1
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Farahinia A, Khani M, Morhart TA, Wells G, Badea I, Wilson LD, Zhang W. A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2024; 24:6031. [PMID: 39338775 PMCID: PMC11436177 DOI: 10.3390/s24186031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation.
Collapse
Affiliation(s)
- Alireza Farahinia
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Milad Khani
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Tyler A Morhart
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Garth Wells
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Ildiko Badea
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
3
|
Wang J, Gao Z, Dong M, Li J, Jiang H, Xu J, Gu J, Wang D. CdSe@CdS quantum dot-sensitized Au/α-Fe 2O 3 structure for photoelectrochemical detection of circulating tumor cells. Mikrochim Acta 2023; 190:221. [PMID: 37183218 DOI: 10.1007/s00604-023-05797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Circulating tumor cells (CTCs) are the important biomarker for cancer diagnosis and individualized treatment. However, due to the extreme rarity of CTCs (only 1-10 CTCs are found in every milliliter of peripheral blood) high sensitivity and selectivity are urgently needed for CTC detection. Here, a sandwich PEC cytosensor for the ultrasensitive detection of CTCs was developed using the photoactive material Au NP/-Fe2O3 and core-shell CdSe@CdS QD sensitizer. In the proposed protocol, the CdSe@CdS QD/Au NP/α-Fe2O3-sensitized structure with cascade band-edge levels could evidently promote the photoelectric conversion efficiency due to suitable light absorption and efficient electron-hole pair recombination inhibition. Additionally, a dendritic aptamer-DNA concatemer was constructed for highly efficient capture of MCF-7 cells carrying CdSe@CdS QDs, a sensitive material. The linear range of this proposed signal-on PEC sensing method was 300 cell mL-1 to 6 × 105 cell mL-1 with a detection limit of 3 cell mL-1, and it demonstrated an ultrasensitive response to CTCs. Furthermore, this PEC sensor enabled accurate detection of CTCs in serum samples. Hence, a promising strategy for CTC detection in clinical diagnosis was developed based on CdSe@CdS QD-sensitized Au NP/α-Fe2O3-based PEC cytosensor with dendritic aptamer-DNA concatemer.
Collapse
Affiliation(s)
- Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, 066004, China Qinhuangdao, Qinhuangdao, 066004, China.
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Zhihong Gao
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Min Dong
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jian Li
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Hong Jiang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jingying Xu
- Mental Health Service Center, College of Marxism, Yanshan University, Qinhuangdao, 066004, Hebei, China.
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, 066004, China Qinhuangdao, Qinhuangdao, 066004, China.
| | - Desong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, 066004, China Qinhuangdao, Qinhuangdao, 066004, China.
| |
Collapse
|
4
|
Huang Y, Li X, Hou J, Luo Z, Yang G, Zhou S. Conductive Nanofibers-Enhanced Microfluidic Device for the Efficient Capture and Electrical Stimulation-Triggered Rapid Release of Circulating Tumor Cells. BIOSENSORS 2023; 13:bios13050497. [PMID: 37232858 DOI: 10.3390/bios13050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
The effective detection and release of circulating tumor cells (CTCs) are of great significance for cancer diagnosis and monitoring. The microfluidic technique has proved to be a promising method for CTCs isolation and subsequent analysis. However, complex micro-geometries or nanostructures were often constructed and functionalized to improve the capture efficiency, which limited the scale-up for high-throughput production and larger-scale clinical applications. Thus, we designed a simple conductive nanofiber chip (CNF-Chip)-embedded microfluidic device with a herringbone microchannel to achieve the efficient and specific capture and electrical stimulation-triggered rapid release of CTCs. Here, the most used epithelial cell adhesion molecule (EpCAM) was selected as the representative biomarker, and the EpCAM-positive cancer cells were mainly studied. Under the effects of the nanointerface formed by the nanofibers with a rough surface and the herringbone-based high-throughput microfluidic mixing, the local topographic interaction between target cells and nanofibrous substrate in the microfluidic was synergistically enhanced, and the capture efficiency for CTCs was further improved (more than 85%). After capture, the sensitive and rapid release of CTCs (release efficiency above 97%) could be conveniently achieved through the cleavage of the gold-sulfur bond by applying a low voltage (-1.2 V). The device was successfully used for the effective isolation of CTCs in clinical blood samples from cancer patients, indicating the great potential of this CNF-Chip-embedded microfluidic device in clinical applications.
