2024; 96:7297-7303. [PMID: 38682329 DOI: 10.1021/acs.analchem.4c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The electrospray ionization of highly conductive solutions containing Triton X-100, a nonionic surfactant, is found to induce alternating periods of surfactant enrichment and depletion when the concentration of the surfactant is near the critical micelle concentration (CMC) and when the flow rate is on the order of 10 nL/min. Analyzing the surfactant-protein mixture shows that the protein is partially denatured during the surfactant enrichment. The measurement of the phospholipid and oligosaccharide mixture prepared in the surfactant solution shows that the ion signal of the lipid is in phase with, and the hydrophilic oligosaccharide is out of phase with the surfactant signal. The results suggest that this novel phenomenon can be exploited for in situ separation of compounds in ESI-MS. Besides the ion signal, the condition of the alternating phase is also reflected in the spray current and Taylor cone's apex angle. The phase separation is likely related to the formation of a micelle in the Taylor cone and can be selectively triggered by tuning the flow rate with emitter voltage for an on-demand application.
Collapse
Affiliation(s)
- Zhongbao Han
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Shoki Hishida
- Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Lee Chuin Chen
- Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| |
Collapse
|
4
|
Lawrence SS, Kirschbaum C, Bennett JL, Lutomski CA, El-Baba TJ, Robinson CV. Phospholipids Differentially Regulate Ca 2+ Binding to Synaptotagmin-1. ACS Chem Biol 2024; 19:953-961. [PMID: 38566504 PMCID: PMC11040605 DOI: 10.1021/acschembio.3c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Synaptotagmin-1 (Syt-1) is a calcium sensing protein that is resident in synaptic vesicles. It is well established that Syt-1 is essential for fast and synchronous neurotransmitter release. However, the role of Ca2+ and phospholipid binding in the function of Syt-1, and ultimately in neurotransmitter release, is unclear. Here, we investigate the binding of Ca2+ to Syt-1, first in the absence of lipids, using native mass spectrometry to evaluate individual binding affinities. Syt-1 binds to one Ca2+ with a KD ∼ 45 μM. Each subsequent binding affinity (n ≥ 2) is successively unfavorable. Given that Syt-1 has been reported to bind anionic phospholipids to modulate the Ca2+ binding affinity, we explored the extent that Ca2+ binding was mediated by selected anionic phospholipid binding. We found that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and dioleoylphosphatidylserine (DOPS) positively modulated Ca2+ binding. However, the extent of Syt-1 binding to phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) was reduced with increasing [Ca2+]. Overall, we find that specific lipids differentially modulate Ca2+ binding. Given that these lipids are enriched in different subcellular compartments and therefore may interact with Syt-1 at different stages of the synaptic vesicle cycle, we propose a regulatory mechanism involving Syt-1, Ca2+, and anionic phospholipids that may also control some aspects of vesicular exocytosis.
Collapse
Affiliation(s)
- Sophie
A. S. Lawrence
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carla Kirschbaum
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Jack L. Bennett
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Corinne A. Lutomski
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Tarick J. El-Baba
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carol. V. Robinson
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
5
|
Kundlacz T, Schmidt C. Deciphering Solution and Gas-Phase Interactions between Peptides and Lipids by Native Mass Spectrometry. Anal Chem 2023; 95:17292-17299. [PMID: 37956985 PMCID: PMC10688224 DOI: 10.1021/acs.analchem.3c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Many biological processes depend on the interactions between proteins and lipids. Accordingly, the analysis of protein-lipid complexes has become increasingly important. Native mass spectrometry is often used to identify and characterize specific protein-lipid interactions. However, it requires the transfer of the analytes into the gas phase, where electrostatic interactions are enhanced and hydrophobic interactions do not exist. Accordingly, the question remains whether interactions that are observed in the gas phase accurately reflect interactions that are formed in solution. Here, we systematically explore noncovalent interactions between the antimicrobial peptide LL-37 and glycerophospholipids containing different headgroups or varying in fatty acyl chain length. We observe differences in peak intensities for different peptide-lipid complexes, as well as their relative binding strength in the gas phase. Accordingly, we found that ion intensities and gas-phase stability correlate well for complexes formed by electrostatic interactions. Probing hydrophobic interactions by varying the length of fatty acyl chains, we detected differences in ion intensities based on hydrophobic interactions formed in solution. The relative binding strength of these peptide-lipid complexes revealed only minor differences originating from van der Waals interactions and different binding modes of lipid headgroups in solution. In summary, our results demonstrate that hydrophobic interactions are reflected by ion intensities, while electrostatic interactions, including van der Waals interactions, determine the gas-phase stability of complexes.
