1
|
Zhao J, Liu Y, Zhu L, Li J, Liu Y, Luo J, Xie T, Chen D. Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening. J Pharm Anal 2023; 13:673-682. [PMID: 37440905 PMCID: PMC10334274 DOI: 10.1016/j.jpha.2023.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 07/15/2023] Open
Abstract
Glucose transporter 1 (GLUT1) overexpression in tumor cells is a potential target for drug therapy, but few studies have reported screening GLUT1 inhibitors from natural or synthetic compounds. With current analysis techniques, it is difficult to accurately monitor the GLUT1 inhibitory effect of drug molecules in real-time. We developed a cell membrane-based glucose sensor (CMGS) that integrated a hydrogel electrode with tumor cell membranes to monitor GLUT1 transmembrane transport and screen for GLUT1 inhibitors in traditional Chinese medicines (TCMs). CMGS is compatible with cell membranes of various origins, including different types of tumors and cell lines with GLUT1 expression knocked down by small interfering RNA or small molecules. Based on CMGS continuous monitoring technique, we investigated the glucose transport kinetics of cell membranes with varying levels of GLUT1 expression. We used CMGS to determine the GLUT1-inhibitory effects of drug monomers with similar structures from Scutellaria baicalensis and catechins families. Results were consistent with those of the cellular glucose uptake test and molecular-docking simulation. CMGS could accurately screen drug molecules in TCMs that inhibit GLUT1, providing a new strategy for studying transmembrane protein-receptor interactions.
Collapse
Affiliation(s)
- Jiaqian Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310000, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuqiao Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310000, China
| | - Ling Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310000, China
| | - Junmin Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310000, China
| | - Yanhui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310000, China
| | - Jiarui Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310000, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310000, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dajing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310000, China
| |
Collapse
|
2
|
Zhao J, Wang C, Zhang X, Li J, Liu Y, Pan X, Zhu L, Chen D, Xie T. Cell membrane coated electrochemical sensor for kinetic measurements of GLUT transport. Anal Chim Acta 2022; 1226:340263. [DOI: 10.1016/j.aca.2022.340263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
|
3
|
Xue C, Yu W, Song H, Huang X, Ren J. A study of protein–drug interaction based on solvent-induced protein aggregation by fluorescence correlation spectroscopy. Analyst 2022; 147:1357-1366. [DOI: 10.1039/d2an00031h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the inhibition of protein aggregation by drugs in organic solvent systems, we developed an effective method to study protein–drug interaction by fluorescence correlation spectroscopy.
Collapse
Affiliation(s)
- Caining Xue
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wenxin Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Haohan Song
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
CUI J, LIU L, LI D, PIAO X. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales]. Se Pu 2021; 39:1157-1170. [PMID: 34677011 PMCID: PMC9404220 DOI: 10.3724/sp.j.1123.2020.12032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 11/25/2022] Open
Abstract
The micro/nanoscales concerns interactions of entities with sizes in the range of 0.1-100 μm, such as biological cells, proteins, and particles. The separation of micro/nanoscales has been of immense significance for drug development, early-stage cancer detection, and customized precision therapy. For example, in recent years, rapid advances in the field of cell therapy have necessitated the development of simple and effective cell separation techniques. The isolation technique allows the collection of the required stem cells from complex samples. With the development of materials science and precision medicine, the separation of particles is also critical. The key physicochemical properties of micro/nanoscales are highly dependent on their specific size, shape, functional group, and mobility (based on the charged characteristics), which control their performance in the separation system. The current demand has made the simultaneous innovation of a separation system and an on-line detection platform imperative. Accordingly, various analytical methods involving the use of external forces, such as the flow field, magnetic field, electric field, and acoustic field, have been used for micro/nanoscales separation. Based on the physical and chemical parameters of the separation materials, these analytical methods can select different external force fields for micro/nanoscales separation, enabling real-time, accurate, efficient, and selective separation. However, at present, most of the applied field separation technologies require complex equipment and a large sample amount. This makes it crucial to miniaturize and integrate separation technologies for low-cost, rapid, and accurate micro/nanoscales separation. Microfluidic technology is a representative micro/nanoscales separation technology. It requires only a small volume of liquid, making it cost-effective; its high throughput enables continuous separation and analysis; its fast response in a microchip can allow many reactions; and finally, the miniaturization of the device allows the coupling of multiple detectors with the microchip. With the continuous growth and progress of microfluidic technology, some microfluidic platforms are now able to achieve the non-destructive separation of cells. They also enable on-line detection, offer high separation efficiency, and allow rapid separation for different biological samples. This review primarily summarizes recent advances in microfluidic chips based on flow field, electric field, magnetic field, acoustic field, and field separation technologies to improve the micro/nanoscales separation efficiency. This review also discusses the various external force fields of micro/nanoscales, such as a microparticle, single cell separation of substances classified introduction, and summarizes the advantages and disadvantages of their application and development. Finally, the prospect of the combined application of external field separation technology and microfluidic technology in the early screening of cancer cells and for precise micro/nanoscales separation is discussed, and the advantages and potential applications of the combined technology are proposed.