Collapse
Affiliation(s)
- Yisha Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xilin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianwen Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhouying Luo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guang Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
5
|
Shi J, Xu J, Yu Y, Wu C, Chen J, Li S, Ouyang Q, Yang W, Luo C. A Parallelable 3D Microfluidic Chip for Circulating‐Tumor‐Cell Capture at Ultra‐High Throughput and Wide Flow Rate Range. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Jialin Shi
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics Peking University 5 Summer Palace Road Beijing 100871 China
- Center for Quantitative Biology Academy for Advanced Interdisciplinary Studies Peking University 5 Summer Palace Road Beijing 100871 China
| | - Jian Xu
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| | - Yaojun Yu
- Department of Surgery The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University 1111 Wenzhou Road Wenzhou Zhejiang 325027 China
| | - Chengyuan Wu
- Department of Surgery The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University 1111 Wenzhou Road Wenzhou Zhejiang 325027 China
| | - Jiangnan Chen
- Department of Surgery The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University 1111 Wenzhou Road Wenzhou Zhejiang 325027 China
| | - Shuangshuang Li
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics Peking University 5 Summer Palace Road Beijing 100871 China
- Center for Quantitative Biology Academy for Advanced Interdisciplinary Studies Peking University 5 Summer Palace Road Beijing 100871 China
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
- Peking-Tsinghua Center for Life Sciences Peking University 5 Summer Palace Road Beijing 100817 China
| | - Wei Yang
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics School of Physics Peking University 5 Summer Palace Road Beijing 100871 China
- Center for Quantitative Biology Academy for Advanced Interdisciplinary Studies Peking University 5 Summer Palace Road Beijing 100871 China
- Wenzhou Institute University of Chinese Academy of Sciences 1 Jinlian Road Wenzhou Zhejiang 325001 China
| |
Collapse
|
6
|
Reversible capture and release of circulating tumor cells on a three‐dimensional conductive interface to improve cell purity for gene mutation analysis. VIEW 2022. [DOI: 10.1002/viw.20220054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
7
|
Han J, Lu C, Shen M, Sun X, Mo X, Yang G. Fast, Reusable, Cell Uniformly Distributed Membrane Filtration Device for Separation of Circulating Tumor Cells. ACS OMEGA 2022; 7:20761-20767. [PMID: 35755342 PMCID: PMC9219081 DOI: 10.1021/acsomega.2c01153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Isolation of circulating tumor cells (CTCs) is of great significance for the diagnosis, prognosis, and treatment of metastatic cancer. Among CTC capture methods independent of antibodies, membrane filtration-based methods have the advantages of simplicity, rapidity, and high throughput but usually have problems such as clogging, high pressure drop, and impaired cell viability. In this study, we designed and tested a reusable device that used horizontal rotor and fluid-assisted separation to capture CTCs by centrifugal membrane filtration, achieving simple, fast, highly efficient, and viable cell capture on traditional centrifuge. The average capture efficiency was 95.8% for different types of cancer cells with >90% survival, and the removal of white blood cells can reach 99.72% under four times cleaning of the membrane after filtration. A further clinic demo was performed using the device to detect residual leukemic cells in patients; the results showed a 10-fold enrichment of the leukemic cells in peripheral blood samples. Taken together, the simple, robust, and efficient CTC capture device may have the potential for clinic routine detection and analysis of circulating tumor cells.
Collapse
Affiliation(s)
- Jintao Han
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Chunyang Lu
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Mengzhu Shen
- Beijing
Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking
University People’s Hospital, Beijing 100044, China
| | - Xiaoyi Sun
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xiaodong Mo
- Beijing
Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking
University People’s Hospital, Beijing 100044, China
| | - Gen Yang
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou 352001, China
| |
Collapse
|
8
|
Li J, Xia Y, Zhou F, He R, Chen B, Guo S. Electric field-assisted MnO 2 nanomaterials for rapid capture and in situ delivery of circulating tumour cells. NANOSCALE 2022; 14:6959-6969. [PMID: 35467678 DOI: 10.1039/d2nr01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The heterogeneity of cancer has become a major obstacle to treatment, and the development of an efficient, fast, and accurate drug delivery system is even more urgent. In this work, we designed a device that integrated multiple functions of cell capture, in situ manipulation, and non-destructive release on a single device. With an applied electric field, an intelligent device based on MnO2 nanomaterials was used to realize efficient and rapid capture of cancer cells in both patients' blood and artificial blood samples. This device could capture cancer cells with high efficiency (up to about 93%) and strong specificity in blood samples, the capture time was nearly 50 min faster than that of natural sedimentation, and reduce the effects on cells caused by long-time in vitro culture. In addition, Mn3+ on the surface of the MnO2 substrate was reduced to Mn2+ by an electrochemical method, partial dissolution occurred, and then the captured cells were non-destructively released with rapid speed (about 8 s) and high efficiency (about 94 ± 2%). For in situ regulation, upon applying a pulse electric field, the captured cells were perforated nondestructively, and extracellular molecules could be delivered to the captured cells with well-performed dose and temporal controls. As a proof-of-concept application, we proved that the device could capture circulating tumor cells in peripheral blood faster and achieve in situ drug delivery. Finally, it can also quickly release circulating tumour cells for subsequent analysis, highlighting its accuracy, due to which it is widely used in medical treatment, basic tumor research and drug development.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| | - Yu Xia
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Rongxiang He
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Shishang Guo
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
9
|
Bhat MP, Thendral V, Uthappa UT, Lee KH, Kigga M, Altalhi T, Kurkuri MD, Kant K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. BIOSENSORS 2022; 12:220. [PMID: 35448280 PMCID: PMC9025399 DOI: 10.3390/bios12040220] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 05/05/2023]
Abstract
CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.
