1
|
Zhang M, Wang X, Liu S, Riaz T, Chen Q, Ouyang Q. Integrating target-responsive microfluidic-based biosensing chip with smartphone for simultaneous quantification of multiple fluoroquinolones. Biosens Bioelectron 2024; 254:116192. [PMID: 38489967 DOI: 10.1016/j.bios.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The presence of fluoroquinolone (FQs) antibiotic residues in the food and environment has become a significant concern for human health and ecosystems. In this study, the background-free properties of upconversion nanoparticles (UCNPs), the high specificity of the target aptamer (Apt), and the high quenching properties of graphene oxide (GO) were integrated into a microfluidic-based fluorescence biosensing chip (MFBC). Interestingly, the microfluidic channels of the MFBC were prepared by laser-printing technology without the need for complex preparation processes and additional specialized equipment. The target-responsive fluorescence biosensing probes loaded on the MFBC were prepared by self-assembly of the UCNPs-Apt complex with GO based on π-π stacking interactions, which can be used for the detection of the two FQs on a large scale without the need for multi-step manipulations and reactions, resulting in excellent multiplexed, automated and simultaneous sensing capabilities with detection limits as low as 1.84 ng/mL (enrofloxacin) and 2.22 ng/mL (ciprofloxacin). In addition, the MFBC was integrated with a smartphone into a portable device to enable the analysis of a wide range of FQs in the field. This research provides a simple-to-prepare biosensing chip with great potential for field applications and large-scale screening of FQs residues in the food and environment.
Collapse
Affiliation(s)
- Mingming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
2
|
Cheng HP, Yang TH, Wang JC, Chuang HS. Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2904. [PMID: 38733011 PMCID: PMC11086254 DOI: 10.3390/s24092904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.
Collapse
Affiliation(s)
- Hui-Pin Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
| | - Tai-Hua Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhih-Cheng Wang
- Department of Urology, Chimei Medical Center, Tainan 710, Taiwan
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
3
|
Liu S, Fan X, Qu Z, Fang C, Feng C, Zhao X, Wang JL. Improving the multi-functionality of optical tweezers with FPGA integration. APPLIED OPTICS 2024; 63:255-262. [PMID: 38175028 DOI: 10.1364/ao.505998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
The development of optical tweezers aims to extend their operating function and pattern. However, excessive programming can lead to a decrease in the system's operating speed and introduce bugs or data transmission delays. In this study, we present a time-shared optical tweezers system that allows for parallel operation of multiple functions. To enable efficient data transmission, we employ a queue structure and a buffer. To assess the system's performance, we utilize a biological sample in conjunction with the optical tweezers system and scanning imaging technique. We quantify the trapping parameter while concurrently running power stabilization programs. As a result, the standard deviation of the measured stiffness is reduced by 60% in the x and y directions and 30% in the z direction, indicating a significant improvement in calibration precision. Throughout the program execution, the system maintains an operating rate of 110 kHz, and the data are continuously updated in real time on the host. The system's performance demonstrates its potential for quantification and morphological reconstruction of biological samples.
Collapse
|
4
|
Ouyang Q, Zhang M, Wang B, Riaz T, Chen Q. One Stone Two Birds: An Upconversion Nanosensor for Sensitive Detection of Fluoroquinolones in Aquatic Products Based on Chelation Recognition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13114-13123. [PMID: 37635358 DOI: 10.1021/acs.jafc.3c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Excessive residues of fluoroquinolones (FQs) in aquatic products have become a growing issue in recent years. Herein, we demonstrate an upconversion fluorescence nanosensor constructed by a one-stone-two-birds strategy, where Fe3+ not only quenches upconversion fluorescence with high efficiency but also specifically recognizes the bidentate ligand structure of FQs. Compared to existing methods, the proposed sensor is simpler to synthesize and cheap and has more storage stability due to the unification of the quencher and recognition molecule. Enrofloxacin (ENR) was chosen as a representative veterinary drug for FQs to verify the effectiveness of the nanosensor. Under optimal conditions, the range of detection for ENR was 2.0 × 10-2 to 2.0 × 102 μg/mL, with a limit of detection of 1.08 × 10-3 μg/mL. The developed nanosensor was further validated by high-performance liquid chromatography-ultraviolet (HPLC-UV) without significant differences in practical detection. Hence, this study offers a potential strategy for the detection of FQs.
