1
|
Lapizco-Encinas BH. Nonlinear Electrokinetic Methods of Particles and Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:243-264. [PMID: 38360552 DOI: 10.1146/annurev-anchem-061622-040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nonlinear electrokinetic phenomena offer label-free, portable, and robust approaches for particle and cell assessment, including selective enrichment, separation, sorting, and characterization. The field of electrokinetics has evolved substantially since the first separation reports by Arne Tiselius in the 1930s. The last century witnessed major advances in the understanding of the weak-field theory, which supported developments in the use of linear electrophoresis and its adoption as a routine analytical technique. More recently, an improved understanding of the strong-field theory enabled the development of nonlinear electrokinetic techniques such as electrorotation, dielectrophoresis, and nonlinear electrophoresis. This review discusses the operating principles and recent applications of these three nonlinear electrokinetic phenomena for the analysis and manipulation of particles and cells and provides an overview of some of the latest developments in the field of nonlinear electrokinetics.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA;
| |
Collapse
|
2
|
Bu S, Sonker M, Koh D, Ros A. On the behavior of sub-micrometer polystyrene particles subjected to AC insulator-based dielectrophoresis. Electrophoresis 2024; 45:1065-1079. [PMID: 38195843 DOI: 10.1002/elps.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
Polymer beads, especially polystyrene particles, have been extensively used as model species in insulator-based dielectrophoresis (iDEP) studies. Their use in alternating current iDEP (AC-iDEP) is less explored; however, an assessment in the low-frequency regime (≤10 kHz) allows to link surface conduction effects with the surface properties of polymer particles. Here, we provide a case study for various experimental conditions assessing sub-micrometer polystyrene particles with AC-iDEP and link to accepted surface conduction theory to predict and experimentally verify the observed AC-iDEP trapping behavior based on apparent zeta potential and solution conductivity. We find excellent agreement with the theoretical predictions, but also the occurrence of concentration polarization electroosmotic flow under the studied conditions, which have the potential to confound acting dielectrophoresis conditions. Furthermore, we study a case relevant to the assessment of microplastics in human and animal body fluids by mimicking the protein adsorption of high abundant proteins in blood by coating polystyrene beads with bovine serum albumin, a highly abundant protein in blood. Theoretical predictions and experimental observations confirm a difference in observed AC-iDEP behavior between coated and non-coated particles, which might be exploited for future studies of microplastics in blood to assess their exposure to humans and animals.
Collapse
Affiliation(s)
- Shulin Bu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Domin Koh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Koh D, Sonker M, Arriaga E, Ros A. Numerical modeling reveals improved organelle separation for dielectrophoretic ratchet migration. Electrophoresis 2023; 44:1826-1836. [PMID: 37622551 PMCID: PMC10905386 DOI: 10.1002/elps.202300091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Organelle size varies with normal and abnormal cell function. Thus, size-based particle separation techniques are key to assessing the properties of organelle subpopulations differing in size. Recently, insulator-based dielectrophoresis (iDEP) has gained significant interest as a technique to manipulate sub-micrometer-sized particles enabling the assessment of organelle subpopulations. Based on iDEP, we recently reported a ratchet device that successfully demonstrated size-based particle fractionation in combination with continuous flow sample injection. Here, we used a numerical model to optimize the performance with flow rates a factor of three higher than previously and increased the channel volume to improve throughput. We evaluated the amplitude and duration of applied low-frequency DC-biased AC potentials improving separation efficiency. A separation efficiency of nearly 0.99 was achieved with the optimization of key parameters-improved from 0.80 in previous studies (Ortiz et al. Electrophoresis, 2022;43;1283-1296)-demonstrating that fine-tuning the periodical driving forces initiating the ratchet migration under continuous flow conditions can significantly improve the fractionation of organelles of different sizes.