Collapse
|
5
|
Detection of membrane receptors on per tumor cell by nonimmobilized cell capillary electrophoresis and a mathematic model. Talanta 2021; 222:121425. [PMID: 33167195 DOI: 10.1016/j.talanta.2020.121425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/21/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Folate receptors (FRs) are a class of valuable therapeutic target which is highly expressed on a variety of cancers. The accurate detection of the expression of FRs in different cells is conducive to improve the accuracy of FR targeted tumor therapy. Herein, a method based on nonimmobilized cell capillary electrophoresis (NICCE) combined with a mathematic model to quantify FRs on each single tumor cell was developed. At first, we studied the interactions between FA and A549, HT-29, HepG2, and U87MG cells by NICCE respectively, and calculated the kinetic parameters (Ka, k', ka, and kd). Next, we established a mathematic model to accurately determine the number of moles of FRs on per A549, HT-29, HepG2, and U87MG cell for the first time, that were (10.44 ± 0.53) × 10-19 mol, (34.32 ± 1.33) × 10-19 mol, (337.14 ± 10.11) × 10-19 mol, and (37.31 ± 2.13) × 10-19 mol. Then, these re-sults were proved to be consistent with the results of enzyme-linked immunosorbent assay (ELISA). Therefore, this method is simple, rapid, sensitive, and without protein separation or purification, which is expected to achieve clinical detection of cell membrane receptor expression level of cell membrane receptors on a single cell, which may be greatly beneficial to further clinical diagnosis and therapy.
Collapse
|
6
|
Deng L, Huang X, Ren J. In Situ Study of the Drug–Target Protein Interaction in Single Living Cells by Combining Fluorescence Correlation Spectroscopy with Affinity Probes. Anal Chem 2020; 92:7020-7027. [DOI: 10.1021/acs.analchem.0c00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Liyun Deng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
7
|
Du L, Li Z, Yao J, Wen G, Dong C, Li HW. Enzyme free glucose sensing by amino-functionalized silicon quantum dot. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:303-309. [PMID: 30909086 DOI: 10.1016/j.saa.2019.03.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 05/28/2023]
Abstract
Silicon quantum dots have become one of the most popular nanomaterials in biological applications for their excellent biocompatibility and optical properties. Herein, we synthesized amino-functionalized silicon quantum dots (NH2@SiQDs) via a simple microemulsion method, in which silicon tetrachloride and allylamine were used as source of silicon and functional group. NH2@SiQDs exhibits good water-solubility, high fluorescence quantum yield and optical stability. A non-enzymatic biosensor of glucose was developed based on the fluorescence quenching of NH2@SiQDs in response to glucose. The fluorescence response was linearly proportional to glucose in the concentration range of 1.0 × 10-6-9.0 × 10-5 mol/L and the detection limit was determined to be 3.0 × 10-7 mol/L. The developed glucose sensor was successfully applied in blood glucose analysis of human serum. Satisfactory result that agreed very well with traditional method was obtained.
