1
|
Li B, Zhang X, Zhang Q, Zheng T, Li Q, Yang S, Shao J, Guan W, Zhang S. Nutritional strategies to reduce intestinal cell apoptosis by alleviating oxidative stress. Nutr Rev 2025; 83:e518-e532. [PMID: 38626282 DOI: 10.1093/nutrit/nuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The gut barrier is the first line of defense against harmful substances and pathogens in the intestinal tract. The balance of proliferation and apoptosis of intestinal epithelial cells (IECs) is crucial for maintaining the integrity of the intestinal mucosa and its function. However, oxidative stress and inflammation can cause DNA damage and abnormal apoptosis of the IECs, leading to the disruption of the intestinal epithelial barrier. This, in turn, can directly or indirectly cause various acute and chronic intestinal diseases. In recent years, there has been a growing understanding of the vital role of dietary ingredients in gut health. Studies have shown that certain amino acids, fibers, vitamins, and polyphenols in the diet can protect IECs from excessive apoptosis caused by oxidative stress, and limit intestinal inflammation. This review aims to describe the molecular mechanism of apoptosis and its relationship with intestinal function, and to discuss the modulation of IECs' physiological function, the intestinal epithelial barrier, and gut health by various nutrients. The findings of this review may provide a theoretical basis for the use of nutritional interventions in clinical intestinal disease research and animal production, ultimately leading to improved human and animal intestinal health.
Collapse
Affiliation(s)
- Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Sun F, Fang M, Zhang H, Song Q, Li S, Li Y, Jiang S, Yang L. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys 2024; 82:435-455. [PMID: 38438751 DOI: 10.1007/s12013-024-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.
Collapse
Affiliation(s)
- Fulin Sun
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Min Fang
- Department of Gynaecology, Qingdao Women and Children's Hospital, Qingdao, 266021, Shandong, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Health Science Center, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Zhang J, Yu Q, Chen W. Advancements in Small Molecule Fluorescent Probes for Superoxide Anion Detection: A Review. J Fluoresc 2024:10.1007/s10895-024-03727-4. [PMID: 38656646 DOI: 10.1007/s10895-024-03727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Superoxide anion (O2•-), a significant reactive oxygen species (ROS) within biological systems, plays a widespread role in cellular function regulation and is closely linked to the onset and progression of numerous diseases. To unveil the pathological implications of O2•- in these diseases, the development of effective monitoring techniques within biological systems is imperative. Small molecule fluorescent probes have garnered considerable attention due to their advantages: simplicity in operation, heightened sensitivity, exceptional selectivity, and direct applicability in monitoring living cells, tissues, and animals. In the past few years, few reports have focused on small molecule fluorescence probes for the detection of O2•-. In this small review, we systematically summarize the design and application of O2•- responsive small molecule fluorescent probes. In addition, we present the limitations of the current detection of O2•- and suggest the construction of new fluorescent imaging probes to indicate O2•- in living cells and in vivo.
Collapse
Affiliation(s)
- Jiao Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69, Hongguang Avenue, Banan District, Chongqing, 400054, China
| | - Qinghua Yu
- Department of Pharmacy, Chongqing University Cancer Hospital, NO.181 Hanyu Road, Shapingba District, Chongqing, 400030, P. R. China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, NO.181 Hanyu Road, Shapingba District, Chongqing, 400030, P. R. China.
| |
Collapse
|
6
|
Zhang W, Fan W, Wang X, Li P, Zhang W, Wang H, Tang B. Uncovering Endoplasmic Reticulum Superoxide Regulating Hepatic Ischemia-Reperfusion Injury by Dynamic Reversible Fluorescence Imaging. Anal Chem 2023; 95:8367-8375. [PMID: 37200499 DOI: 10.1021/acs.analchem.3c01068] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a relatively common complication of liver resection and transplantation that is intimately connected to oxidative stress. The superoxide anion radical (O2•-), as the first reactive oxygen species produced by organisms, is an important marker of HIRI. The endoplasmic reticulum (ER) is an essential site for O2•- production, especially ER oxidative stress, which is closely linked to HIRI. Thus, dynamic variations in ER O2•- may accurately indicate the HIRI extent. However, there is still a lack of tools for the dynamic reversible detection of ER O2•-. Therefore, we designed and prepared an ER-targeted fluorescent reversible probe DPC for real-time tracing of O2•- fluctuations. We successfully observed a marked increase in ER O2•- levels in HIRI mice. A potential NADPH oxidase 4-ER O2•--SERCA2b-caspase 4 signaling pathway in HIRI mice was also revealed. Attractively, DPC was successfully used for precise fluorescent navigation and excision of HIRI sites.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wenjie Fan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
7
|
Development of a Golgi-targeted superoxide anion fluorescent probe for elucidating protein GOLPH3 function in myocardial ischemia-reperfusion injury. Anal Chim Acta 2023; 1255:341100. [PMID: 37032049 DOI: 10.1016/j.aca.2023.341100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Superoxide anion (O2•-) is an important reactive oxygen species (ROS) and participates in various physiological and pathological processes in the organism. The O2•- burst induced by ischemia-reperfusion (I/R) is associated with cardiovascular disease and promotes the cell apoptosis. In this work, a turn-on type Golgi-targeting fluorescent probe Gol-Cou-O2•- was rationally designed for sensitive and selective detection of O2•-. The minimum detection limit concentration for O2•- was about 3.9 × 10-7 M in aqueous solution. Gol-Cou-O2•- showed excellent capacity of detecting exogenous and endogenous O2•- in living cells and zebrafish, and was also used to capture the up-regulated O2•- level during the duration of I/R process in cardiomyocytes. Golgi Phosphoprotein 3 (GOLPH3) is a potential Golgi stress marker protein and plays a key role in cells apoptosis during I/R. The fluorescence imaging and flow cytometry assay results indicated that silencing GOLPH3 through siRNA could give rise to the down-regulated O2•- level and alleviation of apoptosis in I/R myocardial cells. Thus, development of Gol-Cou-O2•- provides a diagnostic tool for myocardial oxidative stress injury and distinct insights on roles of GOLPH3 in myocardial I/R injury.