Collapse
Affiliation(s)
- Domin Koh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| | - Edgar Arriaga
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
4
|
Rasel AKMFK, Seyler SL, Hayes MA. A numerical study on microfluidic devices to maintain the concentration and purity of dielectrophoresis-induced separated fractions of analyte. Anal Bioanal Chem 2023; 415:4861-4873. [PMID: 37382654 DOI: 10.1007/s00216-023-04795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Determining the physical and chemical properties of biologically important particles such as cells, organelles, viruses, exosomes, complexes, nucleotides, and proteins is needed to understand their function. These properties are determined with common analytical tools (mass spectrometry, cryo-EM, NMR, various spectroscopies, nucleotide sequencing, etc.) whose function can be improved when samples are pure and concentrated. Separations science plays a central role in conditioning samples, ranging from low-resolution benchtop operations like precipitations or extractions to higher-resolution chromatography and electrophoresis. In the last two decades, gradient insulator-based dielectrophoresis (g-iDEP) has emerged as a high-resolution separation technique capable of highly selective enrichment of cells, viruses, exosomes, and proteins. Specific evidence has been shown that pure homogeneous and concentrated fractions of cells and exosomes can be generated from complex mixtures. However, recovering those fractions for analysis has not been developed, limiting the technique to an analytical rather than a preparative one. Here, a finite element analysis was undertaken to identify geometries and operational parameters to efficiently remove the enriched fraction while retaining maximum concentration and providing total mass transfer. Geometric factors (e.g., side channel width and distance from the gradient-inducing gap) were studied, along with the addition of a second inlet side channel. Two flow-generating mechanisms-electroosmosis and hydrostatic pressure-were evaluated for semi-optimized device designs, including a comparison of the one- and two-inlet designs. Simulations indicate effectively one hundred percent mass transfer and a concentration increase by an order of magnitude for several device configurations and operational parameters.
Collapse
Affiliation(s)
| | - Sean L Seyler
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
5
|
Abdulhameed A, Halim MM, Halin IA. Dielectrophoretic alignment of carbon nanotubes: theory, applications, and future. NANOTECHNOLOGY 2023; 34:242001. [PMID: 36921341 DOI: 10.1088/1361-6528/acc46c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
Collapse
Affiliation(s)
| | - Mohd Mahadi Halim
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Izhal Abdul Halin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
6
|
Alazzam A, Alamoodi N, Mathew B, Abutayeh M, Khashan S. Transparent, patterned graphene oxide films with tunable electrical conductivity using thermal, chemical, and photoreduction techniques for lab-on-a-chip applications. Anal Bioanal Chem 2023; 415:1339-1346. [PMID: 36633621 DOI: 10.1007/s00216-023-04524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
This work demonstrates the fabrication of electrically tunable films of graphene oxide (GO). GO thin films were deposited and micropatterned on a cyclic olefin copolymer (COC) substrate using a plasma-enhanced liftoff technique. This article discusses thermal, chemical, and photoreduction methods for controlling the electrical conductivity of the patterned film. The patterned graphene oxide films were used to manipulate cells after embedding them in a microfluidic channel. Cells were manipulated under dielectrophoresis (DEP) using patterned reduced graphene oxide (rGO) films with varying electrical conductivities. The non-uniform electric field required for DEP was created either by arranging and shaping a set of electrodes (eDEP) or by simply implementing low conductivity rGO as an insulator between two metal electrodes (iDEP).
Collapse
Affiliation(s)
- Anas Alazzam
- System On Chip Lab, Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
| | - Nahla Alamoodi
- System On Chip Lab, Research and Innovation Center in Carbon Dioxide and Hydrogen (RICH), Department of Chemical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Bobby Mathew
- Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Mohammad Abutayeh
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Saud Khashan
- Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
7
|
Ortiz R, Koh D, Kim DH, Rabbani MT, Anguaya Velasquez C, Sonker M, Arriaga EA, Ros A. Continuous organelle separation in an insulator-based dielectrophoretic device. Electrophoresis 2022; 43:1283-1296. [PMID: 34964147 PMCID: PMC10905415 DOI: 10.1002/elps.202100326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/06/2022]
Abstract
Heterogeneity in organelle size has been associated with devastating human maladies such as neurodegenerative diseases or cancer. Therefore, assessing the size-based subpopulation of organelles is imperative to understand the biomolecular foundations of these diseases. Here, we demonstrated a ratchet migration mechanism using insulator-based dielectrophoresis in conjunction with a continuous flow component that allows the size-based separation of submicrometer particles. The ratchet mechanism was realized in a microfluidic device exhibiting an array of insulating posts, tailoring electrokinetic and dielectrophoretic transport. A numerical model was developed to elucidate the particle migration and the size-based separation in various conditions. Experimentally, the size-based separation of a mixture of polystyrene beads (0.28 and 0.87 μ $\umu $ m) was accomplished demonstrating good agreement with the numerical model. Furthermore, the size-based separation of mitochondria was investigated using a mitochondria mixture isolated from HepG2 cells and HepG2 cells carrying the gene Mfn-1 knocked out, indicating distinct size-related migration behavior. With the presented continuous flow separation device, larger amounts of fractionated organelles can be collected in the future allowing access to the biomolecular signature of mitochondria subpopulations differing in size.
