1
|
Oppong-Danquah E, Blümel M, Tasdemir D. Metabolomics and Microbiomics Insights into Differential Surface Fouling of Three Macroalgal Species of Fucus (Fucales, Phaeophyceae) That Co-Exist in the German Baltic Sea. Mar Drugs 2023; 21:595. [PMID: 37999420 PMCID: PMC10672516 DOI: 10.3390/md21110595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The brown algal genus Fucus provides essential ecosystem services crucial for marine environments. Macroalgae (seaweeds) release dissolved organic matter, hence, are under strong settlement pressure from micro- and macrofoulers. Seaweeds are able to control surface epibionts directly by releasing antimicrobial compounds onto their surfaces, and indirectly by recruiting beneficial microorganisms that produce antimicrobial/antifouling metabolites. In the Kiel Fjord, in the German Baltic Sea, three distinct Fucus species coexist: F. vesiculosus, F. serratus, and F. distichus subsp. evanescens. Despite sharing the same habitat, they show varying fouling levels; F. distichus subsp. evanescens is the least fouled, while F. vesiculosus is the most fouled. The present study explored the surface metabolomes and epiphytic microbiota of these three Fucus spp., aiming to uncover the factors that contribute to the differences in the fouling intensity on their surfaces. Towards this aim, algal surface metabolomes were analyzed using comparative untargeted LC-MS/MS-based metabolomics, to identify the marker metabolites influencing surface fouling. Their epiphytic microbial communities were also comparatively characterized using high-throughput amplicon sequencing, to pinpoint the differences in the surface microbiomes of the algae. Our results show that the surface of the least fouling species, F. distichus subsp. evanescens, is enriched with bioactive compounds, such as betaine lipids MGTA, 4-pyridoxic acid, and ulvaline, which are absent from the other species. Additionally, it exhibits a high abundance of the fungal genera Mucor and Alternaria, along with the bacterial genus Yoonia-Loktanella. These taxa are known for producing antimicrobial/antifouling compounds, suggesting their potential role in the observed fouling resistance on the surface of the F. distichus subsp. evanescens compared to F. serratus and F. vesiculosus. These findings provide valuable clues on the differential surface fouling intensity of Fucus spp., and their importance in marine chemical defense and fouling dynamics.
Collapse
Affiliation(s)
- Ernest Oppong-Danquah
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany; (E.O.-D.); (M.B.)
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany; (E.O.-D.); (M.B.)
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany; (E.O.-D.); (M.B.)
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
2
|
Ciapaite J, van Roermund CWT, Bosma M, Gerrits J, Houten SM, IJlst L, Waterham HR, van Karnebeek CDM, Wanders RJA, Zwartkruis FJT, Jans JJ, Verhoeven-Duif NM. Maintenance of cellular vitamin B 6 levels and mitochondrial oxidative function depend on pyridoxal 5'-phosphate homeostasis protein. J Biol Chem 2023; 299:105047. [PMID: 37451483 PMCID: PMC10463200 DOI: 10.1016/j.jbc.2023.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B6-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B6 metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast. We showed that independent of extracellular B6 vitamer type (pyridoxine, pyridoxamine, or pyridoxal), intracellular pyridoxal 5'-phosphate (PLP) was lower in PLPHP-deficient fibroblasts and HEK293 cells than controls. Culturing cells with pyridoxine or pyridoxamine led to the concentration-dependent accumulation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate (PMP), respectively, suggesting insufficient pyridox(am)ine 5'-phosphate oxidase activity. Experiments utilizing 13C4-pyridoxine confirmed lower pyridox(am)ine 5'-phosphate oxidase activity and revealed increased fractional turnovers of PLP and pyridoxal, indicating increased PLP hydrolysis to pyridoxal in PLPHP-deficient cells. This effect could be partly counteracted by inactivation of pyridoxal phosphatase. PLPHP deficiency had a distinct effect on mitochondrial PLP and PMP, suggesting impaired activity of mitochondrial transaminases. Moreover, in YBL036C-deficient yeast, PLP was depleted and PMP accumulated only with carbon sources requiring mitochondrial metabolism. Lactate and pyruvate accumulation along with the decrease of tricarboxylic acid cycle intermediates downstream of α-ketoglutarate suggested impaired mitochondrial oxidative metabolism in PLPHP-deficient HEK293 cells. We hypothesize that impaired activity of mitochondrial transaminases may contribute to this depletion. Taken together, our study provides new insights into the pathomechanisms of PLPBP deficiency and reinforces the link between PLPHP function, vitamin B6 metabolism, and mitochondrial oxidative metabolism.