Collapse
|
8
|
Huang Y, Chen R, Yang S, Chen Y, Lü X. The Mechanism of Interaction Between Gold Nanoparticles and Human Dermal Fibroblasts Based on Integrative Analysis of Transcriptomics and Metabolomics Data. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this paper was to combine transcriptomics and metabolomics to analyze the mechanism of gold nanoparticles (GNPs) on human dermal fibroblasts (HDFs). First, 20-nm GNPs were prepared, and the differentially expressed genes in HDFs were subsequently screened by transcriptome
sequencing technology after 4, 8, and 24 h of treatment with GNPs. By comparing the metabolic pathways in which the metabolites obtained in a previous study were involved, the pathways involving both genes and metabolites were filtered, and the differentially expressed genes and metabolites
with upstream and downstream relationships were screened out. The gene–metabolite–metabolic pathway network was further constructed, and the functions of metabolic pathways, genes and metabolites in the important network were analyzed and experimentally verified. The results of
transcriptome sequencing experiments showed that 1904, 1216 and 489 genes were differentially expressed in HDFs after 4, 8 and 24 h of treatment with GNPs, and these genes were involved in 270, 235 and 163 biological pathways, respectively. Through the comparison and analysis of the metabolic
pathways affected by the metabolites, 7, 3 and 2 metabolic pathways with genes and metabolites exhibiting upstream and downstream relationships were identified. Through analysis of the gene–metabolite–metabolic pathway network, 4 important metabolic pathways, 9 genes and 7 metabolites
were identified. Combined with the results of verification experiments on oxidative stress, apoptosis, the cell cycle, the cytoskeleton and cell adhesion, it was found that GNPs regulated the synthesis of downstream metabolites through upstream genes in important metabolic pathways. GNPs inhibited
oxidative stress and thus did not induce significant apoptosis, but they exerted effects on several cellular functions, including arresting the cell cycle and affecting the cytoskeleton and cell adhesion.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Rong Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Shuci Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Ye Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| |
Collapse
|
9
|
Guo J, Fang B, Bai H, Wang L, Peng B, Qin XJ, Fu L, Yao C, Li L, Huang W. Dual/Multi-responsive fluorogenic probes for multiple analytes in mitochondria: From design to applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Wu C, Mao Y, Wang X, Li P, Tang B. Deep-Tissue Fluorescence Imaging Study of Reactive Oxygen Species in a Tumor Microenvironment. Anal Chem 2021; 94:165-176. [PMID: 34802229 DOI: 10.1021/acs.analchem.1c03104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor microenvironment (TME) is the survival environment for tumor cells to proliferate and metastasize in deep tissue. TME contains tumor cells, immune cells, stromal cells and a variety of active molecules including reactive oxygen species (ROS). Inside the TME, ROS regulate the oxidation-reduction (redox) homeostasis and promote oxidative stress. Due to the rapid proliferation ability and specific metabolic patterns of the TME, ROS pervade virtually all complex physiological processes and play irreplaceable roles in protein modification, signal transduction, metabolism, and energy production in various tumors. Therefore, measurements of the dynamically, multicomponent simultaneous changes of ROS in the TME are of great significance to reveal the detailed proliferation and metastasis mechanisms of the tumor. Near-infrared (NIR) and two-photon (TP) fluorescence imaging techniques possess real-time, dynamic, highly sensitive, and highly signal-to-noise ratios with deep tissue penetration abilities. With the rationally designed probes, the NIR and TP fluorescence imaging techniques have been widely used to reveal the mechanisms of how ROS regulates and constructs complex signals and metabolic networks in TME. Therefore, we summarize the design principles and performances of NIR and TP fluorescence imaging of ROS in the TME in the last four years, as well as discuss the advantages and potentials of these works. This Review can provide guidance and prospects for future research work on TME and facilitate the development of antitumor drugs.
Collapse
Affiliation(s)
- Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yuantao Mao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
11
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
12
|
Xu C, Zhang W, Wang R, Tan S, Holub JM, Tang B. Versatile Gold-Coupled Te-Carbon Dots for Quantitative Monitoring and Efficient Scavenging of Superoxide Anions. Anal Chem 2021; 93:9111-9118. [PMID: 34157223 DOI: 10.1021/acs.analchem.1c00844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The superoxide anion (O2•-) is a reactive oxygen species (ROS) that functions as an important regulator of signal transduction in living systems. However, excess O2•- can cause metabolic imbalances and oxidative damage inside cells. Quantitative detection and efficient scavenging of O2•- are therefore critical for maintaining intracellular redox balance and homeostasis. In this work, a nanomaterial (Au-TeCD) composed of BSA-modified gold nanoparticles (AuNPs) complexed with tellurium-containing carbon dots (TeCDs) was constructed. The introduction of Au-TeCDs to solutions containing superoxide resulted in enhanced elimination of the anion, indicating that Au-TeCDs are able to scavenge O2•- from the surrounding environment. Notably, the respective TeCD and AuNP components of the Au-TeCDs were found to emit fluorescence at 425 and 640 nm upon exposure to superoxide anions. This unique spectroscopic property of Au-TeCDs allowed levels of O2•- in solution to be quantified using dual-fluorescence detection. The Au-TeCDs developed herein also exhibited low-cytotoxicity, versatile capabilities for in situ fluorescence imaging, and effective scavenging of O2•- in living cells. Taken together, these results suggest that Au-TeCDs act as effective tools for monitoring superoxide concentrations in complex mixtures and may be developed as possible therapeutics designed to scavenge excess ROS from diseased cells.