Collapse
Affiliation(s)
- Ricardo Ortiz
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Domin Koh
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Dai Hyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Cesar Anguaya Velasquez
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Edgar A Arriaga
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
8
|
Lapizco-Encinas BH. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review. Anal Bioanal Chem 2021; 414:885-905. [PMID: 34664103 DOI: 10.1007/s00216-021-03687-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
This review article presents an overview of the evolution of the field of insulator-based dielectrophoresis (iDEP); in particular, it focuses on insulator-based electrokinetic (iEK) systems stimulated with direct current and low-frequency(< 1 kHz) AC electric fields. The article covers the surge of iDEP as a research field where many different device designs were developed, from microchannels with arrays of insulating posts to devices with curved walls and nano- and micropipettes. All of these systems allowed for the manipulation and separation of a wide array of particles, ranging from macromolecules to microorganisms, including clinical and biomedical applications. Recent experimental reports, supported by important theoretical studies in the field of physics and colloids, brought attention to the effects of electrophoresis of the second kind in these systems. These recent findings suggest that DEP is not the main force behind particle trapping, as it was believed for the last two decades. This new research suggests that particle trapping, under DC and low-frequency AC potentials, mainly results from a balance between electroosmotic and electrophoretic effects (linear and nonlinear); although DEP is present in these systems, it is not a dominant force. Considering these recent studies, it is proposed to rename this field from DC-iDEP to DC-iEK (and low-frequency AC-iDEP to low-frequency AC-iEK). Whereas much research is still needed, this is an exciting time in the field of microscale EK systems, as these new findings seem to explain the challenges with modeling particle migration and trapping in iEK devices, and provide perhaps a better understanding of the mechanisms behind particle trapping.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|
9
|
Velmanickam L, Jayasooriya V, Vemuri MS, Tida UR, Nawarathna D. Recent advances in dielectrophoresis toward biomarker detection: A summary of studies published between 2014 and 2021. Electrophoresis 2021; 43:212-231. [PMID: 34453855 DOI: 10.1002/elps.202100194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Dielectrophoresis is a well-understood phenomenon that has been widely utilized in biomedical applications. Recent advancements in miniaturization have contributed to the development of dielectrophoretic-based devices for a wide variety of biomedical applications. In particular, the integration of dielectrophoresis with microfluidics, fluorescence, and electrical impedance has produced devices and techniques that are attractive for screening and diagnosing diseases. This review article summarizes the recent utility of dielectrophoresis in assays of biomarker detection. Common screening and diagnostic biomarkers, such as cellular, protein, and nucleic acid, are discussed. Finally, the potential use of recent developments in machine learning approaches toward improving biomarker detection performance is discussed. This review article will be useful for researchers interested in the recent utility of dielectrophoresis in the detection of biomarkers and for those developing new devices to address current gaps in dielectrophoretic biomarker detection.