Collapse
Affiliation(s)
- Mahesh Padmalaya Bhat
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Venkatachalam Thendral
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | | | - Kyeong-Hwan Lee
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Krishna Kant
- Departamento de Química Física, Campus Universitario, CINBIO Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
10
|
Wang T, Xing Y, Cheng Z, Yu F. Analysis of Single Extracellular Vesicles for Biomedical Applications with Especial Emphasis on Cancer Investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zhao K, Liu Y, Wang H, Song Y, Chen X, Huang C, Niu Q, Cao J, Chen X, Wang W, Wu L, Yang C. Selective, user-friendly, highly porous, efficient, and rapid (SUPER) filter for isolation and analysis of rare tumor cells. LAB ON A CHIP 2022; 22:367-376. [PMID: 34918732 DOI: 10.1039/d1lc00886b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid, efficient, and selective separation of tumor cells from complex body fluids is urgently needed for clinical application of tumor-cell-based liquid biopsy. Herein, a size-selective affinity filtration system, named selective, user-friendly, highly porous, efficient, and rapid filter (SUPER Filter), was developed for high-performance tumor cell isolation and analysis. SUPER Filter enabled selective interaction of tumor cells with size-optimized and antibody-coated micropore walls during filtration, achieving a high efficiency of 91.0 ± 6.1% in buffer and 83.7 ± 6.4% in whole blood. Meanwhile, its larger micropore size than those of traditional filtration devices greatly reduced the nonspecific capture of background cells (55-126 cells per mL blood) with enrichment factors of 1.1 × 104-1.0 × 105 and a purity of 52.7 ± 4.2%. Moreover, its high porosity enabled ultra-fast (<5 s for 1 mL of blood or 10 mL of buffer samples) and user-friendly gravity-driven filtration. Finally, SUPER Filter demonstrated rapid, efficient, and selective separation of tumor cells from blood and large-volume pleural and ascetic fluid samples from cancer patients for morphological and molecular analysis. We expect that this size-selective affinity filtration strategy facilitates the clinical application of tumor-cell-based liquid biopsy.
Collapse
Affiliation(s)
- Kaifeng Zhao
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Hua Wang
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaofeng Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Huang
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Qi Niu
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jiao Cao
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xin Chen
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Lingling Wu
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Chaoyong Yang
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
You Q, Peng J, Chang Z, Ge M, Mei Q, Dong WF. Specific recognition and photothermal release of circulating tumor cells using near-infrared light-responsive 2D MXene nanosheets@hydrogel membranes. Talanta 2021; 235:122770. [PMID: 34517628 DOI: 10.1016/j.talanta.2021.122770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023]
Abstract
2D materials with attractive optical properties are promising for individualized cancer immunotherapy. Isolation, capture, and release of circulating tumor cells (CTCs) are of great significance for promoting the process of early diagnosis of cancers. MXene nanosheets incorporated gelatin hydrogel offers the possibility of achieving near-infrared (NIR) light response to initiate the photothermal effect. Herein, the design and preparation of Ti3C2Tx MXene nanosheets-embedded thermoresponsive gelatin hydrogel membrane with NIR light-responsive for the specific capture and release of CTCs were reported. The membrane was fabricated by casting Ti3C2Tx-embedded gelatin onto a substrate and then modified with epithelial-cell adhesion-molecule antibody (anti-EpCAM) for the specific recognition and separation of CTCs from whole blood. The captured cells can be released without damage with dual-mode containing temperature-responsive release (gelatin deconstructed at 37 °C) and photothermal site-release (Ti3C2Tx induced by NIR light). Furthermore, we were able to achieve an average efficient release rate of 89 % of captured cells with stable cell viability of 87 % via the NIR light irradiation. This work may provide the promising potential for retrieval of single cells in clinical diagnosis.
Collapse
Affiliation(s)
- Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, PR China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, PR China
| | - Jiahui Peng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, PR China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, PR China
| | - Zhimin Chang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, PR China.
| | - Mingfeng Ge
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, PR China
| | - Qian Mei
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, PR China
| | - Wen-Fei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, PR China.
| |
Collapse
|
13
|
Nanostructure Materials: Efficient Strategies for Circulating Tumor Cells Capture, Release, and Detection. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Yang W, Fan L, Guo Z, Wu H, Chen J, Liu C, Yan Y, Ding S. Reversible capturing and voltammetric determination of circulating tumor cells using two-dimensional nanozyme based on PdMo decorated with gold nanoparticles and aptamer. Mikrochim Acta 2021; 188:319. [PMID: 34476628 DOI: 10.1007/s00604-021-04927-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022]
Abstract
A novel cytosensor was constructed for the ultrasensitive detection and nondestructive release of circulating tumor cells (CTCs) by combining Au nanoparticles-loaded two-dimensional bimetallic PdMo (2D Au@PdMo) nanozymes and electrochemical reductive desorption. The 2D Au@PdMo nanozymes possessed high-efficiency peroxidase-like activity and were assembled with an aptamer composed of a thiol-modified epithelial specific cell adhesion molecule (EpCAM) to strengthen CTCs adhesion. Moreover, the electrode surface was decorated with highly fractal Au nanostructures (HFAuNSs) composites due to the similarity in fractal nanostructure with the CTCs membrane to enhance the CTCs anchoring efficiency and release capability. The captured CTCs could be further efficiently dissociated and nondestructively released from the modified electrodes upon electrochemical reductive desorption. The designed cytosensor showed an excellent analytical performance, with a wide linear range from 2 to 1 × 105 cells mL-1 and low limit of detection (LOD) of 2 cells mL-1 (S/N = 3) at the working potential in the range -0.6 to 0.2 V. A satisfactory CTCs release reaching a range of 93.7-97.4% with acceptable RSD from 3.55 to 6.41% and good cell viability was obtained. Thus, the developed cytosensor might provide a potential alternative to perform CTC-based liquid biopsies, with promising applications in early diagnosis of tumors. Preparation and mechanism of desorption of the cytosensor based on 2D Au@PdMo nanozymes and electrochemical reductive desorption for the detection and release of CTCs. A Preparation procedure of the Apt/Au@PbMo bioconjugates. B Fabrication process of the sandwich-type cytosensor. C Electrochemical signal produced by the Au@PdMo nanozymes. D Mechanism of electrochemical reductive desorption for CTCs release.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Lu Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