Collapse
Affiliation(s)
- Chang Xu
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 P. R. China
| | - Ruixia Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 P. R. China
| | - Shuzhi Tan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 P. R. China
| | - Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 P. R. China
| |
Collapse
|
13
|
Yu Q, Ding F, Shen J, He X. A newly nitrobenzoxadiazole (NBD)-fused reversible fluorescence probe for pH monitoring and application in bioimaging. Talanta 2021; 228:122218. [DOI: 10.1016/j.talanta.2021.122218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
|
14
|
Su Y, Zhang X, Lei L, Liu B, Wu S, Shen J. Tumor Microenvironment-Activatable Cyclic Cascade Reaction to Reinforce Multimodal Combination Therapy by Destroying the Extracellular Matrix. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12960-12971. [PMID: 33720684 DOI: 10.1021/acsami.1c02011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The optimal therapy effect of tumors is frequently restricted by the dense extracellular matrix (ECM) and anoxia. Herein, an intelligent BPNs-Arg-GOx@MnO2 (BAGM) nanozyme is innovatively designed as a multimodal synergistic therapeutic paradigm that possesses both nitric oxide (NO) self-supplying and ECM degradation properties to reinforce the therapy effect by a tumor microenvironment (TME)-activatable cyclic cascade catalytic reaction. This theranostic nanoplatform is constructed by using polyethyleneimine-modified black phosphorus nanosheets as a "fishnet" to attach l-Arginine (l-Arg) and glucose oxidase (GOx) and then depositing mini-sized MnO2 nanosheets (MNs) on the surface by a facile situ biomineralization method. As an intelligent "switch", the MNs can effectively trigger the cascade reaction by disintegrating intracellular H2O2 to release O2. Then, the conjugated GOx can utilize O2 production to catalyze intracellular glucose to generate H2O2, which not only starves the tumor cells but also promotes oxidation of l-Arg to NO. Thereafter, matrix metalloproteinases will be activated by NO production to degrade the dense ECM and transform matrix collagen into a loose state. In turn, a loose ECM can enhance the accumulation of the BAGM nanozyme and thereby reinforce synergistic photothermal therapy/starvation therapy/NO gas therapy. Both in vitro and in vivo results indicate that the TME-tunable BAGM therapeutic nanoplatform with cascade anticancer property and satisfactory biosecurity shows potential in nanomedicine.
Collapse
Affiliation(s)
- Yutian Su
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Xichen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Liling Lei
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Baolei Liu
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Shishan Wu
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Jian Shen
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
15
|
Mitochondrial hyperfusion: a friend or a foe. Biochem Soc Trans 2021; 48:631-644. [PMID: 32219382 DOI: 10.1042/bst20190987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The cellular mitochondrial population undergoes repeated cycles of fission and fusion to maintain its integrity, as well as overall cellular homeostasis. While equilibrium usually exists between the fission-fusion dynamics, their rates are influenced by organellar and cellular metabolic and pathogenic conditions. Under conditions of cellular stress, there is a disruption of this fission and fusion balance and mitochondria undergo either increased fusion, forming a hyperfused meshwork or excessive fission to counteract stress and remove damaged mitochondria via mitophagy. While some previous reports suggest that hyperfusion is initiated to ameliorate cellular stress, recent studies show its negative impact on cellular health in disease conditions. The exact mechanism of mitochondrial hyperfusion and its role in maintaining cellular health and homeostasis, however, remain unclear. In this review, we aim to highlight the different aspects of mitochondrial hyperfusion in either promoting or mitigating stress and also its role in immunity and diseases.
Collapse
|
16
|
Wu L, Liu J, Li P, Tang B, James TD. Two-photon small-molecule fluorescence-based agents for sensing, imaging, and therapy within biological systems. Chem Soc Rev 2021; 50:702-734. [DOI: 10.1039/d0cs00861c] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this tutorial review, we will explore recent advances for the design, construction and application of two-photon excited fluorescence (TPEF)-based small-molecule probes.
Collapse
Affiliation(s)
- Luling Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institutes of Biomedical Sciences
| | - Jihong Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institutes of Biomedical Sciences
| | - Ping Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institutes of Biomedical Sciences
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institutes of Biomedical Sciences
| | - Tony D. James
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institutes of Biomedical Sciences
| |
Collapse
|
17
|
Niu H, Zhang Y, Tang J, Zhu X, Ye Y, Zhao Y. A bifunctional fluorescent sensor for CCCP-induced cancer cell apoptosis imaging. Chem Commun (Camb) 2020; 56:12423-12426. [PMID: 32936131 DOI: 10.1039/d0cc04200e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The detailed mechanism and the extent of pH/SO2 changes during apoptosis remain unknown. The developed sensor NPCF for SO2 and pH dual detection illustrates that SO2 can reduce the inflammation caused by LPS and the acidification of the environment. The levels of SO2 and pH change during carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced apoptosis.