Collapse
Affiliation(s)
| | - Vidura Jayasooriya
- Department of Electrical and Electronic Engineering, University of SriJayewardenepura, Jayewardenepura, Sri Lanka
| | - Madhava Sarma Vemuri
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, North Dakota, USA
| | - Umamaheswara Rao Tida
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, North Dakota, USA
| | - Dharmakeerthi Nawarathna
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, North Dakota, USA.,Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
10
|
Maidin NNM, Buyong MR, Rahim RA, Mohamed MA. Dielectrophoresis applications in biomedical field and future perspectives in biomedical technology. Electrophoresis 2021; 42:2033-2059. [PMID: 34346062 DOI: 10.1002/elps.202100043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/09/2022]
Abstract
Dielectrophoresis (DEP) is a technique to manipulate trajectories of polarisable particles in non-uniform electric fields by utilising unique dielectric properties. The manipulation of a cell using DEP has been demonstrated in various modes, thereby indicating potential applications in the biomedical field. In this review, recent DEP applications in the biomedical field are discussed. This review is intended to highlight research work that shows significant approach related to dielectrophoresis application in biomedical field reported between 2016 and 2020. Firstly, single-shell model and multiple-shell model of cells are introduced. Current device structures and recently introduced electrode patterns for DEP applications are discussed. Secondly, the biomedical uses of DEP in liquid biopsies, stem cell therapies, and diagnosis of infectious diseases due to bacteria and viruses are presented. Finally, the challenges in DEP research are discussed, and the reported solutions are explained. DEP's potential research directions are mentioned. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nur Nasyifa Mohd Maidin
- Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Ruslinda A Rahim
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,National Nanotechnology Centre (NNC), Ministry of Science Technology and Innovation (MOSTI), Federal Government Administrative Centre, Putrajaya, 62662, Malaysia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
11
|
Feng H, Bai Y, Qiao L, Li Z, Wang E, Chao S, Qu X, Cao Y, Liu Z, Han X, Luo R, Shan Y, Li Z. An Ultra-Simple Charge Supplementary Strategy for High Performance Rotary Triboelectric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101430. [PMID: 34145752 DOI: 10.1002/smll.202101430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Free-standing rotary triboelectric nanogenerators (rTENG) can accomplish special tasks which require both high voltage and high frequency. However, the reported high performance rTENG all have complex structures for output enhancement. In this work, an ultra-simple strategy to build high performance rTENG is developed. With only one small paper strip added to the conventional structure, the output of the TENG is promoted hugely. The voltage is triplicated to 2.3 kV, and the current and charge are quintupled to 133 µA and 197 nC, respectively. The small paper strip, with the merits of ultra-simplicity, wide availability, easy accessibility and low cost, functions as a super-effective charge supplement. This simple and delicate structure enables ultra-high durability with the 2.3 kV voltage output 100% maintained after 1 000 000 cycles. This charge supplementary strategy is universally effective for many other materials, and decouples the output enhancement from any friction or contact on the metal electrodes, emphasizing a critical working principle for the rTENG. Atmospheric cold plasma is generated using the paper strip rTENG (ps-rTENG), which demonstrates strong ability to do bacteria sterilization. This simple and persistent charge supplementary strategy can be easily adopted by other designs to promote the output even further.
Collapse
Affiliation(s)
- Hongqing Feng
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Bai
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Lei Qiao
- Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Zhe Li
- Institute of Engineering Medicine, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Engui Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shengyu Chao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuecheng Qu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Cao
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhuo Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xi Han
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ruizeng Luo
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yizhu Shan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| |
Collapse
|
12
|
Sarno B, Heineck D, Heller MJ, Ibsen SD. Dielectrophoresis: Developments and applications from 2010 to 2020. Electrophoresis 2021; 42:539-564. [PMID: 33191521 PMCID: PMC7986072 DOI: 10.1002/elps.202000156] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
The 20th century has seen tremendous innovation of dielectrophoresis (DEP) technologies, with applications being developed in areas ranging from industrial processing to micro- and nanoscale biotechnology. From 2010 to present day, there have been 981 publications about DEP. Of over 2600 DEP patents held by the United States Patent and Trademark Office, 106 were filed in 2019 alone. This review focuses on DEP-based technologies and application developments between 2010 and 2020, with an aim to highlight the progress and to identify potential areas for future research. A major trend over the last 10 years has been the use of DEP techniques for biological and clinical applications. It has been used in various forms on a diverse array of biologically derived molecules and particles to manipulate and study them including proteins, exosomes, bacteria, yeast, stem cells, cancer cells, and blood cells. DEP has also been used to manipulate nano- and micron-sized particles in order to fabricate different structures. The next 10 years are likely to see the increase in DEP-related patent applications begin to result in a greater level of technology commercialization. Also during this time, innovations in DEP technology will likely be leveraged to continue the existing trend to further biological and medical-focused applications as well as applications in microfabrication. As a tool leveraged by engineering and imaginative scientific design, DEP offers unique capabilities to manipulate small particles in precise ways that can help solve problems and enable scientific inquiry that cannot be addressed using conventional methods.
