1
|
Chang T, Li G, Chang D, Amini R, Zhu X, Zhao T, Gu J, Li Z, Li Y. An RNA-Cleaving DNAzyme That Requires an Organic Solvent to Function. Angew Chem Int Ed Engl 2023; 62:e202310941. [PMID: 37648674 DOI: 10.1002/anie.202310941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Engineering functional nucleic acids that are active under unusual conditions will not only reveal their hidden abilities but also lay the groundwork for pursuing them for unique applications. Although many DNAzymes have been derived to catalyze diverse chemical reactions in aqueous solutions, no prior study has been set up to purposely derive DNAzymes that require an organic solvent to function. Herein, we utilized in vitro selection to isolate RNA-cleaving DNAzymes from a random-sequence DNA pool that were "compelled" to accept 35 % dimethyl sulfoxide (DMSO) as a cosolvent, via counter selection in a purely aqueous solution followed by positive selection in the same solution containing 35 % DMSO. This experiment led to the discovery of a new DNAzyme that requires 35 % DMSO for its catalytic activity and exhibits drastically reduced activity without DMSO. This DNAzyme also requires divalent metal ions for catalysis, and its activity is enhanced by monovalent ions. A minimized, more efficient DNAzyme was also derived. This work demonstrates that highly functional, organic solvent-dependent DNAzymes can be isolated from random-sequence DNA libraries via forced in vitro selection, thus expanding the capability and potential utility of catalytic DNA.
Collapse
Affiliation(s)
- Tianjun Chang
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Guangping Li
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Xiaoni Zhu
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Tongqian Zhao
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Zhongping Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
2
|
Chang T, Li G, Ding Z, Li W, Zhu P, Lei W, Shangguan D. Potential G-quadruplexes within the Promoter Nuclease Hypersensitive Sites of the Heat-responsive Genes in Rice. Chembiochem 2022; 23:e202200405. [PMID: 36006168 DOI: 10.1002/cbic.202200405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Indexed: 11/11/2022]
Abstract
G-quadruplexes (G4s) have been shown to be involved in the regulation of multiple cellular processes. Exploring putative G4-forming sequences (PQSs) in heat-responsive genes of rice and their folding structures under different conditions will help to understand the mechanism in response to heat stress. In this work, we discovered a prevalence of PQSs in nuclease hypersensitive sites within the promoters of heat-responsive genes. Moreover, 50% of the searched G3 PQSs ((G3+L1-7)3+G3+) locate in heat shock transcription factors. Circular dichroism spectroscopy, thermal difference spectroscopy, and UV melting analysis demonstrated the representative PQSs could adopt stable G4s at physiological temperature and potassium concentration. These PQSs were able to stall Klenow Fragment (KF) DNA polymerase by the formation of G4s. However, the G4s with Tm values around 50 - 60 oC could be increasingly unwound by KF with the increase of temperatures from 25 to 50 oC, implying these G4s could sense the changes in temperature by structural switch. This work offers fresh clue to understand the potential of G4-involved functions of PQSs and the molecular events in plants in the response to heat stress.
