1
|
De Spiegeleer M, Plekhova V, Geltmeyer J, Schoolaert E, Pomian B, Singh V, Wijnant K, De Windt K, Paukku V, De Loof A, Gies I, Michels N, De Henauw S, De Graeve M, De Clerck K, Vanhaecke L. Point-of-care applicable metabotyping using biofluid-specific electrospun MetaSAMPs directly amenable to ambient LA-REIMS. SCIENCE ADVANCES 2023; 9:eade9933. [PMID: 37294759 PMCID: PMC10256167 DOI: 10.1126/sciadv.ade9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
In recent years, ambient ionization mass spectrometry (AIMS) including laser ablation rapid evaporation IMS, has enabled direct biofluid metabolome analysis. AIMS procedures are, however, still hampered by both analytical, i.e., matrix effects, and practical, i.e., sample transport stability, drawbacks that impede metabolome coverage. In this study, we aimed at developing biofluid-specific metabolome sampling membranes (MetaSAMPs) that offer a directly applicable and stabilizing substrate for AIMS. Customized rectal, salivary, and urinary MetaSAMPs consisting of electrospun (nano)fibrous membranes of blended hydrophilic (polyvinylpyrrolidone and polyacrylonitrile) and lipophilic (polystyrene) polymers supported metabolite absorption, adsorption, and desorption. Moreover, MetaSAMP demonstrated superior metabolome coverage and transport stability compared to crude biofluid analysis and was successfully validated in two pediatric cohorts (MetaBEAse, n = 234 and OPERA, n = 101). By integrating anthropometric and (patho)physiological with MetaSAMP-AIMS metabolome data, we obtained substantial weight-driven predictions and clinical correlations. In conclusion, MetaSAMP holds great clinical application potential for on-the-spot metabolic health stratification.
Collapse
Affiliation(s)
- Margot De Spiegeleer
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| | - Vera Plekhova
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| | - Jozefien Geltmeyer
- Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Ella Schoolaert
- Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Beata Pomian
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| | - Varoon Singh
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| | - Kathleen Wijnant
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| | - Kimberly De Windt
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| | - Volter Paukku
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| | - Alexander De Loof
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Inge Gies
- Department of Pediatrics, Free University of Brussels (VUB), University Hospital Brussels (UZ Brussel), Brussels, Belgium
| | - Nathalie Michels
- Department of Developmental, Personality and Social Psychology, Ghent University, Ghent, Belgium
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marilyn De Graeve
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| | - Karen De Clerck
- Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, UK
| |
Collapse
|
2
|
Ha NS, de Raad M, Han LZ, Golini A, Petzold CJ, Northen TR. Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology. RSC Chem Biol 2021; 2:1331-1351. [PMID: 34704041 PMCID: PMC8496484 DOI: 10.1039/d1cb00112d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
High-throughput screening technologies are widely used for elucidating biological activities. These typically require trade-offs in assay specificity and sensitivity to achieve higher throughput. Microfluidic approaches enable rapid manipulation of small volumes and have found a wide range of applications in biotechnology providing improved control of reaction conditions, faster assays, and reduced reagent consumption. The integration of mass spectrometry with microfluidics has the potential to create high-throughput, sensitivity, and specificity assays. This review introduces the widely-used mass spectrometry ionization techniques that have been successfully integrated with microfluidics approaches such as continuous-flow system, microchip electrophoresis, droplet microfluidics, digital microfluidics, centrifugal microfluidics, and paper microfluidics. In addition, we discuss recent applications of microfluidics integrated with mass spectrometry in single-cell analysis, compound screening, and the study of microorganisms. Lastly, we provide future outlooks towards online coupling, improving the sensitivity and integration of multi-omics into a single platform.
