1
|
Götze M, Sarnowski CP, de Vries T, Knörlein A, Allain FHT, Hall J, Aebersold R, Leitner A. Single Nucleotide Resolution RNA-Protein Cross-Linking Mass Spectrometry: A Simple Extension of the CLIR-MS Workflow. Anal Chem 2021; 93:14626-14634. [PMID: 34714631 PMCID: PMC8581962 DOI: 10.1021/acs.analchem.1c02384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
RNA–protein
interactions mediate many intracellular processes.
CLIR-MS (cross-linking of isotope-labeled RNA and tandem mass spectrometry)
allows the identification of RNA–protein interaction sites
at single nucleotide/amino acid resolution in a single experiment.
Using isotopically labeled RNA segments for UV-light-induced cross-linking
generates characteristic isotope patterns that constrain the sequence
database searches, increasing spatial resolution. Whereas the use
of segmentally isotopically labeled RNA is effective, it is technically
involved and not applicable in some settings, e.g., in cell or tissue
samples. Here we introduce an extension of the CLIR-MS workflow that
uses unlabeled RNA during cross-linking and subsequently adds an isotopic
label during sample preparation for MS analysis. After RNase and protease
digests of a cross-linked complex, the nucleic acid part of a peptide–RNA
conjugate is labeled using the enzyme T4 polynucleotide kinase and
a 1:1 mixture of heavy 18O4-γ-ATP and
light ATP. In this simple, one-step reaction, three heavy oxygen atoms
are transferred from the γ-phosphate to the 5′-end of
the RNA, introducing an isotopic shift of 6.01 Da that is detectable
by mass spectrometry. We applied this approach to the RNA recognition
motif (RRM) of the protein FOX1 in complex with its cognate binding
substrate, FOX-binding element (FBE) RNA. We also labeled a single
phosphate within an RNA and unambiguously determined the cross-linking
site of the FOX1-RRM binding to FBE at single residue resolution on
the RNA and protein level and used differential ATP labeling for relative
quantification based on isotope dilution. Data are available via ProteomeXchange
with the identifier PXD024010.
Collapse
Affiliation(s)
- Michael Götze
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Chris P Sarnowski
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Tebbe de Vries
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich 8093, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich 8093, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| |
Collapse
|