Collapse
Affiliation(s)
- Huawei Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | |
Collapse
|
18
|
Trinh N, Jolliffe KA, New EJ. Dual-Functionalisation of Fluorophores for the Preparation of Targeted and Selective Probes. Angew Chem Int Ed Engl 2020; 59:20290-20301. [PMID: 32662086 DOI: 10.1002/anie.202007673] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 01/09/2023]
Abstract
A key current challenge in biological research is the elucidation of the that roles chemicals and chemical reactions play in cellular function and dysfunction. Of the available cellular imaging techniques, fluorescence imaging offers a balance between sensitivity and resolution, enabling the cost-effective and rapid visualisation of model biological systems. Importantly, the use of responsive fluorescent probes in conjunction with ever-advancing microscopy and flow cytometry techniques enables the visualisation, with high spatiotemporal resolution, of both specific chemical species and chemical reactions in living cells. Ideal responsive fluorescent probes are those that contain a fluorophore tethered to both a sensing unit, to ensure selectivity of response, and a targeting group, to control the sub-cellular localisation of the probe. To date, probes that are both targeted and selective are relatively rare and most localised probes are discovered serendipitously rather than by design. A challenge in this field is therefore the identification of suitable fluorophore scaffolds that can be readily attached to both sensing and targeting groups. Here we review current strategies for dual-functionalisation of fluorophores, highlighting key examples of targeted, responsive probes.
Collapse
Affiliation(s)
- Natalie Trinh
- School of Chemistry, The University of Sydney, NSW, 2006, Sydney, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW, 2006, Sydney, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Sydney, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Sydney, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW, 2006, Sydney, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Sydney, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Sydney, Australia
| |
Collapse
|
19
|
Trinh N, Jolliffe KA, New EJ. Duale Funktionalisierung von Fluorophoren für die Konstruktion zielgerichteter und selektiver Fluoreszenz‐Sensoren. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Natalie Trinh
- School of Chemistry The University of Sydney NSW 2006 Sydney Australien
| | - Katrina A. Jolliffe
- School of Chemistry The University of Sydney NSW 2006 Sydney Australien
- The University of Sydney Nano Institute (Sydney Nano) The University of Sydney NSW 2006 Sydney Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney NSW 2006 Sydney Australien
| | - Elizabeth J. New
- School of Chemistry The University of Sydney NSW 2006 Sydney Australien
- The University of Sydney Nano Institute (Sydney Nano) The University of Sydney NSW 2006 Sydney Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney NSW 2006 Sydney Australien
| |
Collapse
|
20
|
Chakraborty S, Joseph MM, Varughese S, Ghosh S, Maiti KK, Samanta A, Ajayaghosh A. A new pentacyclic pyrylium fluorescent probe that responds to pH imbalance during apoptosis. Chem Sci 2020; 11:12695-12700. [PMID: 34094464 PMCID: PMC8162809 DOI: 10.1039/d0sc02623a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Efficient fluorophores with easy synthetic routes and fast responses are of great importance in clinical diagnostics. Herein, we report a new, rigid pentacyclic pyrylium fluorophore, PS-OMe, synthesised in a single step by a modified Vilsmeier-Haack reaction. Insights into the reaction mechanism facilitated a new reaction protocol for the efficient synthesis of PS-OMe which upon demethylation resulted in a "turn-on" pH sensor, PS-OH. This new fluorescent probe has been successfully used to monitor intracellular acidification at physiological pH. From the fluorescence image analysis, we were able to quantify the intracellular dynamic pH change during apoptosis. This new pH probe is a potential chemical tool for screening, drug discovery and dose determination in cancer therapy.
Collapse
Affiliation(s)
- Sandip Chakraborty
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Manu M Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
| | - Sunil Varughese
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Samrat Ghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
| | - Kaustabh K Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Animesh Samanta
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Department of Chemistry, Shiv Nadar University NH91, Dadri, Gautam Buddh Nagar 201314 India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| |
Collapse
|
21
|
Garrido-Bazán V, Pardo JP, Aguirre J. DnmA and FisA Mediate Mitochondria and Peroxisome Fission, and Regulate Mitochondrial Function, ROS Production and Development in Aspergillus nidulans. Front Microbiol 2020; 11:837. [PMID: 32477294 PMCID: PMC7232558 DOI: 10.3389/fmicb.2020.00837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
The dynamin-like protein Drp1 and its receptor Fis-1 are required for mitochondria and peroxisome fission in animal and yeast cells. Here, we show that in the fungus Aspergillus nidulans the lack of Drp1 and Fis-1 homologs DnmA and FisA has strong developmental defects, leading to a notable decrease in hyphal growth and asexual and sexual sporulation, with some of these defects being aggravated or partially remediated by different carbon sources. Although both DnmA and FisA, are essential for mitochondrial fission, participate in peroxisomal division and are fully required for H2O2-induced mitochondrial division, they also appear to play differential functions. Despite their lack of mitochondrial division, ΔdnmA and ΔfisA mutants segregate mitochondria to conidiogenic cells and produce viable conidia that inherit a single mitochondrion. During sexual differentiation, ΔdnmA and ΔfisA mutants develop fruiting bodies (cleistothecia) that differentiate excessive ascogenous tissue and a reduced number of viable ascospores. ΔdnmA and ΔfisA mutants show decreased respiration and notably high levels of mitochondrial reactive oxygen species (ROS), which likely correspond to superoxide. Regardless of this, ΔdnmA mutants can respond to an external H2O2 challenge by re-localizing the MAP kinase-activated protein kinase (MAPKAP) SrkA from the cytoplasm to the nuclei. Our results show that ROS levels regulate mitochondrial dynamics while a lack of mitochondrial fission results in lower respiration, increased mitochondrial ROS and developmental defects, indicating that ROS, mitochondrial division and development are critically interrelated processes.