| | - Zhen Guo
- Department of Clinical Laboratory, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Changjin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Cheng SB, Chen MM, Wang YK, Sun ZH, Qin Y, Tian S, Dong WG, Xie M, Huang WH. A Three-Dimensional Conductive Scaffold Microchip for Effective Capture and Recovery of Circulating Tumor Cells with High Purity. Anal Chem 2021; 93:7102-7109. [PMID: 33908770 DOI: 10.1021/acs.analchem.1c00785] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Effective acquirement of highly pure circulating tumor cells (CTCs) is very important for CTC-related research. However, it is a great challenge since abundant white blood cells (WBCs) are always co-collected with CTCs because of nonspecific bonding or low depletion rate of WBCs in various CTC isolation platforms. Herein, we designed a three-dimensional (3D) conductive scaffold microchip for highly effective capture and electrochemical release of CTCs with high purity. The conductive 3D scaffold was prepared by dense immobilization of gold nanotubes (Au NTs) on porous polydimethylsiloxane and was functionalized with a CTC-specific biomolecule facilitated by a Au-S bond before embedding into a microfluidic device. The spatially distributed 3D macroporous structure compelled cells to change migration from linear to chaotic and the densely covered Au NTs enhanced the topographic interaction between cells and the substrate, thus synergistically improving the CTC capture efficiency. The Au NT-coated 3D scaffold had good electrical conductivity and the Au-S bond was breakable by voltage exposure so that captured CTCs could be specifically released by electrochemical stimulation while nonspecifically bonded WBCs were not responsive to this process, facilitating recovery of CTCs with high purity. The 3D conductive scaffold microchip was successfully applied to obtain highly pure CTCs from cancer patients' blood, benefiting the downstream analysis of CTCs.
Collapse
Affiliation(s)
- Shi-Bo Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Miao-Miao Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yi-Ke Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zi-Han Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shan Tian
- Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei-Guo Dong
- Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Min Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Wang Z, Wu Z, Sun N, Cao Y, Cai X, Yuan F, Zou H, Xing C, Pei R. Antifouling hydrogel-coated magnetic nanoparticles for selective isolation and recovery of circulating tumor cells. J Mater Chem B 2021; 9:677-682. [PMID: 33333542 DOI: 10.1039/d0tb02380a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For reliable downstream molecular analysis, it is crucially important to recover circulating tumor cells (CTCs) from clinical blood samples with high purity and viability. Herein, magnetic nanoparticles coated with an antifouling hydrogel layer based on the polymerization method were developed to realize cell-friendly and efficient CTC capture and recovery. Particularly, the hydrogel layer was fabricated by zwitterionic sulfobetaine methacrylate (SBMA) and methacrylic acid (MAA) cross-linked with N,N-bis(acryloyl)cystamine (BACy), which could not only resist nonspecific adhesion but also gently recover the captured cells by glutathione (GSH) responsiveness. Moreover, the anti-epithelial cell adhesion molecule (anti-EpCAM) antibody was modified onto the surface of the hydrogel to provide high specificity for CTC capture. As a result, 96% of target cells were captured in the mimic clinical blood samples with 5-100 CTCs per mL in 25 min of incubation time. After the GSH treatment, about 96% of the obtained cells were recovered with good viability. Notably, the hydrogel-coated magnetic nanoparticles were also usefully applied to isolate CTCs from the blood samples of cancer patients. The favorable results indicate that the hydrogel-modified magnetic nanoparticles may have a promising opportunity to capture and recover CTCs for subsequent research.
Collapse
Affiliation(s)
- Zhili Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Biointerface Materials for Cellular Adhesion: Recent Progress and Future Prospects. ACTUATORS 2020. [DOI: 10.3390/act9040137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While many natural instances of adhesion between cells and biological macromolecules have been elucidated, understanding how to mimic these adhesion events remains to be a challenge. Discovering new biointerface materials that can provide an appropriate environment, and in some cases, also providing function similar to the body’s own extracellular matrix, would be highly beneficial to multiple existing applications in biomedical and biological engineering, and provide the necessary insight for the advancement of new technology. Such examples of current applications that would benefit include biosensors, high-throughput screening and tissue engineering. From a mechanical perspective, these biointerfaces would function as bioactuators that apply focal adhesion points onto cells, allowing them to move and migrate along a surface, making biointerfaces a very relevant application in the field of actuators. While it is evident that great strides in progress have been made in the area of synthetic biointerfaces, we must also acknowledge their current limitations as described in the literature, leading to an inability to completely function and dynamically respond like natural biointerfaces. In this review, we discuss the methods, materials and, possible applications of biointerface materials used in the current literature, and the trends for future research in this area.