Collapse
Affiliation(s)
- Jolita Ciapaite
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands.
| | - Carlo W T van Roermund
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Johan Gerrits
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lodewijk IJlst
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Clara D M van Karnebeek
- United for Metabolic Diseases, The Netherlands; Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ronald J A Wanders
- United for Metabolic Diseases, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Fried J T Zwartkruis
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Judith J Jans
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands; United for Metabolic Diseases, The Netherlands
| |
Collapse
|
3
|
Liu L, Li J, Gai Y, Tian Z, Wang Y, Wang T, Liu P, Yuan Q, Ma H, Lee SY, Zhang D. Protein engineering and iterative multimodule optimization for vitamin B 6 production in Escherichia coli. Nat Commun 2023; 14:5304. [PMID: 37652926 PMCID: PMC10471632 DOI: 10.1038/s41467-023-40928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Vitamin B6 is an essential nutrient with extensive applications in the medicine, food, animal feed, and cosmetics industries. Pyridoxine (PN), the most common commercial form of vitamin B6, is currently chemically synthesized using expensive and toxic chemicals. However, the low catalytic efficiencies of natural enzymes and the tight regulation of the metabolic pathway have hindered PN production by the microbial fermentation process. Here, we report an engineered Escherichia coli strain for PN production. Parallel pathway engineering is performed to decouple PN production and cell growth. Further, protein engineering is rationally designed including the inefficient enzymes PdxA, PdxJ, and the initial enzymes Epd and Dxs. By the iterative multimodule optimization strategy, the final strain produces 1.4 g/L of PN with productivity of 29.16 mg/L/h by fed-batch fermentation. The strategies reported here will be useful for developing microbial strains for the production of vitamins and other bioproducts having inherently low metabolic fluxes.
Collapse
Affiliation(s)
- Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jinlong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanming Gai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhizhong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yanyan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tenghe Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qianqian Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 four program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Andresen C, Boch T, Gegner HM, Mechtel N, Narr A, Birgin E, Rasbach E, Rahbari N, Trumpp A, Poschet G, Hübschmann D. Comparison of extraction methods for intracellular metabolomics of human tissues. Front Mol Biosci 2022; 9:932261. [PMID: 36090025 PMCID: PMC9461704 DOI: 10.3389/fmolb.2022.932261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Analyses of metabolic compounds inside cells or tissues provide high information content since they represent the endpoint of biological information flow and are a snapshot of the integration of many regulatory processes. However, quantification of the abundance of metabolites requires their careful extraction. We present a comprehensive study comparing ten extraction protocols in four human sample types (liver tissue, bone marrow, HL60, and HEK cells) aiming to detect and quantify up to 630 metabolites of different chemical classes. We show that the extraction efficiency and repeatability are highly variable across protocols, tissues, and chemical classes of metabolites. We used different quality metrics including the limit of detection and variability between replicates as well as the sum of concentrations as a global estimate of analytical repeatability of the extraction. The coverage of extracted metabolites depends on the used solvents, which has implications for the design of measurements of different sample types and metabolic compounds of interest. The benchmark dataset can be explored in an easy-to-use, interactive, and flexible online resource (R/shiny app MetaboExtract: http://www.metaboextract.shiny.dkfz.de) for context-specific selection of the optimal extraction method. Furthermore, data processing and conversion functionality underlying the shiny app are accessible as an R package: https://cran.r-project.org/package=MetAlyzer.
Collapse
Affiliation(s)
- Carolin Andresen
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Tobias Boch
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Personalized Medical Oncology, German Cancer Research Center, Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Hagen M. Gegner
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Nils Mechtel
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Andreas Narr
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Emrullah Birgin
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Erik Rasbach
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh Rahbari
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Daniel Hübschmann
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- *Correspondence: Daniel Hübschmann,
| |
Collapse
|
5
|
Drosophila carrying epilepsy-associated variants in the vitamin B6 metabolism gene PNPO display allele- and diet-dependent phenotypes. Proc Natl Acad Sci U S A 2022; 119:2115524119. [PMID: 35217610 PMCID: PMC8892510 DOI: 10.1073/pnas.2115524119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