Collapse
Affiliation(s)
- Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Mingming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Baoning Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
5
|
Huang S, Dai R, Zhang Z, Zhang H, Zhang M, Li Z, Zhao K, Xiong W, Cheng S, Wang B, Wan Y. CRISPR/Cas-Based Techniques for Live-Cell Imaging and Bioanalysis. Int J Mol Sci 2023; 24:13447. [PMID: 37686249 PMCID: PMC10487896 DOI: 10.3390/ijms241713447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
CRISPR/Cas systems have found widespread applications in gene editing due to their high accuracy, high programmability, ease of use, and affordability. Benefiting from the cleavage properties (trans- or cis-) of Cas enzymes, the scope of CRISPR/Cas systems has expanded beyond gene editing and they have been utilized in various fields, particularly in live-cell imaging and bioanalysis. In this review, we summarize some fundamental working mechanisms and concepts of the CRISPR/Cas systems, describe the recent advances and design principles of CRISPR/Cas mediated techniques employed in live-cell imaging and bioanalysis, highlight the main applications in the imaging and biosensing of a wide range of molecular targets, and discuss the challenges and prospects of CRISPR/Cas systems in live-cell imaging and biosensing. By illustrating the imaging and bio-sensing processes, we hope this review will guide the best use of the CRISPR/Cas in imaging and quantifying biological and clinical elements and inspire new ideas for better tool design in live-cell imaging and bioanalysis.
Collapse
Affiliation(s)
- Shuo Huang
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Rui Dai
- Institute of Oceanography, Hainan University, Haikou 570228, China;
| | - Zhiqi Zhang
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Han Zhang
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Meng Zhang
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Zhangjun Li
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Kangrui Zhao
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Wenjun Xiong
- College of Life Sciences, Hainan University, Haikou 570228, China; (S.H.); (Z.Z.); (H.Z.); (M.Z.); (Z.L.); (K.Z.); (W.X.)
| | - Siyu Cheng
- College of Art and Design, Hainan University, Haikou 570228, China;
| | - Buhua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Liu D, Sun XM, Zhu L, Li CY. Using time-shared scanning optical tweezers assisted two-photon fluorescence imaging to establish a versatile CRISPR/Cas12a-mediated biosensor. Biosens Bioelectron 2023; 227:115158. [PMID: 36827793 DOI: 10.1016/j.bios.2023.115158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Based on the admirable precision to identify target nucleic acids and the particular trans-cleavage feature, CRISPR/Cas12a system is a useful means to further improve the sensing accuracy and the design flexibility of fluorescence biosensors. However, the current construction concepts still suffer from insufficient sensitivity, unsuitable for complicated real samples and limited detection species. In this work, much efforts are achieved to address these obstacles. At first, we adopt a microsphere sustained signal enrichment, under which a home-made time-shared scanning optical tweezers assisted fluorescence imaging is employed to guarantee a stable excitation and also realize multiflux measurement. Furthermore, by taking advantage of the low background merit of the near-infrared light excited two-photon fluorescence, a commendable anti-interference capability is endowed to operate in complex media. After utilizing a functional DNA (e.g. aptamer and DNAzyme) regulated mediation pathway to respond non-nucleic acid analytes (alpha fetal protein and Pb2+), the newly-established CRISPR/Cas12a-mediated fluorescence biosensor is found to display favorable assay performance. More importantly, our analytical methodology can act as a versatile and reliable toolbox in various applications such as disease diagnosis and environmental analysis, propelling the development of CRISPR system in biosensing field.