Collapse
|
18
|
Lu C, Xu J, Han J, Li X, Xue N, Li J, Wu W, Sun X, Wang Y, Ouyang Q, Yang G, Luo C. A novel microfluidic device integrating focus-separation speed reduction design and trap arrays for high-throughput capture of circulating tumor cells. LAB ON A CHIP 2020; 20:4094-4105. [PMID: 33089845 DOI: 10.1039/d0lc00631a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Isolation and analysis of circulating tumor cells (CTCs) from peripheral blood provides a potential way to detect and characterize cancer. Existing technologies to separate or capture CTCs from whole blood still have issues with sample throughput, separation efficiency or stable efficiency at different flow rates. Here, we proposed a new concept to capture rare CTCs from blood by integrating a triangular prism array-based capture apparatus with streamline-based focus-separation speed reduction design. The focus-separation design could focus and maintain CTCs, while removing a considerable proportion of liquid (98.9%) containing other blood cells to the outlet, therefore, a high CTC capture efficiency could be achieved in the trap arrays with a high initial flow rate. It is worth mentioning that the new design works well over a wide range of flow rates, so it does not require the stability of the flow rate. The results showed that this novel integrated chip can achieve a sample throughput from 5 to 40 mL h-1 with a stable and high CTC capture efficiency (up to 94.8%) and high purity (up to 4 log white blood cells/WBC depletion). The clinical experiment showed that CTCs including CTC clusters were detected in 11/11 (100.0%) patients (mean = 31 CTCs mL-1, median = 25 CTCs mL-1). In summary, our chip enriches and captures CTCs based on physical properties, and it is simple, cheap, fast, and efficient and has low requirements on flow rate, which is very suitable for large-scale application of CTC testing in clinics.
Collapse
Affiliation(s)
- Chunyang Lu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China.
| | - Jian Xu
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Jintao Han
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China.
| | - Xiao Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ningtao Xue
- Jining No. 2 People's Hospital, Jining 272049, China
| | - Jinsong Li
- Jining No. 2 People's Hospital, Jining 272049, China
| | - Wenhua Wu
- Jining No. 2 People's Hospital, Jining 272049, China
| | - Xinlei Sun
- Jining Tumor Hospital, Jining 272007, China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China.
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China. and Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China.
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China. and Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Electrochemical Detection and Point-of-Care Testing for Circulating Tumor Cells: Current Techniques and Future Potentials. SENSORS 2020; 20:s20216073. [PMID: 33114569 PMCID: PMC7663783 DOI: 10.3390/s20216073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) are tumor cells that escaped from the primary tumor or the metastasis into the blood and they play a major role in the initiation of metastasis and tumor recurrence. Thus, it is widely accepted that CTC is the main target of liquid biopsy. In the past few decades, the separation of CTC based on the electrochemical method has attracted widespread attention due to its convenience, rapidness, low cost, high sensitivity, and no need for complex instruments and equipment. At present, CTC detection is not widely used in the clinic due to various reasons. Point-of-care CTC detection provides us with a possibility, which is sensitive, fast, cheap, and easy to operate. More importantly, the testing instrument is small and portable, and the testing does not require specialized laboratories and specialized clinical examiners. In this review, we summarized the latest developments in the electrochemical-based CTC detection and point-of-care CTC detection, and discussed the challenges and possible trends.
Collapse
|
20
|
Akbarinejad A, Hisey CL, Brewster D, Ashraf J, Chang V, Sabet S, Nursalim Y, Lucarelli V, Blenkiron C, Chamley L, Barker D, Williams DE, Evans CW, Travas-Sejdic J. Novel Electrochemically Switchable, Flexible, Microporous Cloth that Selectively Captures, Releases, and Concentrates Intact Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39005-39013. [PMID: 32805904 DOI: 10.1021/acsami.0c11908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is a significant and growing research interest in the isolation of extracellular vesicles (EVs) from large volumes of biological samples and their subsequent concentration into clean and small volumes of buffers, especially for applications in medical diagnostics. Materials that are easily incorporated into simple sampling devices and which allow the release of EVs without the need for auxiliary and hence contaminating reagents are particularly in demand. Herein, we report on the design and fabrication of a flexible, microporous, electrochemically switchable cloth that addresses the key challenges in diagnostic applications of EVs. We demonstrate the utility of our electrochemically switchable substrate for the fast, selective, nondestructive, and efficient capture and subsequent release of EVs. The substrate consists of an electrospun cloth, infused with a conducting polymer and decorated with gold particles. Utilizing gold-sulfur covalent bonding, the electrospun substrates may be functionalized with SH-terminated aptamer probes selective to EV surface proteins. We demonstrate that EVs derived from primary human dermal fibroblast (HDFa) and breast cancer (MCF-7) cell lines are selectively captured with low nonspecific adsorption using an aptamer specific to the CD63 protein expressed on the EV membranes. The specific aptamer-EV interactions enable easy removal of the nonspecifically bound material through washing steps. The conducting polymer component of the cloth provides a means for efficient (>92%) and fast (<5 min) electrochemical release of clean and intact captured EVs by cathodic cleavage of the Au-S bond. We demonstrate successful capture of diluted EVs from a large volume sample and their release into a small volume of clean phosphate-buffered saline buffer. The developed cloth can easily be incorporated into different designs for separation systems and would be adaptable to other biological entities including cells and other EVs. Furthermore, the capture/release capability holds great promise for liquid biopsies if used to targeted disease-specific markers.