Collapse
Affiliation(s)
- Verónica Garrido-Bazán
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
22
|
Mulakov SP, Gotovtsev PM, Gainanova AA, Kravchenko GV, Kuz’micheva GM, Podbel’skii VV. Generation of the Reactive Oxygen Species on the surface of nanosized titanium(IV) oxides particles under UV-irradiation and their connection with photocatalytic properties. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
24
|
Xiao H, Zhang W, Li P, Zhang W, Wang X, Tang B. Versatile Fluorescent Probes for Imaging the Superoxide Anion in Living Cells and In Vivo. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906793] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haibin Xiao
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
25
|
Zhang N, Hu P, Wang Y, Tang Q, Zheng Q, Wang Z, He Y. A Reactive Oxygen Species (ROS) Activated Hydrogen Sulfide (H 2S) Donor with Self-Reporting Fluorescence. ACS Sens 2020; 5:319-326. [PMID: 31913018 DOI: 10.1021/acssensors.9b01093] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is an important cellular signaling molecule, and its physiological and pathophysiological properties have been under intensive investigation. In this study, a novel ratiometric fluorescent H2S donor (HSD-B) has been developed, which exhibited the following advantages: (i) scavenging ROS and producing H2S simultaneously; (ii) providing ratiometric fluorescence for visualization and quantification of H2S releasing; and (iii) targeting mitochondrion specifically. Moreover, it demonstrated protective effects on myocardial ischemia reperfusion injury in a cellular model. These attractive features promise this HSD-B as a fluorescent H2S donor for future research studies.
Collapse
Affiliation(s)
- Ning Zhang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Ping Hu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Yanfang Wang
- First Affiliated Hospital of the Medical College , Shihezi University , Xinjiang 832008 , PR China
| | - Qing Tang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Qiang Zheng
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Zhanlong Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Yun He
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| |
Collapse
|
26
|
Wang X, Bai X, Su D, Zhang Y, Li P, Lu S, Gong Y, Zhang W, Tang B. Simultaneous Fluorescence Imaging Reveals N-Methyl-d-aspartic Acid Receptor Dependent Zn 2+/H + Flux in the Brains of Mice with Depression. Anal Chem 2020; 92:4101-4107. [PMID: 32037810 DOI: 10.1021/acs.analchem.9b05771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Depression is immensely attributed to the overactivation of N-methyl-d-aspartic acid (NMDA) receptor in the brains. As regulatory binding partners of NMDA receptor, both Zn2+ and H+ are intimately interrelated to NMDA receptor's activity. Therefore, exploring synergistic changes on the levels of Zn2+ and H+ in brains will promote the knowledge and treatment of depression. However, the lack of efficient, appropriate imaging tools limits simultaneously tracking Zn2+ and H+ in living mouse brains. Thus, a well-designed dual-color fluorescent probe (DNP) was fabricated for the simultaneous monitoring of Zn2+ and H+ in the brains of mice with depression. Encountering Zn2+, the probe evoked bright blue fluorescence at 460 nm. Meanwhile, the red fluorescence at 680 nm was decreased with H+ addition. With blue/red dual fluorescence signal of DNP, we observed the synchronous increased Zn2+ and H+ in PC12 cells under oxidative stress. Notably, in vivo imaging for the first time revealed the simultaneous reduction of Zn2+ and pH in brains of mice with depression-like behaviors. Further results implied that the NMDA receptor might be responsible for the coinstantaneous fluctuation of Zn2+ and H+ during depression. Altogether, this work is conducive to the knowledge of neural signal transduction mechanisms, advancing our understanding of the pathogenesis in depression.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiaoyi Bai
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yandi Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Shuyi Lu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yulin Gong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
27
|
Guo L, Song Y, Cai K, Wang L. "On-off" ratiometric fluorescent detection of Hg 2+ based on N-doped carbon dots-rhodamine B@TAPT-DHTA-COF. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117703. [PMID: 31685421 DOI: 10.1016/j.saa.2019.117703] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Covalent-organic frameworks (COFs) are new porous crystalline materials owning outstanding stability, adsorbability and hypotoxicity. The assembly of fluorescence probes into porous COF provides a good method for ratiometric fluorescence detection avoiding the toxic effects of fluorescence probes to the samples. Herein, a two-dimensional COF (TAPT-DHTA-COF) was employed as a host to encapsulate N-doped carbon dots (NCDs) and Rhodamine B (RhB) (NCDs-RhB@COF). NCDs and RhB were uniformly assembled into the pores of TAPT-DHTA- COF based on the hydrogen bond. The as-prepared NCDs-RhB@COF nanocomposites exhibited blue emission of NCDs at 440 nm and red emission of RhB at 570 nm at excitation of 340 nm. After the addition of Hg2+, the blue emission became weaker while the red emission was enhanced due to the strong coordination between NCDs-RhB@COF and Hg2+. This "on-off" fluorescence probe was applied in detection of trace Hg2+ with linear range of 0.048-10 μM and detection limit of 15.9 nM together with appropriate selectivity, acceptable sensitivity and stability. The work shreds some light for COF as platform to construct ratiometric fluorescent sensor for industrial and biological application.