Both genetic and environmental factors contribute to epilepsy. Understanding their contributions and interactions helps disease management. However, it is often challenging to study gene–environment interaction in humans due to their heterogeneous genetic background and less controllable environmental factors. The fruit fly, Drosophila melanogaster, has been proven to be a powerful model to study human diseases, including epilepsy. We generated knock-in flies carrying different epilepsy-associated pyridox(am)ine 5′-phosphate oxidase (PNPO) alleles and studied the developmental, behavioral, electrophysiological, and fitness effects of each mutant allele under different dietary conditions. We showed that phenotypes in knock-in flies are allele and diet dependent, providing clues for timely and specific diet interventions. Our results offer biological insights into mechanisms underlying phenotypic variations and specific therapeutic strategies. Pyridox(am)ine 5′-phosphate oxidase (PNPO) catalyzes the rate-limiting step in the synthesis of pyridoxal 5′-phosphate (PLP), the active form of vitamin B6 required for the synthesis of neurotransmitters gamma-aminobutyric acid (GABA) and the monoamines. Pathogenic variants in PNPO have been increasingly identified in patients with neonatal epileptic encephalopathy and early-onset epilepsy. These patients often exhibit different types of seizures and variable comorbidities. Recently, the PNPO gene has also been implicated in epilepsy in adults. It is unclear how these phenotypic variations are linked to specific PNPO alleles and to what degree diet can modify their expression. Using CRISPR-Cas9, we generated four knock-in Drosophila alleles, hWT, hR116Q, hD33V , and hR95H, in which the endogenous Drosophila PNPO was replaced by wild-type human PNPO complementary DNA (cDNA) and three epilepsy-associated variants. We found that these knock-in flies exhibited a wide range of phenotypes, including developmental impairments, abnormal locomotor activities, spontaneous seizures, and shortened life span. These phenotypes are allele dependent, varying with the known biochemical severity of these mutations and our characterized molecular defects. We also showed that diet treatments further diversified the phenotypes among alleles, and PLP supplementation at larval and adult stages prevented developmental impairments and seizures in adult flies, respectively. Furthermore, we found that hR95H had a significant dominant-negative effect, rendering heterozygous flies susceptible to seizures and premature death. Together, these results provide biological bases for the various phenotypes resulting from multifunction of PNPO, specific molecular and/or genetic properties of each PNPO variant, and differential allele–diet interactions.
Collapse
|
6
|
Van den Eynde MDG, Scheijen JLJM, Stehouwer CDA, Miyata T, Schalkwijk CG. Quantification of the B6 vitamers in human plasma and urine in a study with pyridoxamine as an oral supplement; pyridoxamine as an alternative for pyridoxine. Clin Nutr 2021; 40:4624-4632. [PMID: 34229268 DOI: 10.1016/j.clnu.2021.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/16/2021] [Accepted: 05/28/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Vitamin B6 is involved in a large spectrum of physiological processes and comprises of the vitamers pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and their phosphorylated derivatives including the biological active pyridoxal 5'-phosphate (PLP). While PN toxicity is known to complicate several treatments, PM has shown promise in relation to the treatment of metabolic and age-related diseases by blocking oxidative degradation and scavenging toxic dicarbonyl compounds and reactive oxygen species. We aimed to assess the metabolization of oral PM supplements in a single and three daily dose. MATERIALS AND METHODS We optimized and validated a method for the quantification of the B6 vitamers in plasma and urine using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Five healthy volunteers were recruited to study PM metabolization after a single oral dose of 200 mg PM or a three daily dose of 67 mg PM. A third protocol was implemented as control for dietary intake. Venous blood samples, 24 h urine and fasted second void urine samples were collected. RESULTS After a single oral dose of 200 mg PM, plasma PM increased in the first 3 h to a maximum of 2324 ± 266 nmol/L. While plasma PM levels returned to baseline after ~10 h of PM intake, PLP increased to a maximum of 2787 ± 329 nmol/L and reached a plateau. We found a small increase of PN to a maximum of 13.5 ± 2.1 nmol/L; it was nearly undetectable after ~12 h. With a three daily dose of 67 mg PM we observed an increase and decline of plasma PM, PL, and PN concentrations after each PM intake. PLP showed a similar increase as in the single dose protocol and accumulated over time. CONCLUSION In this study we showed high plasma levels of PM after oral PM supplementation. We found steadily increasing levels of the biologically active PLP, with minimal formation of PN. The B6 vitamer PM is an interesting supplement as an inhibitor of harmful processes in metabolic diseases and for the treatment of vitamin B6 deficiency. CLINICAL TRIAL REGISTRY The study was approved by the Medical Ethics Committee of Maastricht University (NL) and was registered at ClinicalTrials.gov as NCT02954588.
Collapse
Affiliation(s)
- Mathias D G Van den Eynde
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht, the Netherlands
| | - Toshio Miyata
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht, the Netherlands.