Collapse
Affiliation(s)
- Noel S Ha
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Markus de Raad
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
| | - La Zhen Han
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Amber Golini
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Trent R Northen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| |
Collapse
|
3
|
Zhou L, Zhang Q, Xu X, Huo X, Zhou Q, Wang X, Yu Q. Fabricating an Electrospray Ionization Chip Based on Induced Polarization and Liquid Splitting. MICROMACHINES 2021; 12:mi12091034. [PMID: 34577678 PMCID: PMC8472801 DOI: 10.3390/mi12091034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
The coupling of the microfluidic chip to mass spectrometry (MS) has attracted considerable attention in the area of chemical and biological analysis. The most commonly used ionization technique in the chip–MS system is electrospray ionization (ESI). Traditional chip-based ESI devices mainly employ direct electrical contact between the electrode and the spray solvent. In this study, a microchip ESI source based on a novel polarization-splitting approach was developed. Specifically, the droplet in the microchannel is first polarized by the electric field and then split into two sub-droplets. In this process, the charge generated by polarization is retained in the liquid, resulting in the generation of two charged droplets with opposite polarities. Finally, when these charged droplets reach the emitter, the electrospray process is initiated and both positive and negative ions are formed from the same solution. Preliminary experimental results indicate that the coupling of this polarization-splitting ESI (PS-ESI) chip with a mass spectrometer enables conventional ESI-MS analysis of various analytes.
Collapse
Affiliation(s)
- Lvhan Zhou
- Open FIESTA, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.Z.); (X.X.); (Q.Z.)
| | - Qian Zhang
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.Z.); (X.X.); (Q.Z.)
| | - Xiangchun Xu
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.Z.); (X.X.); (Q.Z.)
| | - Xinming Huo
- Division of Life Science & Health, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Qian Zhou
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.Z.); (X.X.); (Q.Z.)
| | - Xiaohao Wang
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.Z.); (X.X.); (Q.Z.)
- Correspondence: (X.W.); (Q.Y.)
| | - Quan Yu
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.Z.); (X.X.); (Q.Z.)
- Correspondence: (X.W.); (Q.Y.)
| |
Collapse
|
4
|
Abstract
Cell analysis is of great significance for the exploration of human diseases and health. However, there are not many techniques for high-throughput cell analysis in the simulated cell microenvironment. The high designability of the microfluidic chip enables multiple kinds of cells to be co-cultured on the chip, with other functions such as sample preprocessing and cell manipulation. Mass spectrometry (MS) can detect a large number of biomolecules without labelling. Therefore, the application of the microfluidic chip coupled with MS has represented a major branch of cell analysis over the past decades. Here, we concisely introduce various microfluidic devices coupled with MS used for cell analysis. The main functions of microfluidic devices are described first, followed by introductions of different interfaces with different types of MS. Then, their various applications in cell analysis are highlighted, with an emphasis on cell metabolism, drug screening, and signal transduction. Current limitations and prospective trends of microfluidics coupled with MS are discussed at the end.
Collapse
Affiliation(s)
- Wanling Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University
| |
Collapse
|
5
|
Urban RD, Fischer TG, Charvat A, Wink K, Krafft B, Ohla S, Zeitler K, Abel B, Belder D. On-chip mass spectrometric analysis in non-polar solvents by liquid beam infrared matrix-assisted laser dispersion/ionization. Anal Bioanal Chem 2021; 413:1561-1570. [PMID: 33479818 PMCID: PMC7921053 DOI: 10.1007/s00216-020-03115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
By the on-chip integration of a droplet generator in front of an emitter tip, droplets of non-polar solvents are generated in a free jet of an aqueous matrix. When an IR laser irradiates this free liquid jet consisting of water as the continuous phase and the non-polar solvent as the dispersed droplet phase, the solutes in the droplets are ionized. This ionization at atmospheric pressure enables the mass spectrometric analysis of non-polar compounds with the aid of a surrounding aqueous matrix that absorbs IR light. This works both for non-polar solvents such as n-heptane and for water non-miscible solvents like chloroform. In a proof of concept study, this approach is applied to monitor a photooxidation of N-phenyl-1,2,3,4-tetrahydroisoquinoline. By using water as an infrared absorbing matrix, analytes, dissolved in non-polar solvents from reactions carried out on a microchip, can be desorbed and ionized for investigation by mass spectrometry.