Collapse
Affiliation(s)
- Til Kundlacz
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Institute
of Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Department
of Chemistry—Biochemistry, Johannes
Gutenberg University Mainz, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| |
Collapse
|
6
|
Mass spectrometry of intact membrane proteins: shifting towards a more native-like context. Essays Biochem 2023; 67:201-213. [PMID: 36807530 PMCID: PMC10070488 DOI: 10.1042/ebc20220169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.
Collapse
|
7
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
9
|
Swansiger AK, Marty MT, Prell JS. Fourier-Transform Approach for Reconstructing Macromolecular Mass Defect Profiles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:172-180. [PMID: 34913687 DOI: 10.1021/jasms.1c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
State-of-the-art native mass spectrometry (MS) methods have been developed for analysis of highly heterogeneous intact complexes and have provided much insight into the structure and properties of noncovalent assemblies that can be difficult to study using denatured proteins. These native MS methods can often be used to study even highly polydisperse membrane proteins embedded in detergent micelles, nanodiscs, and other membrane mimics. However, characterizing highly polydisperse native complexes which are also heterogeneous presents additional challenges for native MS. Macromolecular mass defect (MMD) analysis aims to characterize heterogeneous ion populations obfuscated by adduct polydispersity and reveal the distribution of "base" masses, and was recently implemented in the Bayesian analysis software UniDec. Here, we illustrate an alternative, orthogonal MMD analysis method implemented in the deconvolution program iFAMS, which takes advantage of Fourier transform (FT) to deconvolve low-resolution data with few user-input parameters and which can provide high quality results even for mass spectra with a signal-to-noise ratio of ∼5:1. Agreement between this method, which is based on frequency-domain data, and the mass-domain algorithm of UniDec provides strong evidence that both methods can accurately characterize highly polydisperse and heterogeneous ion populations. The FT algorithm is expected to be very useful in characterizing many types of analytes ranging from membrane proteins to polymer-conjugated proteins, branched polymers, and other large analytes, as well as for reconstructing isotope profiles for highly complex but still isotope-resolved mass spectra.
Collapse
Affiliation(s)
- Andrew K Swansiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
10
|
Donor MT, Wilson JW, Shepherd SO, Prell JS. Lipid Head Group Adduction to Soluble Proteins Follows Gas-Phase Basicity Predictions: Dissociation Barriers and Charge Abstraction. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116670. [PMID: 34421332 PMCID: PMC8372978 DOI: 10.1016/j.ijms.2021.116670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Native mass spectrometry analysis of membrane proteins has yielded many useful insights in recent years with respect to membrane protein-lipid interactions, including identifying specific interactions and even measuring binding affinities based on observed abundances of lipid-bound ions after collision-induced dissociation (CID). However, the behavior of non-covalent complexes subjected to extensive CID can in principle be affected by numerous factors related to gas-phase chemistry, including gas-phase basicity (GB) and acidity, shared-proton bonds, and other factors. A recent report from our group showed that common lipids span a wide range of GB values. Notably, phosphatidylcholine (PC) and sphingomyelin lipids are more basic than arginine, suggesting they may strip charge upon dissociation in positive ion mode, while phosphoserine lipids are slightly less basic than arginine and may form especially strong shared-proton bonds. Here, we use CID to probe the strength of non-specific gas-phase interactions between lipid head groups and several soluble proteins, used to deliberately avoid possible physiological protein-lipid interactions. The strengths of the protein-head group interactions follow the trend predicted based solely on lipid and amino acid GBs: phosphoserine (PS) head group forms the strongest bonds with these proteins and out-competes the other head groups studied, while glycerophosphocholine (GPC) head groups form the weakest interactions and dissociate carrying away a positive charge. These results indicate that gas-phase thermochemistry can play an important role in determining which head groups remain bound to protein ions with native-like structures and charge states in positive ion mode upon extensive collisional activation.