Collapse
Affiliation(s)
- Liqing Du
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Zhongping Li
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Jiaoli Yao
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Guangming Wen
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
8
|
Wang W, Yang J. Advances in screening enzyme inhibitors by capillary electrophoresis. Electrophoresis 2019; 40:2075-2083. [DOI: 10.1002/elps.201900013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Wei‐Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources Key Laboratory for Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou P. R. China
| | - Jun‐Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources Key Laboratory for Natural Medicine of Gansu Province Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou P. R. China
| |
Collapse
|
9
|
Kairys V, Baranauskiene L, Kazlauskiene M, Matulis D, Kazlauskas E. Binding affinity in drug design: experimental and computational techniques. Expert Opin Drug Discov 2019; 14:755-768. [DOI: 10.1080/17460441.2019.1623202] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
A simple and rapid fluorescent approach for flavonoids sensor based on gold nanoclusters. J Colloid Interface Sci 2019; 539:175-183. [DOI: 10.1016/j.jcis.2018.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
|
11
|
Yang GJ, Ko CN, Zhong HJ, Leung CH, Ma DL. Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. Cancers (Basel) 2019; 11:E92. [PMID: 30650517 PMCID: PMC6360022 DOI: 10.3390/cancers11010092] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the one of the most frequent causes of female cancer mortality. KDM5A, a histone demethylase, can increase the proliferation, metastasis, and drug resistance of cancers, including breast cancer, and is thus an important therapeutic target. In the present work, we performed hierarchical virtual screening towards the KDM5A catalytic pocket from a chemical library containing 90,000 compounds. Using multiple biochemical methods, the cyclopenta[c]chromen derivative 1 was identified as the top candidate for KDM5A demethylase inhibitory activity. Compared with the well-known KDM5 inhibitor CPI-455 (18), 1 exhibited higher potency against KDM5A and much higher selectivity for KDM5A over both KDM4A and other KDM5 family members (KDM5B and KDM5C). Additionally, compound 1 repressed the proliferation of various KDM5A-overexpressing breast cancer cell lines. Mechanistically, 1 promoted accumulation of p16 and p27 by blocking KDM5A-mediated H3K4me3 demethylation, leading to cell cycle arrest and senescence. To date, compound 1 is the first cyclopenta[c]chromen-based KDM5A inhibitor reported, and may serve as a novel motif for developing more selective and efficacious pharmacological molecules targeting KDM5A. In addition, our research provides a possible anti-cancer mechanism of KDM5A inhibitors and highlights the feasibility and significance of KDM5A as a therapeutic target for KDM5A-overexpressing breast cancer.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| |
Collapse
|
12
|
Wu R, Li C, Li C, Ren J, Sun X, Zhang S, Zou J, Ling X. Rapid screening of multi-target antitumor drugs by nonimmobilized tumor cells/tissues capillary electrophoresis. Anal Chim Acta 2018; 1045:152-161. [PMID: 30454570 DOI: 10.1016/j.aca.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/15/2018] [Accepted: 09/08/2018] [Indexed: 12/31/2022]
Abstract
As there are more target categories on tumor cells/tissues than on receptor-overexpressing cells, and tumor tissues can better simulate TME, we established a new method of screening multi-target antitumor drugs by nonimmobilized tumor cells/tissues capillary electrophoresis under approximately tumor physiological environment. In this method, the natural structure and active conformation of the target proteins on tumor cells/tissues can be well maintained without separation and purification. Therefore, we successfully used this method to study the interactions between the Aidi injection (ADI)/its main components and tumor cells/tissues by optimizing a series of experimental conditions, discovered seven components with binding activity to A549 cells, five of them with specific interaction to tumor tissues, and calculated the binding kinetic parameters (K, ka, kd, and k'). Then, antitumor activity assays in vitro and in vivo were carried out to discover a new drug combination with higher targeting, better pharmaceutical efficacy, and lower toxic side effects. Finally, molecular docking studies were performed to investigate the potential target groups of the interactions between the effective drug combination and A549 cells/tissues. In summary, the method was verified to be valid and feasible, and can be easily transferred to a capillary array electrophoresis for high-throughput drug screening.
Collapse
Affiliation(s)
- Ruijun Wu
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Chen Li
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Cong Li
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Jinyu Ren
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Xiaozhi Sun
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Sufang Zhang
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Juncheng Zou
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Xiaomei Ling
- The State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| |
Collapse
|