Collapse
Affiliation(s)
- Lulu Guo
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Keying Cai
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| |
Collapse
|
28
|
Zhang W, Liu J, Li P, Wang X, Bi S, Zhang J, Zhang W, Wang H, Tang B. In situ and real-time imaging of superoxide anion and peroxynitrite elucidating arginase 1 nitration aggravating hepatic ischemia-reperfusion injury. Biomaterials 2019; 225:119499. [PMID: 31561087 DOI: 10.1016/j.biomaterials.2019.119499] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 02/02/2023]
Abstract
Hepatic ischemia-reperfusion (IR) injury is dynamically regulated by intertwined superoxide anion (O2-)-peroxynitrite (ONOO-) cascaded molecules. Arginase 1 involves in O2-/ONOO- fluctuations and is strongly connected to IR injury. A few probes have been innovated to measure intracellular O2- or ONOO- by fluorescent imaging separately, but revealing the definite link of O2-, ONOO- and arginase 1 in situ remains unidentified in hepatic IR. Thus, a well-designed dual-color two-photon fluorescence probe (CyCA) was created for the in situ real-time detection of O2--ONOO-. Surprisingly, CyCA exhibited a suitable combination of high specificity, preeminent sensitivity, exclusive mitochondria-targeting and fast-response. On the basis of remarkable advantages, we successfully applied CyCA to visualize endogenous O2- and ONOO- in living cells and mice. The synergistic elevation of mitochondrial O2--ONOO- in IR mice was observed for the first time. Furthermore, three tyrosine nitration-sites in arginase 1 caused by ONOO- were identified in proteomic analysis, which was never reported previously. Attractively, nitro-modified arginase 1 could further promote ONOO- formation, ultimately exacerbating the intracellular redox imbalance and IR injury. These new findings decipher direct molecular links of O2--ONOO--arginase 1, and suggest effective strategies for the prevention and treatment of IR injury.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China.
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Simin Bi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Jiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
29
|
Xiao H, Zhang W, Li P, Zhang W, Wang X, Tang B. Versatile Fluorescent Probes for Imaging the Superoxide Anion in Living Cells and In Vivo. Angew Chem Int Ed Engl 2019; 59:4216-4230. [DOI: 10.1002/anie.201906793] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Haibin Xiao
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
- School of Chemistry and Chemical EngineeringShandong University of Technology Zibo 255049 P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitute of Biomedical SciencesShandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
30
|
Chen L, Cho MK, Wu D, Kim HM, Yoon J. Two-Photon Fluorescence Probe for Selective Monitoring of Superoxide in Live Cells and Tissues. Anal Chem 2019; 91:14691-14696. [DOI: 10.1021/acs.analchem.9b03937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Liyan Chen
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Myoung Ki Cho
- Department of Chemistry and Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Di Wu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Hwan Myung Kim
- Department of Chemistry and Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
31
|
Zhang W, Su D, Li P, Zhang J, Liu J, Wang H, Zhang W, Tang B. Two-photon fluorescence imaging of mitochondrial superoxide anion transport mediating liver ischemia-reperfusion injury in mice. Chem Commun (Camb) 2019; 55:10740-10743. [PMID: 31432813 DOI: 10.1039/c9cc04585f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We constructed a two-photon fluorescence ratio probe (CST) for in situ quantitative real-time detection of mitochondrial O2˙-. Fluorescence imaging showed that O2˙- was over-generated from mitochondria and conveyed to the cytoplasm via voltage-dependent anion channels in hepatic ischemia-reperfusion mice, damaging the important functional protein aconitase in the cytoplasm.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Jiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| |
Collapse
|
32
|
Zhao XJ, Jiang YR, Chen YX, Yang BQ, Li YT, Liu ZH, Liu C. A new "off-on" NIR fluorescence probe for determination and bio-imaging of mitochondrial hypochlorite in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:509-516. [PMID: 31078818 DOI: 10.1016/j.saa.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Hypochlorite anion (ClO-) has been recognized as host defense destructing incursive bacteria and pathogens, a signal molecule inducing occurrence of apoptosis and a noxious agent when it is overproduced. It is significant to detect ClO- in mitochondria for getting meaningful physiological and pathological information. Compared with the fluorescence probes of emission wavelength in ultraviolet or visible region, those with near-infrared (NIR) fluorescence signal are advantageous due to the deeper tissue penetrability and less photo-bleaching effect. In this work, a new "off-on" NIR ClO--specific fluorescence probe (Mito-NClO) especially located in mitochondria was designed and synthesized by condensation of diaminomaleonitrile with a new fluorophore (Mito-NCHO). A marked "turn-on" NIR fluorescence signal was observed on account of the oxidation of the imine bond by NaClO. Moreover, in the range from 0 to 20 μM, this probe had the capability to quantitatively detect ClO- with a detection limit as low as 90.2 nM. Additionally, the probe exerted other excellent properties, including larger stokes shift (117 nm), better aqueous solubility, high selectivity toward ClO-, rapid response and selective mitochondrial location. Furthermore, the bio-imaging experiments clearly demonstrated that Mito-NClO facilitated the visualization of exogenous and endogenous ClO- in living HeLa cells and zebrafish model. Therefore, we speculate that the probe Mito-NClO can be served as an ideal tool for the monitoring of ClO- in biosystems.