Collapse
Affiliation(s)
- Alireza Akbarinejad
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Colin L Hisey
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynecology, The University of Auckland, Auckland 1023, New Zealand
| | - Diane Brewster
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Jesna Ashraf
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Vanessa Chang
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynecology, The University of Auckland, Auckland 1023, New Zealand
| | - Saman Sabet
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Yohanes Nursalim
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynecology, The University of Auckland, Auckland 1023, New Zealand
| | - Valentina Lucarelli
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Cherie Blenkiron
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynecology, The University of Auckland, Auckland 1023, New Zealand
| | - Larry Chamley
- Hub for Extracellular Vesicles Investigations (HEVI), Department of Obstetrics and Gynecology, The University of Auckland, Auckland 1023, New Zealand
| | - David Barker
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David E Williams
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Clive W Evans
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
21
|
Cheng J, Liu Y, Zhao Y, Zhang L, Zhang L, Mao H, Huang C. Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices. MICROMACHINES 2020; 11:E774. [PMID: 32823926 PMCID: PMC7465711 DOI: 10.3390/mi11080774] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs), a type of cancer cell that spreads from primary tumors into human peripheral blood and are considered as a new biomarker of cancer liquid biopsy. It provides the direction for understanding the biology of cancer metastasis and progression. Isolation and analysis of CTCs offer the possibility for early cancer detection and dynamic prognosis monitoring. The extremely low quantity and high heterogeneity of CTCs are the major challenges for the application of CTCs in liquid biopsy. There have been significant research endeavors to develop efficient and reliable approaches to CTC isolation and analysis in the past few decades. With the advancement of microfabrication and nanomaterials, a variety of approaches have now emerged for CTC isolation and analysis on microfluidic platforms combined with nanotechnology. These new approaches show advantages in terms of cell capture efficiency, purity, detection sensitivity and specificity. This review focuses on recent progress in the field of nanotechnology-assisted microfluidics for CTC isolation and detection. Firstly, CTC isolation approaches using nanomaterial-based microfluidic devices are summarized and discussed. The different strategies for CTC release from the devices are specifically outlined. In addition, existing nanotechnology-assisted methods for CTC downstream analysis are summarized. Some perspectives are discussed on the challenges of current methods for CTC studies and promising research directions.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China;
| | - Lingqian Zhang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Tang Z, Huang J, He H, Ma C, Wang K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Wang S, Yang X, Wu F, Min L, Chen X, Hou X. Inner Surface Design of Functional Microchannels for Microscale Flow Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905318. [PMID: 31793747 DOI: 10.1002/smll.201905318] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/03/2019] [Indexed: 05/05/2023]
Abstract
Fluidic flow behaviors in microfluidics are dominated by the interfaces created between the fluids and the inner surface walls of microchannels. Microchannel inner surface designs, including the surface chemical modification, and the construction of micro-/nanostructures, are good examples of manipulating those interfaces between liquids and surfaces through tuning the chemical and physical properties of the inner walls of the microchannel. Therefore, the microchannel inner surface design plays critical roles in regulating microflows to enhance the capabilities of microfluidic systems for various applications. Most recently, the rapid progresses in micro-/nanofabrication technologies and fundamental materials have also made it possible to integrate increasingly complex chemical and physical surface modification strategies with the preparation of microchannels in microfluidics. Besides, a wave of researches focusing on the ideas of using liquids as dynamic surface materials is identified, and the unique characteristics endowed with liquid-liquid interfaces have revealed that the interesting phenomena can extend the scope of interfacial interactions determining microflow behaviors. This review extensively discusses the microchannel inner surface designs for microflow control, especially evaluates them from the perspectives of the interfaces resulting from the inner surface designs. In addition, prospective opportunities for the development of surface designs of microchannels, and their applications are provided with the potential to attract scientific interest in areas related to the rapid development and applications of various microchannel systems.
Collapse
Affiliation(s)
- Shuli Wang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
| | - Xian Yang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Feng Wu
- Bionic and Soft Matter Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Lingli Min
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Xinyu Chen
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
- Bionic and Soft Matter Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
24
|
Shen C, Liu S, Li X, Yang M. Electrochemical Detection of Circulating Tumor Cells Based on DNA Generated Electrochemical Current and Rolling Circle Amplification. Anal Chem 2019; 91:11614-11619. [PMID: 31452368 DOI: 10.1021/acs.analchem.9b01897] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circulating tumor cells (CTCs) are important indicators for tumor diagnosis and tumor metastasis. However, the extremely low levels of CTCs in peripheral blood challenges the precise detection of CTCs. Herein, we report DNA generated electrochemical current combined with rolling circle amplification (RCA) as well as magnetic nanospheres for highly efficient magnetic capture and ultrasensitive detection of CTCs. The antiepithelial cell adhesion molecule (EpCAM) antibody-modified magnetic nanospheres were used to capture and enrich CTCs. The following binding of an aptamer onto the CTC surface and the subsequent RCA assembled a significant amount of DNA molecules onto the electrode. The reaction of the DNA molecules with molybdate can then form redox molybdophosphate and produce an electrochemical current. Using the breast cancer cell MCF-7 as a model, the sensor displays good performances toward detection of MCF-7 that was spiked into peripheral blood. The signal amplification strategy integrated with a magnetic nanosphere platform exhibits good performance in the efficient capture and detection of CTCs, which may find wide potential in cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Congcong Shen
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China.,School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Shuping Liu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Xiaoqing Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Minghui Yang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| |
Collapse
|
25
|
Cheng SB, Chen MM, Wang YK, Sun ZH, Xie M, Huang WH. Current techniques and future advance of microfluidic devices for circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Engineering microfluidic chip for circulating tumor cells: From enrichment, release to single cell analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Abstract
A microfluidic device as a pivotal research tool in chemistry and life science is now widely recognized. Indeed, microfluidic techniques have made significant advancements in fundamental research, such as the inherent heterogeneity of single-cells studies in cell populations, which would be helpful in understanding cellular molecular mechanisms and clinical diagnosis of major diseases. Single-cell analyses on microdevices have shown great potential for precise fluid control, cell manipulation, and signal output with rapid and high throughput. Moreover, miniaturized devices also have open functions such as integrating with traditional detection methods, for example, optical, electrochemical or mass spectrometry for single-cell analysis. In this review, we summarized recent advances of single-cell analysis based on various microfluidic approaches from different dimensions, such as in vitro, ex vivo, and in vivo analysis of single cells.