Collapse
Affiliation(s)
- Micah T. Donor
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
| | - Jesse W. Wilson
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
| | - Samantha O. Shepherd
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, OR 97403-1252
| |
Collapse
|
11
|
Scratching the surface: native mass spectrometry of peripheral membrane protein complexes. Biochem Soc Trans 2021; 48:547-558. [PMID: 32129823 PMCID: PMC7192793 DOI: 10.1042/bst20190787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
A growing number of integral membrane proteins have been shown to tune their activity by selectively interacting with specific lipids. The ability to regulate biological functions via lipid interactions extends to the diverse group of proteins that associate only peripherally with the lipid bilayer. However, the structural basis of these interactions remains challenging to study due to their transient and promiscuous nature. Recently, native mass spectrometry has come into focus as a new tool to investigate lipid interactions in membrane proteins. Here, we outline how the native MS strategies developed for integral membrane proteins can be applied to generate insights into the structure and function of peripheral membrane proteins. Specifically, native MS studies of proteins in complex with detergent-solubilized lipids, bound to lipid nanodiscs, and released from native-like lipid vesicles all shed new light on the role of lipid interactions. The unique ability of native MS to capture and interrogate protein–protein, protein–ligand, and protein–lipid interactions opens exciting new avenues for the study of peripheral membrane protein biology.
Collapse
|
12
|
Chorev DS, Robinson CV. The importance of the membrane for biophysical measurements. Nat Chem Biol 2020; 16:1285-1292. [PMID: 33199903 PMCID: PMC7116504 DOI: 10.1038/s41589-020-0574-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
Within cell membranes numerous protein assemblies reside. Among their many functions, these assemblies regulate the movement of molecules between membranes, facilitate signaling into and out of cells, allow movement of cells by cell-matrix attachment, and regulate the electric potential of the membrane. With such critical roles, membrane protein complexes are of considerable interest for human health, yet they pose an enduring challenge for structural biologists because it is difficult to study these protein structures at atomic resolution in in situ environments. To advance structural and functional insights for these protein assemblies, membrane mimetics are typically employed to recapitulate some of the physical and chemical properties of the lipid bilayer membrane. However, extraction from native membranes can sometimes change the structure and lipid-binding properties of these complexes, leading to conflicting results and fueling a drive to study complexes directly from native membranes. Here we consider the co-development of membrane mimetics with technological breakthroughs in both cryo-electron microscopy (cryo-EM) and native mass spectrometry (nMS). Together, these developments are leading to a plethora of high-resolution protein structures, as well as new knowledge of their lipid interactions, from different membrane-like environments.
Collapse
Affiliation(s)
- Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Chorev DS, Tang H, Rouse SL, Bolla JR, von Kügelgen A, Baker LA, Wu D, Gault J, Grünewald K, Bharat TAM, Matthews SJ, Robinson CV. The use of sonicated lipid vesicles for mass spectrometry of membrane protein complexes. Nat Protoc 2020; 15:1690-1706. [PMID: 32238951 PMCID: PMC7305028 DOI: 10.1038/s41596-020-0303-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/23/2020] [Indexed: 12/28/2022]
Abstract
Recent applications of mass spectrometry (MS) to study membrane protein complexes are yielding valuable insights into the binding of lipids and their structural and functional roles. To date, most native MS experiments with membrane proteins are based on detergent solubilization. Many insights into the structure and function of membrane proteins have been obtained using detergents; however, these can promote local lipid rearrangement and can cause fluctuations in the oligomeric state of protein complexes. To overcome these problems, we developed a method that does not use detergents or other chemicals. Here we report a detailed protocol that enables direct ejection of protein complexes from membranes for analysis by native MS. Briefly, lipid vesicles are prepared directly from membranes of different sources and subjected to sonication pulses. The resulting destabilized vesicles are concentrated, introduced into a mass spectrometer and ionized. The mass of the observed protein complexes is determined and this information, in conjunction with 'omics'-based strategies, is used to determine subunit stoichiometry as well as cofactor and lipid binding. Within this protocol, we expand the applications of the method to include peripheral membrane proteins of the S-layer and amyloid protein export machineries overexpressed in membranes from which the most abundant components have been removed. The described experimental procedure takes approximately 3 d from preparation to MS. The time required for data analysis depends on the complexity of the protein assemblies embedded in the membrane under investigation.