| |
Collapse
|
7
|
Ghatge MS, Al Mughram M, Omar AM, Safo MK. Inborn errors in the vitamin B6 salvage enzymes associated with neonatal epileptic encephalopathy and other pathologies. Biochimie 2021; 183:18-29. [PMID: 33421502 PMCID: PMC11273822 DOI: 10.1016/j.biochi.2020.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the active cofactor form of vitamin B6 is required by over 160 PLP-dependent (vitamin B6) enzymes serving diverse biological roles, such as carbohydrates, amino acids, hemes, and neurotransmitters metabolism. Three key enzymes, pyridoxal kinase (PL kinase), pyridoxine 5'-phosphate oxidase (PNPO), and phosphatases metabolize and supply PLP to PLP-dependent enzymes through the salvage pathway. In born errors in the salvage enzymes are known to cause inadequate levels of PLP in the cell, particularly in neuronal cells. The resulting PLP deficiency is known to cause or implicated in several pathologies, most notably seizures. One such disorder, PNPO-dependent neonatal epileptic encephalopathy (NEE) results from natural mutations in PNPO and leads to null or reduced enzymatic activity. NEE does not respond to conventional antiepileptic drugs but may respond to treatment with the B6 vitamers PLP and/or pyridoxine (PN). In born errors that lead to PLP deficiency in cells have also been reported in PL kinase, however, to date none has been associated with epilepsy or seizure. One such pathology is polyneuropathy that responds to PLP therapy. Phosphatase deficiency or hypophosphatasia disorder due to pathogenic mutations in alkaline phosphatase is known to cause seizures that respond to PN therapy. In this article, we review the biochemical features of in born errors pertaining to the salvage enzyme's deficiency that leads to NEE and other pathologies. We also present perspective on vitamin B6 treatment for these disorders, along with attempts to develop zebrafish model to study the NEE syndrome in vivo.
Collapse
Affiliation(s)
- Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mohammed Al Mughram
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
8
|
Heath O, Pitt J, Mandelstam S, Kuschel C, Vasudevan A, Donoghue S. Early-onset vitamin B 6-dependent epilepsy due to pathogenic PLPBP variants in a premature infant: A case report and review of the literature. JIMD Rep 2021; 58:3-11. [PMID: 33728241 PMCID: PMC7932866 DOI: 10.1002/jmd2.12183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 01/17/2023] Open
Abstract
Vitamin B6-dependent epilepsies are a heterogeneous group of disorders characterized by decreased availability of the active cofactor pyridoxal-5'-phosphate (PLP). While pathogenic variants in ALDH7A1 or PNPO genes account for most cases of these disorders, biallelic pathogenic variants in PLPBP have been shown to cause a form of early onset vitamin B6-dependent epilepsy (EPVB6D). PLPBP is thought to play a role in the homeostatic regulation of vitamin B6, by supplying PLP to apoenzymes while limiting side-reaction toxicity related to excess unbound PLP. Neonatal-onset intractable seizures that respond to pyridoxine and/or PLP are a predominant feature of EPVB6D in humans. Unlike other causes of vitamin B6-dependent epilepsies; however, a specific biomarker for this disorder has yet to be identified. Here we present data from a premature infant found to have pathogenic variants in PLPBP and propose that prematurity may provide an additional clue for early consideration of this diagnosis. We discuss these findings in context of previously published genotypic, phenotypic, and metabolic data from similarly affected patients.
Collapse
Affiliation(s)
- Oliver Heath
- Department of Metabolic MedicineThe Royal Children's HospitalMelbourneAustralia
| | - James Pitt
- Department of Biochemical Genetics, Victorian Clinical Genetics ServiceMurdoch Children's Research InstituteMelbourneAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Simone Mandelstam
- Department of Medical ImagingThe Royal Children's Hospital and Murdoch Children's Research InstituteMelbourneAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
- Department of RadiologyUniversity of MelbourneMelbourneAustralia
| | - Carl Kuschel
- Department of Obstetrics and GynecologyThe Royal Women's HospitalMelbourneAustralia
| | - Anand Vasudevan
- Department of GeneticsThe Royal Women's HospitalMelbourneAustralia
| | - Sarah Donoghue
- Department of Metabolic MedicineThe Royal Children's HospitalMelbourneAustralia
- Department of Biochemical Genetics, Victorian Clinical Genetics ServiceMurdoch Children's Research InstituteMelbourneAustralia
| |
Collapse
|
9
|
Alghamdi M, Bashiri FA, Abdelhakim M, Adly N, Jamjoom DZ, Sumaily KM, Alghanem B, Arold ST. Phenotypic and molecular spectrum of pyridoxamine-5'-phosphate oxidase deficiency: A scoping review of 87 cases of pyridoxamine-5'-phosphate oxidase deficiency. Clin Genet 2021; 99:99-110. [PMID: 32888189 PMCID: PMC7820968 DOI: 10.1111/cge.13843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Pyridoxamine-5'-phosphate oxidase (PNPO) deficiency is an autosomal recessive pyridoxal 5'-phosphate (PLP)-vitamin-responsive epileptic encephalopathy. The emerging feature of PNPO deficiency is the occurrence of refractory seizures in the first year of life. Pre-maturity and fetal distress, combined with neonatal seizures, are other associated key characteristics. The phenotype results from a dependency of PLP which regulates several enzymes in the body. We present the phenotypic and genotypic spectrum of (PNPO) deficiency based on a literature review (2002-2020) of reports (n = 33) of patients with confirmed PNPO deficiency (n = 87). All patients who received PLP (n = 36) showed a clinical response, with a complete dramatic PLP response with seizure cessation observed in 61% of patients. In spite of effective seizure control with PLP, approximately 56% of patients affected with PLP-dependent epilepsy suffer developmental delay/intellectual disability. There is no diagnostic biomarker, and molecular testing required for diagnosis. However, we noted that cerebrospinal fluid (CSF) PLP was low in 81%, CSF glycine was high in 80% and urinary vanillactic acid was high in 91% of the cases. We observed only a weak correlation between the severity of PNPO protein disruption and disease outcomes, indicating the importance of other factors, including seizure onset and time of therapy initiation. We found that pre-maturity, the delay in initiation of PLP therapy and early onset of seizures correlate with a poor neurocognitive outcome. Given the amenability of PNPO to PLP therapy for seizure control, early diagnosis is essential.