Collapse
Affiliation(s)
- Xiaowen Ou
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology
| |
Collapse
|
28
|
Wang Z, Xu D, Wang X, Jin Y, Huo B, Wang Y, He C, Fu X, Lu N. Size-matching hierarchical micropillar arrays for detecting circulating tumor cells in breast cancer patients' whole blood. NANOSCALE 2019; 11:6677-6684. [PMID: 30899928 DOI: 10.1039/c9nr00173e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Circulating tumor cells (CTCs) are important markers for cancer diagnosis and treatment, but it is still a challenge to recognize and isolate CTCs because they are very rare in the blood. To selectively recognize CTCs and improve the capture efficiency, micro/nanostructured substrates have been fabricated for this application; however the size of CTCs is often ignored in designing and engineering micro/nanostructured substrates. Herein, a spiky polymer micropillar array is fabricated for capturing CTCs with high efficiency. The surface of the micropillar is cactus-like, and is composed of nanospikes. This hierarchical polymer array is designed according to the size of CTCs, which allows for more interactions of the CTCs with the array by setting the size of gaps among the micropillars to match with the CTCs. This polymer array is created by molding on an ordered silicon array, and then it is coated with an antiepithelial cell adhesion molecule antibody (anti-EpCAM). After co-culture with MCF-7 cells for 45 min, the capture efficiency of this array for CTCs is up to 91% ± 2%. Moreover, the anti-EpCAM modified polymer micropillar arrays present an excellent capacity to isolate CTCs from the whole blood samples of breast cancer patients. This study may provide a new concept for capturing target cells by designing and engineering micro/nanostructured substrates according to the size of target cells.
Collapse
Affiliation(s)
- Zhongshun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wongkaew N. Nanofiber-integrated miniaturized systems: an intelligent platform for cancer diagnosis. Anal Bioanal Chem 2019; 411:4251-4264. [PMID: 30706075 DOI: 10.1007/s00216-019-01589-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
Cancer diagnostic tools enabling screening, diagnosis, and effective disease management are essential elements to increase the survival rate of diagnosed patients. Low abundance of cancer markers present in large amounts of interferences remains the major issue. Moreover, current diagnostic technologies are restricted to high-resourced settings only. Integrating nanofibers into miniaturized analytical systems holds a significant promise to address these challenges as demonstrated by recent publications. A large surface area, three-dimensional porous network, and diverse range of functional chemistries make nanofibers an excellent candidate as immobilization support and/or transduction elements, enabling high capture yield and ultrasensitive detection in miniaturized devices. Functional nanofibers have thus been used to isolate and detect various cancer-related biomarkers with a high degree of success in both on-chip and off-chip platforms. In fact, the chemical and functional adaptability of nanofibers has been exploited to address the technical challenges unique to each of the cancer markers in body fluids, where circulating tumor cells are prominently investigated among others (proteins, nucleic acids, and exosomes). So far, none of the work has exploited the nanofibers for cancer-derived exosomes, opening an avenue for further research effort. The trend and future prospects signal possibilities to strengthen the implementation of nanofiber-miniaturized system hybrid for a next generation of cancer diagnostic platforms both in clinical and point-of-care testing.
Collapse
Affiliation(s)
- Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
30
|
Zhou YG, Kermansha L, Zhang L, Mohamadi RM. Miniaturized Electrochemical Sensors to Facilitate Liquid Biopsy for Detection of Circulating Tumor Markers. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
31
|
Wu D, Zhang Z. Synergistic bio-recognition/spatial-confinement for effective capture and sensitive photoelectrochemical detection of MCF-7 cells. Chem Commun (Camb) 2019; 55:14514-14517. [DOI: 10.1039/c9cc08521a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A synergistic bio-recognition/spatial-confinement strategy is proposed for the effective capture of cancer cells and sensitive photoelectrochemical detection with the lowest limit of detection of 2 cells per mL.
Collapse
Affiliation(s)
- Dan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
32
|
Zou D, Cui D. Advances in isolation and detection of circulating tumor cells based on microfluidics. Cancer Biol Med 2018; 15:335-353. [PMID: 30766747 PMCID: PMC6372907 DOI: 10.20892/j.issn.2095-3941.2018.0256] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 01/09/2023] Open
Abstract
Circulating tumor cells (CTCs) are the cancer cells that circulate in the peripheral blood after escaping from the original or metastatic tumors. CTCs could be used as non-invasive source of clinical information in early diagnosis of cancer and evaluation of cancer development. In recent years, CTC research has become a hotspot field wherein many novel CTC detection technologies based on microfluidics have been developed. Great advances have been made that exhibit obvious technical advantages, but cannot yet satisfy the current clinical requirements. In this study, we review the main advances in isolation and detection methods of CTC based on microfluidics research over several years, propose five technical indicators for evaluating these methods, and explore the application prospects. We also discuss the concepts, issues, approaches, advantages, limitations, and challenges with an aim of stimulating a broader interest in developing microfluidics-based CTC detection technology.