Collapse
Affiliation(s)
- Raphael D Urban
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Tillmann G Fischer
- Institut für Organische Chemie, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Ales Charvat
- Leibniz-Institut für Oberflächenmodifizierung e.V., Abteilung Funktionale Oberflächen, Permoserstr. 15, 04318, Leipzig, Germany
| | - Konstantin Wink
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Benjamin Krafft
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Stefan Ohla
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Kirsten Zeitler
- Institut für Organische Chemie, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institut für Oberflächenmodifizierung e.V., Abteilung Funktionale Oberflächen, Permoserstr. 15, 04318, Leipzig, Germany
| | - Detlev Belder
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
A microfluidic platform integrating paper adsorption-based sample clean-up and voltage-assisted liquid desorption electrospray ionization mass spectrometry for biological sample analysis. Talanta 2020; 217:121106. [PMID: 32498849 DOI: 10.1016/j.talanta.2020.121106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022]
Abstract
Clinical application of direct sampling electrospray ionization mass spectrometry (ESI-MS) remains limited due to problems associated with very "dirty" sample matrices. Herein we report on a microfluidic platform that allows direct mass spectrometric analysis of serum samples of microliter sizes. The platform integrates in-line paper adsorption-based sample clean-up and voltage assisted liquid desorption ESI-MS/MS (VAL DESI-MS/MS) to detect multiple targeted compounds of clinical interest. Adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP) were selected as model analytes. Simultaneous quantification of these compounds in human serum samples was demonstrated. For all the three compounds, linear calibration curves were obtained in a concentration range from 0.20 to 20.0 μmol/L with r2 values ≥ 0.996. Limits of detection were 0.019, 0.015, and 0.011 μmol/L for AMP, ADP, and ATP, respectively. Recovery was found in the range from 96.5% to 103.5% at spiking concentrations of 0.25 and 2.50 μmol/L. The results indicate that the proposed microfluidic mass spectrometric platform is robust and effective. It may have a potential in clinical analysis.
Collapse
|
7
|
Hu H, Smith S, Li X, Qian Z, Su Y, Lin M, Tu J, Liu YM. Fast quantification of free amino acids in food by microfluidic voltage-assisted liquid desorption electrospray ionization-tandem mass spectrometry. Anal Bioanal Chem 2020; 412:1947-1954. [PMID: 32020315 PMCID: PMC8717839 DOI: 10.1007/s00216-020-02450-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
A method based on microfluidic voltage-assisted liquid desorption electrospray ionization-tandem mass spectrometry (VAL-DESI-MS/MS) has been developed for fast quantification of free amino acids in food. Food extracts were transferred to the microfluidic platform and analyzed by liquid desorption ESI-MS/MS. Deuterated aspartic acid (i.e., 2,2,3-d3-Asp) was used as internal standard for analysis. The method had linear calibration curves with r2 values > 0.998. Limits of detection were at the level of sub μM for the amino acids tested, i.e., glutamic acid (Glu), arginine (Arg), tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe). To validate the proposed method in food analysis, extracts of Cordyceps fungi were analyzed. Amino acid contents were found in the range from 0.63 mg/g (Tyr in Cordyceps sinensis) to 4.44 mg/g (Glu in Cordyceps militaris). Assay repeatability (RSD) was ≤ 5.2% for all the five amino acids measured in all the samples analyzed. Recovery was found in the range from 95.8 to 105.1% at two spiking concentrations of 0.250 mg/g and 1.00 mg/g. These results prove that the proposed microfluidic VAL-DESI-MS/MS method offers a quick and convenient means of quantifying free amino acids with accuracy and repeatability. Therefore, it may have potential in food analysis for nutritional and quality assessment purposes. Graphical abstract.
Collapse
Affiliation(s)
- Hankun Hu
- Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Shila Smith
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA
| | - Xiangtang Li
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA
| | - Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd, Dongguan, 523850, Guangdong, China
| | - Yaxia Su
- Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Manting Lin
- Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Jiancheng Tu
- Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, 430071, Hubei, China.