Collapse
Affiliation(s)
- Malak Alghamdi
- Medical Genetics Division, Department of Pediatrics, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
- Department of PediatricsKing Saud University Medical CityRiyadhSaudi Arabia
| | - Fahad A. Bashiri
- Department of PediatricsKing Saud University Medical CityRiyadhSaudi Arabia
- Neurology division, Department of Pediatrics, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | - Marwa Abdelhakim
- Computer, Electrical and Mathematical Science and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Nouran Adly
- College of Medicine Research Center, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | - Dima Z. Jamjoom
- Department of Radiology and Medical Imaging, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | - Khalid M. Sumaily
- Clinical Biochemistry Unit, Department of Laboratory MedicineKing Saud University Medical City, King Saud UniversityRiyadhSaudi Arabia
| | - Bandar Alghanem
- Medical Research Core Facility and Platforms (MRCFP)King Abdullah International Medical, Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU‐HS), King, Abdulaziz Medical City (KAMC), NGHARiyadhSaudi Arabia
| | - Stefan T. Arold
- Computational Bioscience, Research Center (CBRC); Division of Biological and Environmental Sciences and Engineering, (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Centre de Biochimie Structurale, CNRS, INSERMUniversité de MontpellierMontpellierFrance
| |
Collapse
|
10
|
Zhang X, Zhou J, Gu Z, Zhang H, Gong Q, Luo K. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2020; 269:120492. [PMID: 33153757 DOI: 10.1016/j.biomaterials.2020.120492] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
In spite of a great improvement in medical health services and an increase in lifespan, we have witnessed a skyrocket increase in the incidence of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease), ischemic stroke, and epilepsy, which have seriously undermined the quality of life and substantially increased economic and societal burdens. Development of diagnostic methods for CNS disorders is still in the early stage, and the clinical outcomes suggest these methods are not ready for the challenges associated with diagnosis of CNS disorders, such as early detection, specific binding, sharp contrast, and continuous monitoring of therapeutic interventions. Another challenge is to overcome various barrier structures during delivery of diagnostic agents, especially the blood-brain barrier (BBB). Fortunately, utilization of nanomaterials has been pursued as a potential and promising strategy to address these challenges. This review will discuss anatomical and functional structures of BBB and transport mechanisms of nanomaterials across the BBB, and special emphases will be placed on the state-of-the-art advances in the development of nanomedicines from a variety of nanomaterials for diagnosis of CNS disorders. Meanwhile, current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Keller N, Mendoza-Ferreira N, Maroofian R, Chelban V, Khalil Y, Mills PB, Boostani R, Torbati PN, Karimiani EG, Thiele H, Houlden H, Wirth B, Karakaya M. Hereditary polyneuropathy with optic atrophy due to PDXK variant leading to impaired Vitamin B6 metabolism. Neuromuscul Disord 2020; 30:583-589. [DOI: 10.1016/j.nmd.2020.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 01/13/2023]
|
12
|
Clayton PT. The effectiveness of correcting abnormal metabolic profiles. J Inherit Metab Dis 2020; 43:2-13. [PMID: 31222759 PMCID: PMC7041635 DOI: 10.1002/jimd.12139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/12/2023]
Abstract
Inborn errors of metabolism cause disease because of accumulation of a metabolite before the blocked step or deficiency of an essential metabolite downstream of the block. Treatments can be directed at reducing the levels of a toxic metabolite or correcting a metabolite deficiency. Many disorders have been treated successfully first in a single patient because we can measure the metabolites and adjust treatment to get them as close as possible to the normal range. Examples are drawn from Komrower's description of treatment of homocystinuria and the author's trials of treatment in bile acid synthesis disorders (3β-hydroxy-Δ5 -C27 -steroid dehydrogenase deficiency and Δ4 -3-oxosteroid 5β-reductase deficiency), neurotransmitter amine disorders (aromatic L-amino acid decarboxylase [AADC] and tyrosine hydroxylase deficiencies), and vitamin B6 disorders (pyridox(am)ine phosphate oxidase deficiency and pyridoxine-dependent epilepsy [ALDH7A1 deficiency]). Sometimes follow-up shows there are milder and more severe forms of the disease and even variable clinical manifestations but by measuring the metabolites we can adjust the treatment to get the metabolites into the normal range. Biochemical measurements are not subject to placebo effects and will also show if the disorder is improving spontaneously. The hypothesis that can then be tested for clinical outcome is whether getting metabolite(s) into a target range leads to an improvement in an outcome parameter such as abnormal liver function tests, hypokinesia, epilepsy control etc. The metabolite-guided approach to treatment is an example of personalized medicine and is a better way of determining efficacy for disorders of variable severity than a randomized controlled clinical trial.