Collapse
Affiliation(s)
- Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Haiping Tang
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, London, UK
| | - Jani Reddy Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Microscopy Imaging Centre, Oxford, UK
| | - Lindsay A Baker
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Kay Grünewald
- Division of Structural Biology, University of Oxford, Oxford, UK
- Heinrich Pette Institute, Leibniz-Institut für Experimentelle Virologie, Centre for Structural Systems Biology, c/o DESY, Hamburg, Germany
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Microscopy Imaging Centre, Oxford, UK
| | | | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Electrospray ionization mass spectrometric solvate cluster and multiply charged ions: a stochastic dynamic approach to 3D structural analysis. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2555-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
15
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Karanji AK, Beasely M, Sharif D, Ranjbaran A, Legleiter J, Valentine SJ. Investigating the interactions of the first 17 amino acid residues of Huntingtin with lipid vesicles using mass spectrometry and molecular dynamics. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4470. [PMID: 31756784 PMCID: PMC7342490 DOI: 10.1002/jms.4470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The first 17 amino acid residues of Huntingtin protein (Nt17 of htt) are thought to play an important role in the protein's function; Nt17 is one of two membrane binding domains in htt. In this study the binding ability of Nt17 peptide with vesicles comprised of two subclasses of phospholipids is studied using electrospray ionization - mass spectrometry (ESI-MS) and molecular dynamics (MD) simulations. Overall, the peptide is shown to have a greater propensity to interact with vesicles of phosphatidylcholine (PC) rather than phosphatidylethanolamine (PE) lipids. Mass spectra show an increase in lipid-bound peptide adducts where the ordering of the number of such specie is 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) > 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) > 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphoethanolamine (POPE). MD simulations suggest that the compactness of the bilayer plays a role in governing peptide interactions. The peptide shows greater disruption of the DOPC bilayer order at the surface and interacts with the hydrophobic tails of lipid molecules via hydrophobic residues. Conversely, the POPE vesicle remains ordered and lipids display transient interactions with the peptide through the formation of hydrogen bonds with hydrophilic residues. The POPC system displays intermediate behavior with regard to the degree of peptide-membrane interaction. Finally, the simulations suggest a helix stabilizing effect resulting from the interactions between hydrophobic residues and the lipid tails of the DOPC bilayer.
Collapse
Affiliation(s)
- Ahmad Kiani Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Maryssa Beasely
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| | - Ali Ranjbaran
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown WV 26506
| | - Justin Legleiter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
- Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University, Morgantown, West Virginia 26506, United States
- NanoSAFE, P.O. Box 6223, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26506
| |
Collapse
|
17
|
Fantin SM, Parson KF, Niu S, Liu J, Polasky DA, Dixit SM, Ferguson-Miller SM, Ruotolo BT. Collision Induced Unfolding Classifies Ligands Bound to the Integral Membrane Translocator Protein. Anal Chem 2019; 91:15469-15476. [PMID: 31743004 DOI: 10.1021/acs.analchem.9b03208] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane proteins represent most current therapeutic targets, yet remain understudied due to their insolubility in aqueous solvents and generally low yields during purification and expression. Ion mobility-mass spectrometry and collision induced unfolding experiments have recently garnered attention as methods capable of directly detecting and quantifying ligand binding within a wide range of membrane protein systems. Despite prior success, ionized surfactant often creates chemical noise patterns resulting in significant challenges surrounding the study of small membrane protein-ligand complexes. Here, we present a new data analysis workflow that overcomes such chemical noise and then utilize this approach to quantify and classify ligand binding associated with the 36 kDa dimer of translocator protein (TSPO). Following our denoising protocol, we detect separate gas-phase unfolding signatures for lipid and protoporphyrin TSPO binders, molecular classes that likely interact with separate regions of the protein surface. Further, a detailed classification analysis reveals that lipid alkyl chain saturation levels can be detected within our gas-phase protein unfolding data. We combine these data and classification schemes with mass spectra acquired directly from liquid-liquid extracts to propose an identity for a previously unknown endogenous TSPO ligand.