Collapse
Affiliation(s)
- Tianjun Chang
- Henan Polytechnic University, Institute of Enveiroment and Resoures, 2001 Shiji Avenue, 454003, Jiaozuo, CHINA
| | - Guangping Li
- Henan Polytechnic University, Institute of Resources and Environment, CHINA
| | - Zhan Ding
- Henan Polytechnic University, Institute of Resources and Environment, CHINA
| | - Weiguo Li
- Henan Polytechnic University, Institute of Resources and Environment, CHINA
| | - Panpan Zhu
- Henan Polytechnic University, Institute of Resources and Environment, CHINA
| | - Wei Lei
- Henan Polytechnic University, Institute of Resources and Environment, CHINA
| | - Dihua Shangguan
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Key Labor-atory of Analytical Chemistry for Living Biosystems, CAS Re-search/Education Center for Excellence in Molecular Sciences, CHINA
| |
Collapse
|
3
|
Li M, Yao B, Jing C, Chen H, Zhang Y, Zhou N. Engineering a G-quadruplex-based logic gate platform for sensitive assay of dual biomarkers of ovarian cancer. Anal Chim Acta 2022; 1198:339559. [DOI: 10.1016/j.aca.2022.339559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 11/24/2022]
|
4
|
Chang T, He S, Amini R, Li Y. Functional Nucleic Acids Under Unusual Conditions. Chembiochem 2021; 22:2368-2383. [PMID: 33930229 DOI: 10.1002/cbic.202100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Functional nucleic acids (FNAs), including naturally occurring ribozymes and riboswitches as well as artificially created DNAzymes and aptamers, have been popular molecular toolboxes for diverse applications. Given the high chemical stability of nucleic acids and their ability to fold into diverse sequence-dependent structures, FNAs are suggested to be highly functional under unusual reaction conditions. This review will examine the progress of research on FNAs under conditions of low pH, high temperature, freezing conditions, and the inclusion of organic solvents and denaturants that are known to disrupt nucleic acid structures. The FNA species to be discussed include ribozymes, riboswitches, G-quadruplex-based peroxidase mimicking DNAzymes, RNA-cleaving DNAzymes, and aptamers. Research within this space has not only revealed the hidden talents of FNAs but has also laid important groundwork for pursuing these intriguing functional macromolecules for unique applications.
Collapse
Affiliation(s)
- Tianjun Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, P. R. China
| | - Sisi He
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, 518055, Guangdong, P. R. China
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
5
|
Liu X, Liu N, Deng Y, Wang S, Liu T, Tang Y, Chen Y, Lu J. A luminescence probe for c‐myc G‐quadruplex by a triphenylamine‐appended ruthenium complex. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue‐Wen Liu
- Hunan Province Cooperative Innovation Centre for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Centre of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing China
| | - Ning‐Yi Liu
- Hunan Province Cooperative Innovation Centre for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Centre of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde China
| | - Yuan‐Qing Deng
- Hunan Province Cooperative Innovation Centre for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Centre of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde China
| | - Shan Wang
- Hunan Province Cooperative Innovation Centre for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Centre of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde China
| | - Ting Liu
- Hunan Province Cooperative Innovation Centre for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Centre of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde China
| | - Yu‐Cai Tang
- Hunan Province Cooperative Innovation Centre for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Centre of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing China
| | - Yuan‐Dao Chen
- Hunan Province Cooperative Innovation Centre for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Centre of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde China
| | - Ji‐Lin Lu
- Hunan Province Cooperative Innovation Centre for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Centre of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing China
| |
Collapse
|
6
|
Liu X, Liu N, Deng Y, Wang S, Liu T, Tang Y, Chen Y, Lu J. An unexpected fluorescent probe for G‐quadruplex DNA based on a nitro‐substituted ruthenium (II) complex. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xue‐Wen Liu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde 415000 China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Ning‐Yi Liu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde 415000 China
| | - Yuan‐Qing Deng
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde 415000 China
| | - Shan Wang
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde 415000 China
| | - Ting Liu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde 415000 China
| | - Yu‐Cai Tang
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde 415000 China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yuan‐Dao Chen
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde 415000 China
| | - Ji‐Lin Lu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde 415000 China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