Collapse
|
13
|
Ciapaite J, Albersen M, Savelberg SMC, Bosma M, Tessadori F, Gerrits J, Lansu N, Zwakenberg S, Bakkers JPW, Zwartkruis FJT, van Haaften G, Jans JJ, Verhoeven-Duif NM. Pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency in zebrafish results in fatal seizures and metabolic aberrations. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165607. [PMID: 31759955 DOI: 10.1016/j.bbadis.2019.165607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Pyridox(am)ine 5'-phosphate oxidase (PNPO) catalyzes oxidation of pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate (PMP) to pyridoxal 5'-phosphate (PLP), the active form of vitamin B6. PNPO deficiency results in neonatal/infantile seizures and neurodevelopmental delay. To gain insight into this disorder we generated Pnpo deficient (pnpo-/-) zebrafish (CRISPR/Cas9 gene editing). Locomotion analysis showed that pnpo-/- zebrafish develop seizures resulting in only 38% of pnpo-/- zebrafish surviving beyond 20 days post fertilization (dpf). The age of seizure onset varied and survival after the onset was brief. Biochemical profiling at 20 dpf revealed a reduction of PLP and pyridoxal (PL) and accumulation of PMP and pyridoxamine (PM). Amino acids involved in neurotransmission including glutamate, γ-aminobutyric acid (GABA) and glycine were decreased. Concentrations of several, mostly essential, amino acids were increased in pnpo-/- zebrafish suggesting impaired activity of PLP-dependent transaminases involved in their degradation. PLP treatment increased survival at 20 dpf and led to complete normalization of PLP, PL, glutamate, GABA and glycine. However, amino acid profiles only partially normalized and accumulation of PMP and PM persisted. Taken together, our data indicate that not only decreased PLP but also accumulation of PMP may play a role in the clinical phenotype of PNPO deficiency.
Collapse
Affiliation(s)
- Jolita Ciapaite
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands.
| | - Monique Albersen
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Sanne M C Savelberg
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Federico Tessadori
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Johan Gerrits
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Nico Lansu
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Jeroen P W Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Medical Physiology, University Medical Center Utrecht, 3584 CM Utrecht, the Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Judith J Jans
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| |
Collapse
|
14
|
Baruteau J, Khalil Y, Grunewald S, Zancolli M, Chakrapani A, Cleary M, Davison J, Footitt E, Waddington SN, Gissen P, Mills P. Urea Cycle Related Amino Acids Measured in Dried Bloodspots Enable Long-Term In Vivo Monitoring and Therapeutic Adjustment. Metabolites 2019; 9:E275. [PMID: 31718089 PMCID: PMC6918381 DOI: 10.3390/metabo9110275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dried bloodspots are easy to collect and to transport to assess various metabolites, such as amino acids. Dried bloodspots are routinely used for diagnosis and monitoring of some inherited metabolic diseases. METHODS Measurement of amino acids from dried blood spots by liquid chromatography-tandem mass spectrometry. RESULTS We describe a novel rapid method to measure underivatised urea cycle related amino acids. Application of this method enabled accurate monitoring of these amino acids to assess the efficacy of therapies in argininosuccinate lyase deficient mice and monitoring of these metabolites in patients with urea cycle defects. CONCLUSION Measuring urea cycle related amino acids in urea cycle defects from dried blood spots is a reliable tool in animal research and will be of benefit in the clinic, facilitating optimisation of protein-restricted diet and preventing amino acid deprivation.
Collapse
Affiliation(s)
- Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK; (Y.K.); (P.G.); (P.M.)
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London WC1E 6BT, UK;
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; (S.G.); (A.C.); (M.C.); (J.D.); (E.F.)
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research Centre, London W1T 7HA, UK;
| | - Youssef Khalil
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK; (Y.K.); (P.G.); (P.M.)