Collapse
Affiliation(s)
- Benjamin Sarno
- Oregon Health and Science University–The Knight Cancer Institute's Cancer Early Detection Advanced Research CenterPortlandORUSA
- University of California San Diego–NanoengineeringLa JollaCAUSA
| | - Daniel Heineck
- Oregon Health and Science University–The Knight Cancer Institute's Cancer Early Detection Advanced Research CenterPortlandORUSA
| | - Michael J. Heller
- Oregon Health and Science University–The Knight Cancer Institute's Cancer Early Detection Advanced Research CenterPortlandORUSA
- University of California San Diego–NanoengineeringLa JollaCAUSA
| | - Stuart D. Ibsen
- Oregon Health and Science University–The Knight Cancer Institute's Cancer Early Detection Advanced Research CenterPortlandORUSA
- Oregon Health and Science University–Biomedical EngineeringPortlandORUSA
| |
Collapse
|
13
|
Daneshvar F, Chen H, Noh K, Sue HJ. Critical challenges and advances in the carbon nanotube-metal interface for next-generation electronics. NANOSCALE ADVANCES 2021; 3:942-962. [PMID: 36133297 PMCID: PMC9417627 DOI: 10.1039/d0na00822b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 05/25/2023]
Abstract
Next-generation electronics can no longer solely rely on conventional materials; miniaturization of portable electronics is pushing Si-based semiconductors and metallic conductors to their operational limits, flexible displays will make common conductive metal oxide materials obsolete, and weight reduction requirement in the aerospace industry demands scientists to seek reliable low-density conductors. Excellent electrical and mechanical properties, coupled with low density, make carbon nanotubes (CNTs) attractive candidates for future electronics. However, translating these remarkable properties into commercial macroscale applications has been disappointing. To fully realize their great potential, CNTs need to be seamlessly incorporated into metallic structures or have to synergistically work alongside them which is still challenging. Here, we review the major challenges in CNT-metal systems that impede their application in electronic devices and highlight significant breakthroughs. A few key applications that can capitalize on CNT-metal structures are also discussed. We specifically focus on the interfacial interaction and materials science aspects of CNT-metal structures.
Collapse
Affiliation(s)
- Farhad Daneshvar
- Intel Ronler Acres Campus, Intel Corp. 2501 NE Century Blvd Hillsboro Oregon 97124 USA
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University College Station Texas 77843 USA
| | - Hengxi Chen
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University College Station Texas 77843 USA
| | - Kwanghae Noh
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University College Station Texas 77843 USA
| | - Hung-Jue Sue
- Polymer Technology Centre, Department of Materials Science and Engineering, Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
14
|
Benhal P, Quashie D, Kim Y, Ali J. Insulator Based Dielectrophoresis: Micro, Nano, and Molecular Scale Biological Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5095. [PMID: 32906803 PMCID: PMC7570478 DOI: 10.3390/s20185095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Abstract
Insulator based dielectrophoresis (iDEP) is becoming increasingly important in emerging biomolecular applications, including particle purification, fractionation, and separation. Compared to conventional electrode-based dielectrophoresis (eDEP) techniques, iDEP has been demonstrated to have a higher degree of selectivity of biological samples while also being less biologically intrusive. Over the past two decades, substantial technological advances have been made, enabling iDEP to be applied from micro, to nano and molecular scales. Soft particles, including cell organelles, viruses, proteins, and nucleic acids, have been manipulated using iDEP, enabling the exploration of subnanometer biological interactions. Recent investigations using this technique have demonstrated a wide range of applications, including biomarker screening, protein folding analysis, and molecular sensing. Here, we review current state-of-art research on iDEP systems and highlight potential future work.