Collapse
Affiliation(s)
- Xiong-Jie Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yu-Ren Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Yi-Xuan Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Bing-Qing Yang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yu-Ting Li
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Zhi-Hong Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Ce Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
33
|
Zhou YJ, Wan YH, Nie CP, Zhang J, Chen TT, Chu X. Molecular Switching of a Self-Assembled 3D DNA Nanomachine for Spatiotemporal pH Mapping in Living Cells. Anal Chem 2019; 91:10366-10370. [DOI: 10.1021/acs.analchem.9b02514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu-Jie Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yuan-Hui Wan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Cun-Peng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ting-Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
34
|
Bai X, Ng KKH, Hu JJ, Ye S, Yang D. Small-Molecule-Based Fluorescent Sensors for Selective Detection of Reactive Oxygen Species in Biological Systems. Annu Rev Biochem 2019; 88:605-633. [DOI: 10.1146/annurev-biochem-013118-111754] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) encompass a collection of intricately linked chemical entities characterized by individually distinct physicochemical properties and biological reactivities. Although excessive ROS generation is well known to underpin disease development, it has become increasingly evident that ROS also play central roles in redox regulation and normal physiology. A major challenge in uncovering the relevant biological mechanisms and deconvoluting the apparently paradoxical roles of distinct ROS in human health and disease lies in the selective and sensitive detection of these transient species in the complex biological milieu. Small-molecule-based fluorescent sensors enable molecular imaging of ROS with great spatial and temporal resolution and have thus been appreciated as excellent tools for aiding discoveries in modern redox biology. We review a selection of state-of-the-art sensors with demonstrated utility in biological systems. By providing a systematic overview based on underlying chemical sensing mechanisms, we wish to highlight the strengths and weaknesses in prior sensor works and propose some guiding principles for the development of future probes.
Collapse
Affiliation(s)
| | | | - Jun Jacob Hu
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Sen Ye
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| |
Collapse
|
35
|
Du Y, Song Y, Hao J, Cai K, Liu N, Yang L, Wang L. Ratiometric fluorescence detection of O2•− based on dual-emission schiff base polymer/rhodamine-B nanocomposites. Talanta 2019; 198:316-322. [DOI: 10.1016/j.talanta.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 12/28/2022]
|
36
|
Gao P, Pan W, Li N, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019; 10:6035-6071. [PMID: 31360411 PMCID: PMC6585876 DOI: 10.1039/c9sc01652j] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dynamic fluctuations of bioactive species in living cells are associated with numerous physiological and pathological phenomena. The emergence of organelle-targeted fluorescent probes has significantly facilitated our understanding on the biological functions of these species. This review describes the design, applications, challenges and potential directions of organelle-targeted bioactive species probes.
Bioactive species, including reactive oxygen species (ROS, including O2˙–, H2O2, HOCl, 1O2, ˙OH, HOBr, etc.), reactive nitrogen species (RNS, including ONOO–, NO, NO2, HNO, etc.), reactive sulfur species (RSS, including GSH, Hcy, Cys, H2S, H2Sn, SO2 derivatives, etc.), ATP, HCHO, CO and so on, are a highly important category of molecules in living cells. The dynamic fluctuations of these molecules in subcellular microenvironments determine cellular homeostasis, signal conduction, immunity and metabolism. However, their abnormal expressions can cause disorders which are associated with diverse major diseases. Monitoring bioactive molecules in subcellular structures is therefore critical for bioanalysis and related drug discovery. With the emergence of organelle-targeted fluorescent probes, significant progress has been made in subcellular imaging. Among the developed subcellular localization fluorescent tools, ROS, RNS and RSS (RONSS) probes are highly attractive, owing to their potential for revealing the physiological and pathological functions of these highly reactive, interactive and interconvertible molecules during diverse biological events, which are rather significant for advancing our understanding of different life phenomena and exploring new technologies for life regulation. This review mainly illustrates the design principles, detection mechanisms, current challenges, and potential future directions of organelle-targeted fluorescent probes toward RONSS.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| |
Collapse
|
37
|
An ultrasensitive electrochemical sensor based on cotton carbon fiber composites for the determination of superoxide anion release from cells. Mikrochim Acta 2019; 186:198. [PMID: 30796529 DOI: 10.1007/s00604-019-3304-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/03/2019] [Indexed: 01/06/2023]
Abstract
A sensor is described for determination of superoxide anion (O2˙-). The electrode consists of nitrogen-doped cotton carbon fiber (NCFs) modified with silver nanoparticles (AgNPs) which have excellent catalytic capability. The resulting sensor, best operated at working potentials around -0.5 V (vs. SCE), can detect O2˙- over an extraordinarily wide range that covers 10 orders of magnitude, and the detection limit is 2.32 ± 0.07 fM. The electrode enables the release of O2˙- from living cells under normal or under oxidative stress conditions to be determined. The ability to scavenge the superoxide anions of antioxidants was also investigated. In the authors' perception, the method represents a viable tool for studying diseases related to oxidative stress. Graphical abstract Schematic presentation of the construction of an electrochemical sensor based on Nitrogen-doped cotton carbon fiber and silver nanoparticles. It can be used for the direct detection of superoxide anions released from Glioma cells (U87) under normal or under oxidative stress conditions.