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; (S.G.); (A.C.); (M.C.); (J.D.); (E.F.)
| | - Marta Zancolli
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research Centre, London W1T 7HA, UK;
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; (S.G.); (A.C.); (M.C.); (J.D.); (E.F.)
| | - Maureen Cleary
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; (S.G.); (A.C.); (M.C.); (J.D.); (E.F.)
| | - James Davison
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; (S.G.); (A.C.); (M.C.); (J.D.); (E.F.)
| | - Emma Footitt
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; (S.G.); (A.C.); (M.C.); (J.D.); (E.F.)
| | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London WC1E 6BT, UK;
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Paul Gissen
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK; (Y.K.); (P.G.); (P.M.)
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London WC1E 6BT, UK;
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Philippa Mills
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK; (Y.K.); (P.G.); (P.M.)
| |
Collapse
|
15
|
Chelban V, Wilson MP, Warman Chardon J, Vandrovcova J, Zanetti MN, Zamba‐Papanicolaou E, Efthymiou S, Pope S, Conte MR, Abis G, Liu Y, Tribollet E, Haridy NA, Botía JA, Ryten M, Nicolaou P, Minaidou A, Christodoulou K, Kernohan KD, Eaton A, Osmond M, Ito Y, Bourque P, Jepson JEC, Bello O, Bremner F, Cordivari C, Reilly MM, Foiani M, Heslegrave A, Zetterberg H, Heales SJR, Wood NW, Rothman JE, Boycott KM, Mills PB, Clayton PT, Houlden H. PDXK mutations cause polyneuropathy responsive to pyridoxal 5'-phosphate supplementation. Ann Neurol 2019; 86:225-240. [PMID: 31187503 PMCID: PMC6772106 DOI: 10.1002/ana.25524] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Department of Neurology and NeurosurgeryInstitute of Emergency MedicineChisinauMoldova
| | - Matthew P. Wilson
- Genetics and Genomic MedicineUniversity College London Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Jodi Warman Chardon
- Department of Medicine (Neurology)University of OttawaOttawaOntarioCanada
- Ottawa Hospital Research InstituteOttawaOntarioCanada
- Children's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaOntarioCanada
| | - Jana Vandrovcova
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - M. Natalia Zanetti
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Eleni Zamba‐Papanicolaou
- Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- Cyprus School of Molecular MedicineNicosiaCyprus
| | - Stephanie Efthymiou
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Simon Pope
- Neurometabolic Unit, National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Maria R. Conte
- Randall Centre of Cell and Molecular Biophysics, School of Basic and Medical BiosciencesKing's College LondonLondonUnited Kingdom
| | - Giancarlo Abis
- Randall Centre of Cell and Molecular Biophysics, School of Basic and Medical BiosciencesKing's College LondonLondonUnited Kingdom
| | - Yo‐Tsen Liu
- Department of NeurologyNeurological Institute, Taipei Veterans General HospitalTaipeiTaiwan
- National Yang‐Ming University School of MedicineTaipeiTaiwan
- Institute of Brain Science, National Yang‐Ming UniversityTaipeiTaiwan
| | - Eloise Tribollet
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Nourelhoda A. Haridy
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Department of Neurology and PsychiatryAssiut University Hospital, Faculty of MedicineAsyutEgypt
| | - Juan A. Botía
- Reta Lila Weston Research LaboratoriesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Department of Information and Communications EngineeringUniversity of MurciaMurciaSpain
| | - Mina Ryten
- Reta Lila Weston Research LaboratoriesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Department of Medical & Molecular GeneticsKing's College London, Guy's HospitalLondonUnited Kingdom
| | - Paschalis Nicolaou
- Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- Cyprus School of Molecular MedicineNicosiaCyprus
| | - Anna Minaidou
- Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- Cyprus School of Molecular MedicineNicosiaCyprus
| | - Kyproula Christodoulou
- Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- Cyprus School of Molecular MedicineNicosiaCyprus
| | - Kristin D. Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaOntarioCanada
- Newborn Screening Ontario, Children's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Alison Eaton
- Children's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaOntarioCanada
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaOntarioCanada
| | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaOntarioCanada
| | - Pierre Bourque
- Department of Medicine (Neurology)University of OttawaOttawaOntarioCanada
- Ottawa Hospital Research InstituteOttawaOntarioCanada
| | - James E. C. Jepson
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Oscar Bello
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Fion Bremner
- Neuro‐ophthalmology DepartmentNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Carla Cordivari
- Clinical Neurophysiology DepartmentNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Mary M. Reilly
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Martha Foiani
- Clinical Neurophysiology DepartmentNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
- Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Amanda Heslegrave
- Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- UK Dementia Research Institute at University College LondonLondonUnited Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- UK Dementia Research Institute at University College LondonLondonUnited Kingdom
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgMölndalSweden
| | - Simon J. R. Heales
- Neurometabolic Unit, National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Nicholas W. Wood