Collapse
Affiliation(s)
- Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Yoontae Kim
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA;
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| |
Collapse
|
15
|
Rabbani MT, Schmidt CF, Ros A. Length-Selective Dielectrophoretic Manipulation of Single-Walled Carbon Nanotubes. Anal Chem 2020; 92:8901-8908. [PMID: 32447955 DOI: 10.1021/acs.analchem.0c00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-walled carbon nanotubes (SWNTs) possess unique physical, optical, and electrical properties with great potential for future nanoscale device applications. Common synthesis procedures yield SWNTs with large length polydispersity and varying chirality. Electrical and optical applications of SWNTs often require specific lengths, but the preparation of SWNTs with the desired length is still challenging. Insulator-based dielectrophoresis (iDEP) integrated into a microfluidic device has the potential to separate SWNTs by length. Semiconducting SWNTs of varying length suspended with sodium deoxycholate (NaDOC) show unique dielectrophoretic properties at low frequencies (<1 kHz) that were exploited here using an iDEP-based microfluidic constriction sorter device for length-based sorting. Specific migration directions in the constriction sorter were induced for long SWNTs (≥1000 nm) with negative dielectrophoretic properties compared to short (≤300 nm) SWNTs with positive dielectrophoretic properties. We report continuous fractionation conditions for length-based iDEP migration of SWNTs, and we characterize the dynamics of migration of SWNTs in the microdevice using a finite element model. Based on the length and dielectrophoretic characteristics, sorting efficiencies for long and short SWNTs recovered from separate channels of the constriction sorter amounted to >90% and were in excellent agreement with a numerical model for the sorting process.
Collapse
Affiliation(s)
- Mohammad T Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States.,Third Institute of Physics - Biophysics, Department of Physics, University of Göttingen, Göttingen, Germany
| | - Christoph F Schmidt
- Third Institute of Physics - Biophysics, Department of Physics, University of Göttingen, Göttingen, Germany.,Department of Physics and Soft Matter Center, Duke University, Durham, North Carolina 27708, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
16
|
Rabbani MT, Sonker M, Ros A. Carbon nanotube dielectrophoresis: Theory and applications. Electrophoresis 2020; 41:1893-1914. [PMID: 32474942 DOI: 10.1002/elps.202000049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023]
Abstract
Carbon nanotubes (CNTs) are one of the most extensively studied nanomaterials in the 21st century. Since their discovery in 1991, many studies have been reported advancing our knowledge in terms of their structure, properties, synthesis, and applications. CNTs exhibit unique electrothermal and conductive properties which, combined with their mechanical strength, have led to tremendous attention of CNTs as a nanoscale material in the past two decades. To introduce the various types of CNTs, we first provide basic information on their structure followed by some intriguing properties and a brief overview of synthesis methods. Although impressive advances have been demonstrated with CNTs, critical applications require purification, positioning, and separation to yield desired properties and functional elements. Here, we review a versatile technique to manipulate CNTs based on their dielectric properties, namely dielectrophoresis (DEP). A detailed discussion on the DEP aspects of CNTs including the theory and various technical microfluidic realizations is provided. Various advancements in DEP-based manipulations of single-walled and multiwalled CNTs are also discussed with special emphasis on applications involving separation, purification, sensing, and nanofabrication.