7
|
In-Gel Probing Polymorphic Structures of G-Quadruplexes Derived from c-Myc Promoter. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Xie X, Zuffo M, Teulade-Fichou MP, Granzhan A. Identification of optimal fluorescent probes for G-quadruplex nucleic acids through systematic exploration of mono- and distyryl dye libraries. Beilstein J Org Chem 2019; 15:1872-1889. [PMID: 31467609 PMCID: PMC6693400 DOI: 10.3762/bjoc.15.183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
A library of 52 distyryl and 9 mono-styryl cationic dyes was synthesized and investigated with respect to their optical properties, propensity to aggregation in aqueous medium, and capacity to serve as fluorescence “light-up” probes for G-quadruplex (G4) DNA and RNA structures. Among the 61 compounds, 57 dyes showed preferential enhancement of fluorescence intensity in the presence of one or another G4-DNA or RNA structure, while no dye displayed preferential response to double-stranded DNA or single-stranded RNA analytes employed at equivalent nucleotide concentration. Thus, preferential fluorimetric response towards G4 structures appears to be a common feature of mono- and distyryl dyes, including long-known mono-styryl dyes used as mitochondrial probes or protein stains. However, the magnitude of the G4-induced “light-up” effect varies drastically, as a function of both the molecular structure of the dyes and the nature or topology of G4 analytes. Although our results do not allow to formulate comprehensive structure–properties relationships, we identified several structural motifs, such as indole- or pyrrole-substituted distyryl dyes, as well as simple mono-stryryl dyes such as DASPMI [2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide] or its 4-isomer, as optimal fluorescent light-up probes characterized by high fluorimetric response (I/I0 of up to 550-fold), excellent selectivity with respect to double-stranded DNA or single-stranded RNA controls, high quantum yield in the presence of G4 analytes (up to 0.32), large Stokes shift (up to 150 nm) and, in certain cases, structural selectivity with respect to one or another G4 folding topology. These dyes can be considered as promising G4-responsive sensors for in vitro or imaging applications. As a possible application, we implemented a simple two-dye fluorimetric assay allowing rapid topological classification of G4-DNA structures.
Collapse
Affiliation(s)
- Xiao Xie
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| | - Michela Zuffo
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| |
Collapse
|
9
|
Yang C, Hu R, Li Q, Li S, Xiang J, Guo X, Wang S, Zeng Y, Li Y, Yang G. Visualization of Parallel G-Quadruplexes in Cells with a Series of New Developed Bis(4-aminobenzylidene)acetone Derivatives. ACS OMEGA 2018; 3:10487-10492. [PMID: 30320244 PMCID: PMC6173478 DOI: 10.1021/acsomega.8b01190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
G-quadruplexes (G4s) are unique four-stranded nucleic acid secondary structures formed by G-rich nucleic acid sequences which are prevalent in gene promoter and telomere regions and deemed to play essential roles in many biological and pathological processes. Although attentions to G4s have been paid for nearly 40 years, G4 selectivity and its topology discrimination in cells is still pending. Small fluorescence molecules are emerging as a versatile tool of interrogation of cellular features in vivo. Herein, a new class of bis(4-aminobenzylidene)acetone derivatives GD1, GD2, and GD3 with excellent environment-sensitive emission properties were developed and used for fluorescent detection of G4s. Among them, compound GD3 owning four methoxy groups presented preferable capability of lighting up parallel G4s with a strong red-emission enhancement. The photophysical property of GD3 was systematically investigated to elucidate the turn-on mechanism of GD3 toward parallel G4 structures, which reveal that the binding-induced polarity change of the microenvironment around GD3 together with the fluorophore conformational confinement affected the molecular intramolecular charge-transfer state and resulted the enhanced emission. G4s staining with GD3 in fixed cells was further applied, demonstrating GD3 a promising probe with the ability to visualize the distribution of G4 structures in biological processes. In general, this study provides a new potential scaffold-bis(4-aminobenzylidene)acetone-for design of G4-selective fluorescence probes.
Collapse
Affiliation(s)
- Chenlin Yang
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hu
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Li
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuang Li
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Xiang
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xudong Guo
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuangqing Wang
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zeng
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Li
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Yang
- Key
Laboratory of Photochemistry, Institute of Chemistry, Key Laboratory of
Photochemical Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, and State Key Laboratory for Structural Chemistry
of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|