1
|
Kaur S, Singla P, Dann AJ, McClements J, Sullivan MV, Kim M, Stoufer S, Dawson JA, Crapnell RD, Banks CE, Turner NW, Moore MD, Kaur I, Peeters M. Sensitive Electrochemical and Thermal Detection of Human Noroviruses Using Molecularly Imprinted Polymer Nanoparticles Generated against a Viral Target. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51397-51410. [PMID: 39263982 PMCID: PMC11440458 DOI: 10.1021/acsami.4c01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Norovirus (NoV) is the predominant cause of foodborne illness globally; current detection methods are typically expensive, have inadequate sensitivities, and utilize biological receptors with poor stability. Therefore, accurate, cost-effective, and highly stable detection methods are needed to screen for NoV in foods. We developed molecularly imprinted polymer nanoparticles (nanoMIPs) to detect NoV using a small target epitope (12 amino acids) with a solid-phase synthesis approach. The performance of three batches of nanoMIPs with varying monomer compositions (nanoMIP-1, -2, and -3) were compared both experimentally and computationally. Surface plasmon resonance examined nanoMIP binding affinity to norovirus virus-like particles (NoV-LPs), whereby nanoMIP-1 had the lowest KD value of 0.512 μM. This is significant, as traditional targets for generation of norovirus ligands previously reported were generated against drastically larger norovirus capsid segments that have limitations in ease of production. Further, an electrochemical sensor was developed by covalently attaching the nanoMIPs to glassy carbon electrodes. In agreement with our predictions from density functional theory simulations, electrochemical impedance spectroscopy showed a sensitive response toward NoV-LPs for nanoMIP batches tested; however, nanoMIP-1 was optimal, with an excellent detection limit of 3.4 pg/mL (1.9 × 105 particles/mL). Due to its exceptional performance, nanoMIP-1 was immobilized to screen-printed electrodes and utilized within a thermal sensor, where it exhibited a low detection limit of 6.5 pg/mL (3.7 × 105 particles/mL). Crucially, we demonstrated that nanoMIP-1 could detect NoV in real food samples (romaine lettuce) by using electrochemical and thermal sensors. Consequently, the study highlights the exceptional potential of nanoMIPs to replace traditional biological materials (e.g., antibodies) as sensitive, versatile, and highly stable receptors within NoV sensors.
Collapse
Affiliation(s)
- Sarbjeet Kaur
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- School of Engineering, Engineering A building, East Booth Street, University of Manchester, Manchester, M13 9QS, United Kingdom
| | - Amy J Dann
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- School of Engineering, Engineering A building, East Booth Street, University of Manchester, Manchester, M13 9QS, United Kingdom
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Mark V Sullivan
- Department of Chemistry, Dainton Building, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| | - Minji Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Sloane Stoufer
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - James A Dawson
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Robert D Crapnell
- Manchester Metropolitan University, Faculty of Science and Engineering, John Dalton Building, Chester Steet, Manchester, M1 5GD, United Kingdom
| | - Craig E Banks
- Manchester Metropolitan University, Faculty of Science and Engineering, John Dalton Building, Chester Steet, Manchester, M1 5GD, United Kingdom
| | - Nicholas W Turner
- Department of Chemistry, Dainton Building, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Inderpreet Kaur
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- School of Engineering, Engineering A building, East Booth Street, University of Manchester, Manchester, M13 9QS, United Kingdom
| |
Collapse
|
2
|
Wu K, Green AA. Detection of Norovirus Using Paper-Based Cell-Free Systems. Methods Mol Biol 2022; 2433:375-390. [PMID: 34985757 DOI: 10.1007/978-1-0716-1998-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Norovirus infections are the leading cause of foodborne illness and human gastroenteritis, afflicting hundreds of millions of people each year. Molecular assays with the capacity to detect norovirus without expensive equipment and with high sensitivity and specificity represent useful tools to track and contain future outbreaks. Here we describe how norovirus can be detected in low-cost paper-based cell-free reactions. These assays combine freeze-dried, thermostable cell-free transcription-translation reactions with toehold switch riboregulators designed to target the norovirus genome, enabling convenient colorimetric assay readouts. Coupling cell-free reactions with synbody-based viral enrichment and isothermal amplification enables detection of norovirus from clinical samples down to concentrations as low as 270 zM. These diagnostic tests are promising assays for confronting norovirus outbreaks and can be adapted to a variety of other human pathogens.