Collapse
Affiliation(s)
- Sarah M Fantin
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Kristine F Parson
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Shuai Niu
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jian Liu
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Daniel A Polasky
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Sugyan M Dixit
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Shelagh M Ferguson-Miller
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Brandon T Ruotolo
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
18
|
Chorev DS, Robinson CV. Response to Comment on “Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry”. Science 2019; 366:366/6466/eaax3102. [DOI: 10.1126/science.aax3102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023]
Abstract
Hirst et al. claim that proteins ejected directly from mitochondrial membranes in our study are degraded, are incorrectly assigned, lack lipids, and show discrepancies with “native states” mostly obtained in detergent micelles. Here, we add further evidence in full support of our assignments and show that all complexes are either ejected intact or in known intermediate states, with core subunit interactions maintained. None are degraded or rearranged.
Collapse
Affiliation(s)
- Dror S. Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
19
|
Historical, current and future developments of travelling wave ion mobility mass spectrometry: A personal perspective. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Li Y, Lee JS. Staring at protein-surfactant interactions: Fundamental approaches and comparative evaluation of their combinations - A review. Anal Chim Acta 2019; 1063:18-39. [DOI: 10.1016/j.aca.2019.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
|
21
|
Abstract
Following initial discoveries of noncovalent associations surviving in the gas phase, only a few practitioners pursued this research area. Today scientists around the world are using these approaches to ascertain the heterogeneity and stoichiometry of proteins within complexes. Recent developments further highlight opportunities for studying the effects of protein glycosylation on antibody–antigen interactions and drug binding, as well as site-directed mutagenesis and posttranslational modification on membrane protein interfaces. As a result of many developments over the last two decades, mass spectrometry of protein complexes has exploded and is now undertaken not just in dedicated research laboratories in academia, but also in pharmaceutical and biotechnology companies. It is therefore timely to trace the history of these developments in this personal perspective. In this Inaugural Article, I trace some key steps that have enabled the development of mass spectrometry for the study of intact protein complexes from a variety of cellular environments. Beginning with the preservation of the first soluble complexes from plasma, I describe our early experiments that capitalize on the heterogeneity of subunit composition during assembly and exchange reactions. During these investigations, we observed many assemblies and intermediates with different subunit stoichiometries, and were keen to ascertain whether or not their overall topology was preserved in the mass spectrometer. Adapting ion mobility and soft-landing methodologies, we showed how ring-shaped complexes could survive the phase transition. The next logical progression from soluble complexes was to membrane protein assemblies but this was not straightforward. We encountered many pitfalls along the way, largely due to the use of detergent micelles to protect and stabilize complexes. Further obstacles presented when we attempted to distinguish lipids that copurify from those that are important for function. Developing new experimental protocols, we have subsequently defined lipids that change protein conformation, mediate oligomeric states, and facilitate downstream coupling of G protein-coupled receptors. Very recently, using a radical method—ejecting protein complexes directly from native membranes into mass spectrometers—we provided insights into associations within membranes and mitochondria. Together, these developments suggest the beginnings of mass spectrometry meeting with cell biology.