Collapse
Affiliation(s)
- Dan Zou
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Xu H, Liao C, Zuo P, Liu Z, Ye BC. Magnetic-Based Microfluidic Device for On-Chip Isolation and Detection of Tumor-Derived Exosomes. Anal Chem 2018; 90:13451-13458. [PMID: 30234974 DOI: 10.1021/acs.analchem.8b03272] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are membrane-enclosed phospholipid extracellular vesicles, which can act as mediators of intercellular communication. Although the original features endow tumor-derived exosomes great potential as biomarkers, efficient isolation and detection methods remain challenging. Here, we presented a two-stage microfluidic platform (ExoPCD-chip), which integrates on-chip isolation and in situ electrochemical analysis of exosomes from serum. To promote exosomes capture efficiency, an improved staggered Y-shaped micropillars mixing pattern was designed to create anisotropic flow without any surface modification. By combining magnetic enrichment based on specific phosphatidylserine-Tim4 protein recognition with a new signal transduction strategy in a chip for the first time, the proposed platform enables highly sensitive detection for CD63 positive exosomes as low as 4.39 × 103 particles/mL with a linear range spanning 5 orders of magnitude, which is substantially better than the existing methods. The reduced volume of sample (30 μL) and simple affinity method also make it ideal for rapid downstream analysis of complex biofluids within 3.5 h. As a proof-of-concept, we performed exosomes analysis in human serum and liver cancer patients can be well discriminated from the healthy controls by the ExoPCD-chip. These results demonstrate that this proposed ExoPCD-chip may serve as a comprehensive exosome analysis tool and potential noninvasive diagnostic platform.
Collapse
Affiliation(s)
- Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science & Technology , Shanghai , 200237 , China
| | - Chong Liao
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science & Technology , Shanghai , 200237 , China
| | - Peng Zuo
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science & Technology , Shanghai , 200237 , China
| | - Ziwen Liu
- Department of Nuclear Medicine , The First People's Hospital of Shangqiu City , Shangqiu , 476000 , China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science & Technology , Shanghai , 200237 , China
| |
Collapse
|
34
|
Chiriacò MS, Bianco M, Nigro A, Primiceri E, Ferrara F, Romano A, Quattrini A, Furlan R, Arima V, Maruccio G. Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3175. [PMID: 30241303 PMCID: PMC6210978 DOI: 10.3390/s18103175] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022]
Abstract
Interest in extracellular vesicles and in particular microvesicles and exosomes, which are constitutively produced by cells, is on the rise for their huge potential as biomarkers in a high number of disorders and pathologies as they are considered as carriers of information among cells, as well as being responsible for the spreading of diseases. Current methods of analysis of microvesicles and exosomes do not fulfill the requirements for their in-depth investigation and the complete exploitation of their diagnostic and prognostic value. Lab-on-chip methods have the potential and capabilities to bridge this gap and the technology is mature enough to provide all the necessary steps for a completely automated analysis of extracellular vesicles in body fluids. In this paper we provide an overview of the biological role of extracellular vesicles, standard biochemical methods of analysis and their limits, and a survey of lab-on-chip methods that are able to meet the needs of a deeper exploitation of these biological entities to drive their use in common clinical practice.
Collapse
Affiliation(s)
| | - Monica Bianco
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Annamaria Nigro
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | - Francesco Ferrara
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
- STMicroelectronics, Via Monteroni, I-73100 Lecce, Italy.
| | - Alessandro Romano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Angelo Quattrini
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Valentina Arima
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Maruccio
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
- Department of Mathematics and Physics, University of Salento, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
35
|
Li R, Cui H, Zhang Z, Zhang L, Wang Y, Wei Y, Zhou F, Liu W, Dong W, Zhao X, Guo S. The Overall Release of Circulating Tumor Cells by Using Temperature Control and Matrix Metalloproteinase-9 Enzyme on Gelatin Film. ACS APPLIED BIO MATERIALS 2018; 1:910-916. [DOI: 10.1021/acsabm.8b00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rui Li
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, P. R. China
| | - Heng Cui
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, P. R. China
| | - Zitong Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, P. R. China
| | - Lingling Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, P. R. China
| | - Yuan Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, P. R. China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenfei Dong
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Xingzhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, P. R. China
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
36
|
Competitive electrochemical platform for ultrasensitive cytosensing of liver cancer cells by using nanotetrahedra structure with rolling circle amplification. Biosens Bioelectron 2018; 120:8-14. [PMID: 30142479 DOI: 10.1016/j.bios.2018.08.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
In this work, a competitive and label-free electrochemical platform was performed for the ultrasensitive cytosensing of liver cancer cells based on DNA nanotetrahedron (NTH) structure and rolling circle amplification (RCA) directed DNAzyme strategy. The multifunctional nanoprobes were fabricated through a DNA primer probe, carboxyfluorescein (FAM) functionalized TLS11a aptamer and horseradish peroxidase (HRP) immobilized on the surfaces of the platinum nanoparticles (PtNPs). Then the NTH-based complementary DNA (cDNA) probe, complementary to the TLS11a aptamer, was attached on a disposable screen-printed gold electrode (SPGE) for increasing the reactivity and accessibility with the prepared nanoprobes. Due to the primer probe and the circular probe with G-quadruplex sequences for RCA, it can lead to the formation of numerous G-quadruplex/hemin DNAzyme, thus generating a remarkable electrochemical response. When the target cells were present, the nanoprobes were released from the SPGE due to the specific recognition of TLS11a aptamers for HepG2 cells, resulting in the electrochemical signal changes. The cytosensor was ultrasensitive for HepG2 tumor cell detection with a detection limit of 3 cell per mL. Furthermore, this strategy was also demonstrated to be applicable for cancer cell imaging. In summary, this electrochemical cytosensor holds great potential for circulating tumor cell detection in the early cancer diagnose.
Collapse
|