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Iulia M. Lazar
- Department of Biological Sciences, Academy of Integrated Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Carilion School of Medicine, Academy of Integrated Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas S. Gulakowski
- Systems Biology, Academy of Integrated Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | |
Collapse
|
9
|
Hamdi A, Enjalbal C, Drobecq H, Boukherroub R, Melnyk O, Ezzaouia H, Coffinier Y. Fast and facile preparation of nanostructured silicon surfaces for laser desorption/ionization mass spectrometry of small compounds. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:66-74. [PMID: 30048019 DOI: 10.1002/rcm.8245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Many important biological processes rely on specific biomarkers (such as metabolites, drugs, proteins or peptides, carbohydrates, lipids, ...) that need to be monitored in various fluids (blood, plasma, urine, cell cultures, tissue homogenates, …). Although mass spectrometry (MS) hyphenated to liquid chromatography (LC) is widely accepted as a 'gold-standard' method for identifying such synthetic chemicals or biological products, their robust fast sensitive detection from complex matrices still constitutes a highly challenging matter. METHODS In order to circumvent the constraints intrinsic to LC/MS technology in terms of prior sample treatment, analysis time and overall method development to optimize ionization efficiency affecting the detection threshold, we investigated laser desorption/ionization mass spectrometry (LDI-MS) by directly depositing the sample under study onto cheap inert nanostructures made of silicon to perform straightforward sensitive and rapid screening of targeted low mass biomarkers on a conventional MALDI platform. RESULTS The investigated silicon nanostructures were found to act as very efficient ion-promoting surfaces exhibiting high performance for the detection of different classes of organic compounds, including glutathione, glucose, peptides and antibiotics. Achieving such broad detection was compulsory to develop a SALDI-MS-based pre-screening tool. CONCLUSIONS The key contribution of the described analytical strategy consists of designing inert surfaces that are fast (minute preparation) and cheap to produce, easy to handle and able to detect small organic compounds in matrix-free LDI-MS prerequisite for biomarkers pre-screening from body fluids without the recourse of any separation step.
Collapse
Affiliation(s)
- Abderrahmane Hamdi
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652, Villeneuve d'Ascq, France
- Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif, Tunisia
- Faculty of Science of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Christine Enjalbal
- Univ. Montpellier, Institut des Biomolécules Max Mousseron, Place Eugène Bataillon, 34095, Montpellier, France
| | - Hervé Drobecq
- Institut de biologie de Lille, UMR CNRS 8160, 59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652, Villeneuve d'Ascq, France
| | - Oleg Melnyk
- Institut de biologie de Lille, UMR CNRS 8160, 59000, Lille, France
| | - Hatem Ezzaouia
- Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif, Tunisia
| | - Yannick Coffinier
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652, Villeneuve d'Ascq, France
| |
Collapse
|
10
|
Li X, Rout P, Xu R, Pan L, Tchounwou PB, Ma Y, Liu YM. Quantification of MicroRNAs by Coupling Cyclic Enzymatic Amplification with Microfluidic Voltage-Assisted Liquid Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2018; 90:13663-13669. [PMID: 30359531 DOI: 10.1021/acs.analchem.8b04008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quantitative assay of microRNAs (miRNAs) with mass spectrometric detection currently suffers from two major disadvantages, i.e., being insufficient in sensitivity and requiring an extraction or chromatographic separation prior to MS detection. In this work, we developed a facile and sensitive assay of targeted miRNAs based on the combination of cyclic enzymatic amplification (CEA) with microfluidic voltage-assisted liquid desorption electrospray ionization tandem mass spectrometry (VAL-DESI-MS/MS). The single-stranded DNA (ssDNA) probe was designed to have a sequence complementary to the miRNA target with an extension of a two-base nucleotide fragment (i.e., CpC) at the 3'-position as MS signal reporter, thus being easy to prepare and high in stability. In the proposed CEA-VAL-DESI-MS/MS assay, an ssDNA probe was added to a sample solution, forming a DNA-miRNA hybrid. Duplex-specific nuclease (DSN) was then added to cleave specifically the DNA probe in the heteroduplex strands. As the hybridization-cleavage cycle repeated itself for many rounds, a large quantity of CpC molecules was produced that was quantified by VAL-DESI-MS/MS with accuracy and specificity. miRNA-21 was tested as the model target. The assay had a linear calibration equation in the range from 2.5 pM to 1.0 nM with a limit of detection of 0.25 pM. Determination of miRNA-21 in cellular samples was demonstrated. miRNA-21 was found to be 95.3 ± 13.95 amol ( n = 3) in 100 mouse peritoneal macrophages with a recovery of 94.2 ± 2.6% ( n = 3). Interestingly, analysis of exosomes secreted from these cells revealed that exposure of the cells to chemical stimuli caused a 3-fold increase in exosomal level of miRNA-21. The results suggest that the proposed assay may provide an accurate and cost-effective means for quantification of targeted miRNAs in biomedical samples.
Collapse
Affiliation(s)
| | - Pratik Rout
- Department of Chemistry , Emory University , 201 Dowman Drive , Atlanta , Georgia 30322 , United States
| | | | | | | | - Yonggang Ma
- Mississippi Center for Heart Research, Department of Physiology and Biophysics , University of Mississippi Medical Center , Jackson , Mississippi 39216 , United States
| | | |
Collapse
|