Collapse
|
22
|
Keener JE, Zambrano DE, Zhang G, Zak CK, Reid DJ, Deodhar BS, Pemberton JE, Prell JS, Marty MT. Chemical Additives Enable Native Mass Spectrometry Measurement of Membrane Protein Oligomeric State within Intact Nanodiscs. J Am Chem Soc 2019; 141:1054-1061. [PMID: 30586296 DOI: 10.1021/jacs.8b11529] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Membrane proteins play critical biochemical roles but remain challenging to study. Recently, native or nondenaturing mass spectrometry (MS) has made great strides in characterizing membrane protein interactions. However, conventional native MS relies on detergent micelles, which may disrupt natural interactions. Lipoprotein nanodiscs provide a platform to present membrane proteins for native MS within a lipid bilayer environment, but previous native MS of membrane proteins in nanodiscs has been limited by the intermediate stability of nanodiscs. It is difficult to eject membrane proteins from nanodiscs for native MS but also difficult to retain intact nanodisc complexes with membrane proteins inside. Here, we employed chemical reagents that modulate the charge acquired during electrospray ionization (ESI). By modulating ESI conditions, we could either eject the membrane protein complex with few bound lipids or capture the intact membrane protein nanodisc complex-allowing measurement of the membrane protein oligomeric state within an intact lipid bilayer environment. The dramatic differences in the stability of nanodiscs under different ESI conditions opens new applications for native MS of nanodiscs.
Collapse
Affiliation(s)
- James E Keener
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Dane Evan Zambrano
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Ciara K Zak
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Deseree J Reid
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Bhushan S Deodhar
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - James S Prell
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| |
Collapse
|
23
|
Ion Mobility in Structural Biology. ADVANCES IN ION MOBILITY-MASS SPECTROMETRY: FUNDAMENTALS, INSTRUMENTATION AND APPLICATIONS 2019. [DOI: 10.1016/bs.coac.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Urner LH, Maier YB, Haag R, Pagel K. Exploring the Potential of Dendritic Oligoglycerol Detergents for Protein Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:174-180. [PMID: 30276626 PMCID: PMC6318253 DOI: 10.1007/s13361-018-2063-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
The ability to design detergents that are suitable for protein analysis by mass spectrometry (MS) represents an on-going challenge in the field of native MS. Desirable detergent characteristics include charge-reducing properties and low gas-phase stabilities of complexes formed with proteins. In this work, the gas-phase properties of oligoglycerol detergents (OGDs) are optimized by fine tuning of their molecular structure. Furthermore, a tandem mass spectrometry (MS/MS) approach is presented that estimates the gas-phase properties of detergents simply by studying the dissociation behaviour of protein-detergent complexes (PDCs) formed with the soluble protein β-lactoglobulin (BLG). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Leonhard H Urner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Yasmine B Maier
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Kevin Pagel
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany.
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.
| |
Collapse
|
25
|
Lipids Shape the Electron Acceptor-Binding Site of the Peripheral Membrane Protein Dihydroorotate Dehydrogenase. Cell Chem Biol 2018; 25:309-317.e4. [PMID: 29358052 PMCID: PMC5856493 DOI: 10.1016/j.chembiol.2017.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022]
Abstract
The interactions between proteins and biological membranes are important for drug development, but remain notoriously refractory to structural investigation. We combine non-denaturing mass spectrometry (MS) with molecular dynamics (MD) simulations to unravel the connections among co-factor, lipid, and inhibitor binding in the peripheral membrane protein dihydroorotate dehydrogenase (DHODH), a key anticancer target. Interrogation of intact DHODH complexes by MS reveals that phospholipids bind via their charged head groups at a limited number of sites, while binding of the inhibitor brequinar involves simultaneous association with detergent molecules. MD simulations show that lipids support flexible segments in the membrane-binding domain and position the inhibitor and electron acceptor-binding site away from the membrane surface, similar to the electron acceptor-binding site in respiratory chain complex I. By complementing MS with MD simulations, we demonstrate how a peripheral membrane protein uses lipids to modulate its structure in a similar manner as integral membrane proteins. Mass spectrometry captures intact complexes of the peripheral membrane protein DHODH Detergent removal in the gas phase reveals lipid and co-factor binding DHODH attaches to the membrane by binding charged phospholipids Lipids stabilize the flexible substrate- and drug-binding site
Collapse
|