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Neurogenetics LaboratoryNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - James E. Rothman
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Department of Cell BiologyYale School of MedicineNew HavenCT
| | - Kym M. Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of OttawaOttawaOntarioCanada
| | - Philippa B. Mills
- Genetics and Genomic MedicineUniversity College London Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Peter T. Clayton
- Genetics and Genomic MedicineUniversity College London Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Henry Houlden
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Neurogenetics LaboratoryNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | | |
Collapse
|
16
|
Wilson MP, Plecko B, Mills PB, Clayton PT. Disorders affecting vitamin B 6 metabolism. J Inherit Metab Dis 2019; 42:629-646. [PMID: 30671974 DOI: 10.1002/jimd.12060] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Vitamin B6 is present in our diet in many forms, however, only pyridoxal 5'-phosphate (PLP) can function as a cofactor for enzymes. The intestine absorbs nonphosphorylated B6 vitamers, which are converted by specific enzymes to the active PLP form. The role of PLP is enabled by its reactive aldehyde group. Pathways reliant on PLP include amino acid and neurotransmitter metabolism, folate and 1-carbon metabolism, protein and polyamine synthesis, carbohydrate and lipid metabolism, mitochondrial function and erythropoiesis. Besides the role of PLP as a cofactor B6 vitamers also play other cellular roles, for example, as antioxidants, modifying expression and action of steroid hormone receptors, affecting immune function, as chaperones and as an antagonist of Adenosine-5'-triphosphate (ATP) at P2 purinoceptors. Because of the vital role of PLP in neurotransmitter metabolism, particularly synthesis of the inhibitory transmitter γ-aminobutyric acid, it is not surprising that various inborn errors leading to PLP deficiency manifest as B6 -responsive epilepsy, usually of early onset. This includes pyridox(am)ine phosphate oxidase deficiency (a disorder affecting PLP synthesis and recycling), disorders affecting PLP import into the brain (hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects), a disorder of an intracellular PLP-binding protein (PLPBP, previously named PROSC) and disorders where metabolites accumulate that inactivate PLP, for example, ALDH7A1 deficiency and hyperprolinaemia type II. Patients with these disorders can show rapid control of seizures in response to either pyridoxine and/or PLP with a lifelong dependency on supraphysiological vitamin B6 supply. The clinical and biochemical features of disorders leading to B6 -responsive seizures and the treatment of these disorders are described in this review.
Collapse
Affiliation(s)
- Matthew P Wilson
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, University Childrens' Hospital Graz, Medical University Graz, Graz, Austria
| | - Philippa B Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Peter T Clayton
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
17
|
Kvarnung M, Taylan F, Nilsson D, Anderlid BM, Malmgren H, Lagerstedt-Robinson K, Holmberg E, Burstedt M, Nordenskjöld M, Nordgren A, Lundberg ES. Genomic screening in rare disorders: New mutations and phenotypes, highlighting ALG14 as a novel cause of severe intellectual disability. Clin Genet 2018; 94:528-537. [PMID: 30221345 DOI: 10.1111/cge.13448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
We have investigated 20 consanguineous families with multiple children affected by rare disorders. Detailed clinical examinations, exome sequencing of affected as well as unaffected family members and further validation of likely pathogenic variants were performed. In 16/20 families, we identified pathogenic variants in autosomal recessive disease genes (ALMS1, PIGT, FLVCR2, TFG, CYP7B1, ALG14, EXOSC3, MEGF10, ASAH1, WDR62, ASPM, PNPO, ERCC5, KIAA1109, RIPK4, MAN1B1). A number of these genes have only rarely been reported previously and our findings thus confirm them as disease genes, further delineate the associated phenotypes and expand the mutation spectrum with reports of novel variants. We highlight the findings in two affected siblings with splice altering variants in ALG14 and propose a new clinical entity, which includes severe intellectual disability, epilepsy, behavioral problems and mild dysmorphic features, caused by biallelic variants in ALG14.
Collapse
Affiliation(s)
- Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Malmgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Holmberg
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Magnus Burstedt
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth S Lundberg
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Clayton PT, Mills PB. Micronutrients. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409818765011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Peter T. Clayton
- Genetics and Genomic Medicine, UCL, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Philippa B. Mills
- Genetics and Genomic Medicine, UCL, Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
19
|
Accorsi P, Cellini E, Paolantonio CD, Panzarino G, Verrotti A, Giordano L. Pyridoxine responsiveness in pyridox(am)ine-5-phosphate oxidase deficiency: The importance of early treatment. Clin Neurol Neurosurg 2017; 163:90-93. [PMID: 29080399 DOI: 10.1016/j.clineuro.2017.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Patrizia Accorsi
- Child Neurology and Psychiatry Unit, Spedali Civili, Brescia, Italy
| | - Elena Cellini
- Pediatric Neurology Unit, Children's Hospital A. Meyer -University of Florence, Florence, Italy
| | | | | | | | - Lucio Giordano
- Child Neurology and Psychiatry Unit, Spedali Civili, Brescia, Italy
| |
Collapse
|