Collapse
Affiliation(s)
- Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
17
|
Ou X, Chen P, Huang X, Li S, Liu B. Microfluidic chip electrophoresis for biochemical analysis. J Sep Sci 2019; 43:258-270. [DOI: 10.1002/jssc.201900758] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti‐Cancer Active IngredientsCollege of Chemistry and Life ScienceHubei University of Education Wuhan P. R. China
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Xizhi Huang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Bi‐Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
18
|
Weirauch L, Lorenz M, Hill N, Lapizco-Encinas BH, Baune M, Pesch GR, Thöming J. Material-selective separation of mixed microparticles via insulator-based dielectrophoresis. BIOMICROFLUIDICS 2019; 13:064112. [PMID: 31768198 PMCID: PMC6858286 DOI: 10.1063/1.5124110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/30/2019] [Indexed: 05/31/2023]
Abstract
Insulator-based dielectrophoresis (iDEP) has become a powerful tool for biomicrofluidic separation and analysis because it is capable to selectively separate biological particle systems according to properties like size, material, and shape. However, it has rarely been used to solve challenging separation problems involving nonbiological particles, namely, for systems that are prone to particle agglomeration. Here, we demonstrate material-selective separation of nonbiological systems, i.e., polystyrene and gold-coated polystyrene particles of two different sizes, using iDEP at high accuracy. For this purpose, we present a method to generate fluorescent gold-coated particles. We further introduce a method to reduce the static backpressure that builds up between in- and outlet reservoir due to electroosmotic flow. Moreover, we found that particle agglomeration makes their separation impossible when conventional iDEP routines are applied. Therefore, two solutions to reduce particle agglomeration are presented: A combination of AC and DC potentials and adjustment of pH and conductivity of the suspending medium. Both approaches allow separating particles under challenging conditions such as initially low absolute particle zeta potentials and high particle concentrations. Since those conditions can also be present in biological iDEP separation processes, the results are of general value for biological and nonbiological iDEP operations.
Collapse
Affiliation(s)
- L Weirauch
- Chemical Process Engineering (CVT), University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - M Lorenz
- Chemical Process Engineering (CVT), University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - N Hill
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - B H Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - M Baune
- Chemical Process Engineering (CVT), University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - G R Pesch
- Chemical Process Engineering (CVT), University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - J Thöming
- Chemical Process Engineering (CVT), University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| |
Collapse
|
19
|
Jia Q, Liu Y, Duan Y, Zhou J. Interference-Free Detection of Hydroxyl Radical and Arthritis Diagnosis by Rare Earth-Based Nanoprobe Utilizing SWIR Emission as Reference. Anal Chem 2019; 91:11433-11439. [DOI: 10.1021/acs.analchem.9b02855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qi Jia
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Yuai Duan
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| |
Collapse
|
20
|
Lentz CJ, Hidalgo-Caballero S, Lapizco-Encinas BH. Low frequency cyclical potentials for fine tuning insulator-based dielectrophoretic separations. BIOMICROFLUIDICS 2019; 13:044114. [PMID: 31489061 PMCID: PMC6715440 DOI: 10.1063/1.5115153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
In this study, we demonstrate the use of cyclical low frequency signals with insulator-based dielectrophoresis (iDEP) devices for the separation of particles of similar characteristics and an experimental method for estimating particle DEP mobilities. A custom signal designer program was created using Matlab® and COMSOL Multiphysics® for the identification of specific low frequency signals aimed at separating particle mixtures by exploiting slight differences in surface charge (particle zeta potential) or particle size. For the separation by surface charge, a mixture of two types of 10 μm particles was analyzed and effectively separated employing both a custom step signal and a sawtooth left signal. Notably, these particles had the same shape, size, and surface functionalization as well as were made from the same substrate material. For the separation by size, a sample containing 2 μm and 5 μm particles was successfully separated using a custom step signal; these particles had the same shape, surface functionalization, were made from the same substrate materials, and had only a small difference in zeta potential (10 mV). Additionally, an experimental technique was developed to estimate the dielectrophoretic mobility of each particle type; this information was then utilized by the signal designer program. The technique developed in this study is readily applicable for designing signals capable of separating micron-sized particles of similar characteristics, such as microorganisms, where slight differences in cell size and the shape of surface charge could be effectively exploited. These findings open the possibility for applications in microbial screening using iDEP devices.