Collapse
Affiliation(s)
- Kaiyue Wu
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology and Biochemistry Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
| | - Alexander A Green
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
4
|
A Survey of Analytical Techniques for Noroviruses. Foods 2020; 9:foods9030318. [PMID: 32164213 PMCID: PMC7142446 DOI: 10.3390/foods9030318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
As the leading cause of acute gastroenteritis worldwide, human noroviruses (HuNoVs) have caused around 685 million cases of infection and nearly $60 billion in losses every year. Despite their highly contagious nature, an effective vaccine for HuNoVs has yet to become commercially available. Therefore, rapid detection and subtyping of noroviruses is crucial for preventing viral spread. Over the past half century, there has been monumental progress in the development of techniques for the detection and analysis of noroviruses. However, currently no rapid, portable assays are available to detect and subtype infectious HuNoVs. The purpose of this review is to survey and present different analytical techniques for the detection and characterization of noroviruses.
Collapse
|
6
|
Diamos AG, Mason HS. High-level expression and enrichment of norovirus virus-like particles in plants using modified geminiviral vectors. Protein Expr Purif 2018; 151:86-92. [PMID: 29908914 DOI: 10.1016/j.pep.2018.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/08/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
Abstract
Recombinant virus-like particles (VLPs) are proven to be safe and effective vaccine candidates. We have previously described a plant-based recombinant protein expression system based on agroinfiltration of a replicating vector derived from the geminivirus bean yellow dwarf virus (BeYDV). The system has been systematically optimized to improve expression and reduce cell death in Nicotiana benthamiana leaves. Using these modifications, we show that VLPs derived from genotype GII.4 norovirus, the leading cause of acute gastroenteritis worldwide, can be produced at >1 mg/g leaf fresh weight (LFW), over three times the highest level ever reported in plant-based systems. We also produced norovirus GI VLPs at 2.3 mg/g LFW. Treatment of VLP-containing crude leaf extracts with acid, detergent, or heat enhanced recovery and allowed selective enrichment of norovirus VLPs. Optimal treatment conditions allowed removal of >90% of endogenous plant proteins without any loss of norovirus VLPs. Selective enrichment of hepatitis B core antigen (HBcAg) VLPs by acid treatment was also demonstrated, with some losses in yield that were partially mitigated in the presence of detergent. Sedimentation analysis confirmed that acid and detergent did not inhibit proper assembly of norovirus VLPs, although heat treatment had a small negative effect. These results demonstrate that milligram quantities of norovirus VLPs can be obtained and highly enriched in a matter of days from a single plant leaf using the BeYDV plant expression system.
Collapse
Affiliation(s)
- Andrew G Diamos
- Center for Immunotherapy, Vaccines & Virotherapy, Biodesign Institute at ASU and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines & Virotherapy, Biodesign Institute at ASU and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
7
|
Ma D, Shen L, Wu K, Diehnelt CW, Green AA. Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synth Biol (Oxf) 2018; 3:ysy018. [PMID: 30370338 PMCID: PMC6195790 DOI: 10.1093/synbio/ysy018] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/18/2018] [Accepted: 09/14/2018] [Indexed: 11/14/2022] Open
Abstract
Noroviruses are a primary cause of gastroenteritis and foodborne illness with cases that affect millions of people worldwide each year. Inexpensive tests for norovirus that do not require sophisticated laboratory equipment are important tools for ensuring that patients receive timely treatment and for containing outbreaks. Herein, we demonstrate a low-cost colorimetric assay that detects norovirus from clinical samples by combining paper-based cell-free transcription-translation systems, isothermal amplification and virus enrichment by synbodies. Using isothermal amplification and cell-free RNA sensing with toehold switches, we demonstrate that the assay enables detection of norovirus GII.4 Sydney from stool down to concentrations of 270 aM in reactions that can be directly read by eye. Furthermore, norovirus-binding synbodies and magnetic beads are used to concentrate the virus and provide a 1000-fold increase in assay sensitivity extending its detection limit to 270 zM. These results demonstrate the utility of paper-based cell-free diagnostic systems for identification of foodborne pathogens and provide a versatile diagnostic assay that can be applied to the concentration, amplification and detection of a broad range of infectious agents.
Collapse
Affiliation(s)
- Duo Ma
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and School of Molecular Sciences, Arizona State University, AZ, USA
| | - Luhui Shen
- Biodesign Center for Innovations in Medicine, The Biodesign Institute and School of Molecular Sciences, Arizona State University, AZ, USA
| | - Kaiyue Wu
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and School of Molecular Sciences, Arizona State University, AZ, USA
| | - Chris W Diehnelt
- Biodesign Center for Innovations in Medicine, The Biodesign Institute and School of Molecular Sciences, Arizona State University, AZ, USA
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and School of Molecular Sciences, Arizona State University, AZ, USA
| |
Collapse
|