Collapse
|
38
|
Zhang W, Zhang J, Li P, Liu J, Su D, Tang B. Two-photon fluorescence imaging reveals a Golgi apparatus superoxide anion-mediated hepatic ischaemia-reperfusion signalling pathway. Chem Sci 2019; 10:879-883. [PMID: 30774882 PMCID: PMC6346286 DOI: 10.1039/c8sc03917h] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatic ischaemia-reperfusion (IR) injury is mainly attributed to a burst of reactive oxygen species (ROS) that attack biological macromolecules and lead to cell death. The superoxide anion (O2˙-) is the first ROS to be generated and triggers the production of other ROS; thus, explorations of the role of O2˙- in the IR process are meaningful. Meanwhile, the Golgi apparatus generates O2˙- via Golgi-associated proteins, which might play an essential role in IR injury. However, the molecular mechanism by which O2˙- from the Golgi apparatus regulates hepatic IR injury is unclear. Therefore, to solve this problem, a two-photon (TP) excited fluorescence probe (CCA) was designed and prepared for the reversible detection of O2˙- in the Golgi apparatus. With the assistance of TP fluorescence microscopy, we observed a substantial increase in the levels of O2˙- in the Golgi apparatus of an IR mouse liver for the first time, as well as increased caspase-2 activity and apoptosis. Furthermore, we found that the tumour necrosis factor (TNF-α) functions as a positive mediator of O2˙- generation. Based on these data, we identified the potential signalling pathway in the Golgi that mediates O2˙- fluctuations in IR mice and revealed the related molecular mechanisms; we also provide a new target for treating IR injury.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China . ;
| | - Jiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China . ;
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China . ;
| | - Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China . ;
| | - Di Su
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China . ;
| |
Collapse
|
39
|
Shi Y, Wang R, Yuan W, Liu Q, Shi M, Feng W, Wu Z, Hu K, Li F. Easy-to-Use Colorimetric Cyanine Probe for the Detection of Cu 2+ in Wilson's Disease. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20377-20386. [PMID: 29851344 DOI: 10.1021/acsami.8b07081] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Copper(II) is one of the essential metal elements in human body, which can accumulate in many organs and finally excrete in urine. Excessive load of Cu2+ can cause liver cirrhosis, kidney dysfunction, and many neurological symptoms in the case of Wilson's disease (WD). Therefore, the selective and efficient detection of Cu2+ is of great importance. Although various fluorescent probes have been reported for the detection of Cu2+, an efficient and capable probe is still rare for patients' self-use on a routine basis. In this study, we developed an easy-to-use probe CY1 based on UV-vis-near-infrared absorption changes with excellent sensitivity and selectivity for Cu2+. The mechanism of oxidation of CY1 by Cu2+ was first explored. We demonstrated the role of the probe in the quantitative detection of Cu2+ in urine from WD patients and showed that it has great potential for clinical applications.
Collapse
Affiliation(s)
- Yibing Shi
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Sciences & Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P. R. China
| | - Roumin Wang
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital , Zhejiang University School of Medicine , 88 Jiefang Road , Hangzhou , Zhejiang 310009 , P. R. China
| | - Wei Yuan
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Sciences & Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P. R. China
| | - Qingyun Liu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Sciences & Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P. R. China
| | - Mei Shi
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Sciences & Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P. R. China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Sciences & Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P. R. China
| | - Zhiying Wu
- Department of Neurology and Research Center of Neurology, Second Affiliated Hospital , Zhejiang University School of Medicine , 88 Jiefang Road , Hangzhou , Zhejiang 310009 , P. R. China
| | - Ke Hu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Sciences & Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P. R. China
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Sciences & Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , 220 Handan Road , Shanghai 200433 , P. R. China
| |
Collapse
|
40
|
Xiao H, Wu C, Li P, Tang B. Simultaneous Fluorescence Visualization of Endoplasmic Reticulum Superoxide Anion and Polarity in Myocardial Cells and Tissue. Anal Chem 2018; 90:6081-6088. [DOI: 10.1021/acs.analchem.7b05440] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haibin Xiao
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Chuanchen Wu
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Ping Li
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
41
|
Liu R, Zhang L, Chen Y, Huang Z, Huang Y, Zhao S. Design of a New Near-Infrared Ratiometric Fluorescent Nanoprobe for Real-Time Imaging of Superoxide Anions and Hydroxyl Radicals in Live Cells and in Situ Tracing of the Inflammation Process in Vivo. Anal Chem 2018. [DOI: 10.1021/acs.analchem.7b04488] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rongjun Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Yunyun Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Zirong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
42
|
Zhang W, Liu Y, Gao Q, Liu C, Song B, Zhang R, Yuan J. A ruthenium(ii) complex–cyanine energy transfer scaffold based luminescence probe for ratiometric detection and imaging of mitochondrial peroxynitrite. Chem Commun (Camb) 2018; 54:13698-13701. [DOI: 10.1039/c8cc08061e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report a ratiometric luminescence probe for sensing and imaging of mitochondrial ONOO− based on a ruthenium(ii) complex–cyanine energy transfer scaffold.
Collapse
Affiliation(s)
- Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology
- Dalian 116024
- China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology
- Dalian 116024
- China
| | - Quankun Gao
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology
- Dalian 116024
- China
| | - Chaolong Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology
- Dalian 116024
- China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology
- Dalian 116024
- China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland
- St. Lucia
- Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
43
|
Jiao X, Li Y, Niu J, Xie X, Wang X, Tang B. Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems. Anal Chem 2017; 90:533-555. [DOI: 10.1021/acs.analchem.7b04234] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoyun Jiao
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yong Li
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jinye Niu
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- School
of Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Xilei Xie
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xu Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
44
|
Ning P, Wang W, Chen M, Feng Y, Meng X. Recent advances in mitochondria- and lysosomes-targeted small-molecule two-photon fluorescent probes. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.09.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|