Collapse
Affiliation(s)
- Cody J. Lentz
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | | | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
21
|
Hilton SH, Hayes MA. A mathematical model of dielectrophoretic data to connect measurements with cell properties. Anal Bioanal Chem 2019; 411:2223-2237. [PMID: 30879117 PMCID: PMC6459731 DOI: 10.1007/s00216-019-01757-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Dielectrophoresis (DEP) brings about the high-resolution separations of cells and other bioparticles arising from very subtle differences in their properties. However, an unanticipated limitation has arisen: difficulty in assignment of specific biological features which vary between two cell populations. This hampers the ability to interpret the significance of the variations. To realize the opportunities made possible by dielectrophoresis, the data and the diversity of structures found in cells and bioparticles must be linked. While the crossover frequency in DEP has been studied in-depth and exploited in applications using AC fields, less attention has been given when a DC field is present. Here, a new mathematical model of dielectrophoretic data is introduced which connects the physical properties of cells to specific elements of the data from potential- or time-varied DEP experiments. The slope of the data in either analysis is related to the electrokinetic mobility, while the potential at which capture initiates in potential-based analysis is related to both the electrokinetic and dielectrophoretic mobilities. These mobilities can be assigned to cellular properties for which values appear in the literature. Representative examples of high and low values of properties such as conductivity, zeta potential, and surface charge density for bacteria including Streptococcus mutans, Rhodococcus erythropolis, Pasteurella multocida, Escherichia coli, and Staphylococcus aureus are considered. While the many properties of a cell collapse into one or two features of data, for a well-vetted system the model can indicate the extent of dissimilarity. The influence of individual properties on the features of dielectrophoretic data is summarized, allowing for further interpretation of data. Graphical abstract.
Collapse
Affiliation(s)
- Shannon Huey Hilton
- School of Molecular Sciences, Arizona State University, Mail Stop 1604, Tempe, AZ, 85281, USA
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Mail Stop 1604, Tempe, AZ, 85281, USA.
| |
Collapse
|
22
|
Xuan X. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Electrophoresis 2019; 40:2484-2513. [DOI: 10.1002/elps.201900048] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering; Clemson University; Clemson SC USA
| |
Collapse
|
23
|
Kim D, Sonker M, Ros A. Dielectrophoresis: From Molecular to Micrometer-Scale Analytes. Anal Chem 2018; 91:277-295. [DOI: 10.1021/acs.analchem.8b05454] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
24
|
Lapizco-Encinas BH. On the recent developments of insulator-based dielectrophoresis: A review. Electrophoresis 2018; 40:358-375. [PMID: 30112789 DOI: 10.1002/elps.201800285] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/26/2023]
Abstract
Insulator-based dielectrophoresis (iDEP), also known as electrodeless DEP, has become a well-known dielectrophoretic technique, no longer viewed as a new methodology. Significant advances on iDEP have been reported during the last 15 years. This review article aims to summarize some of the most important findings on iDEP organized by the type of dielectrophoretic mode: streaming and trapping iDEP. The former is primarily used for particle sorting, while the latter has great capability for particle enrichment. The characteristics of a wide array of devices are discussed for each type of dielectrophoretic mode in order to present an overview of the distinct designs and applications developed with iDEP. A short section on Joule heating effects and electrothermal flow is also included to highlight some of the challenges in the utilization of iDEP systems. The significant progress on iDEP illustrates its potential for a large number of applications, ranging from bioanalysis to clinical and biomedical assessments. The present article discusses the work on iDEP by numerous research groups around the world, with the aim of proving the reader with an overview of the state-of-the-art in iDEP microfluidic systems.
Collapse
|
25
|
Iterative Dipole Moment Method for the Dielectrophoretic Particle-Particle Interaction in a DC Electric Field. JOURNAL OF NANOTECHNOLOGY 2018. [DOI: 10.1155/2018/3539075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electric force is the most popular technique for bioparticle transportation and manipulation in microfluidic systems. In this paper, the iterative dipole moment (IDM) method was used to calculate the dielectrophoretic (DEP) forces of particle-particle interactions in a two-dimensional DC electric field, and the Lagrangian method was used to solve the transportation of particles. It was found that the DEP properties and whether the connection line between initial positions of particles perpendicular or parallel to the electric field greatly affect the chain patterns. In addition, the dependence of the DEP particle interaction upon the particle diameters, initial particle positions, and the DEP properties have been studied in detail. The conclusions are advantageous in elelctrokinetic microfluidic systems where it may be desirable to control, manipulate, and assemble bioparticles.
Collapse
|