Collapse
Affiliation(s)
- Da Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Xiao-Ming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Lian Zhu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
7
|
Liu X, Lin X, Pan X, Gai H. Multiplexed Homogeneous Immunoassay Based on Counting Single Immunocomplexes together with Dark-Field and Fluorescence Microscopy. Anal Chem 2022; 94:5830-5837. [PMID: 35380795 DOI: 10.1021/acs.analchem.1c05269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of multiplexed immunoassays is impeded by the difficulty in distinguishing labeled immunocomplexes from free probes and nonspecifically bound probes. Here, we attempted to overcome this issue by counting core-satellite-structured immunocomplexes simultaneously using dark-field and fluorescence microscopy. The tumor biomarkers of carcinoembryonic antigen (CEA), α-fetoprotein (AFP), and prostate-specific antigen (PSA) were chosen as model targets. Gold nanoparticles (AuNPs) with diameters of 70 nm were coated with the detection antibodies of the three targets. Quantum dot (QD) 525, QD 585, and QD 655 were modified with the capture antibodies of CEA, AFP, and PSA, respectively. Then, an immunocomplex containing one AuNP and one or several QDs was formed, whereas free and nonspecifically bound probes had either one AuNP or one QD. When observed with a transmission grating-based spectral microscope, the immunocomplexes had overlapping scattering and fluorescent spectral images and were therefore identified and quantified precisely. The biomarkers inside the immunocomplexes were recognized on the basis of the fluorescent first-order streaks of the QDs. Model biomarkers in buffer and in 12.6% blank plasma were quantified for validation. The limits of detection for CEA, PSA, and AFP in buffer were in dozens of femtomolar and were close to those in blank plasma. The results demonstrated that our approach worked well in distinguishing immunocomplexes from free and nonspecifically bound probes. The successful quantification of the three targets in five human plasma samples verified the reliability of our method in clinical applications.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xiaoyan Pan
- School of Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
8
|
Sun G, Xie Y, Sun L, Zhang H. Lanthanide upconversion and downshifting luminescence for biomolecules detection. NANOSCALE HORIZONS 2021; 6:766-780. [PMID: 34569585 DOI: 10.1039/d1nh00299f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomolecules play critical roles in biological activities and are closely related to various disease conditions. The reliable, selective and sensitive detection of biomolecules holds much promise for specific and rapid biosensing. In recent years, luminescent lanthanide probes have been widely used for monitoring the activity of biomolecules owing to their long luminescence lifetimes and line-like emission which allow time-resolved and ratiometric analyses. In this review article, we concentrate on recent advances in the detection of biomolecule activities based on lanthanide luminescent systems, including upconversion luminescent nanoparticles, lanthanide-metal organic frameworks, and lanthanide organic complexes. We also introduce the latest remarkable accomplishments of lanthanide probes in the design principles and sensing mechanisms, as well as the forthcoming challenges and perspectives for practical achievements.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Yao Xie
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
9
|
Xue S, Chen G, Li F, Zhao Y, Zeng Q, Peng J, Shi F, Zhang W, Wang Y, Wu J, Che R. Understanding of Strain-Induced Electronic Structure Changes in Metal-Based Electrocatalysts: Using Pd@Pt Core-Shell Nanocrystals as an Ideal Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100559. [PMID: 34185440 DOI: 10.1002/smll.202100559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/18/2021] [Indexed: 06/13/2023]
Abstract
While metal-based electrocatalysts have garnered extensive attention owing to the large variety of enzyme-mimic properties, the search for such highly-efficient catalysts still relies on empirical explorations, owing to the lack of predictive indicators as well as the ambiguity of structure-activity relationships. Notably, surface electronic structures play a crucial role in metal-based catalysts yet remain unexplored in enzyme-mimics. Herein, the authors investigate the electronic structure as a possible indicator of electrocatalytic activities of H2 O2 decomposition and glucose oxidation using Pd@Pt core-shell nanocrystals as a well-defined platform. The electron densities of the Pd@Pt are modulated with the correlation of strain through precise control of surface orientation and the number of atomic layers. The close relationships between the electrocatalytic activities and the surface charge accumulation are found, in which the increase of the electron accumulation can enhance both the enzyme-mimic activities. As a result, the Pd@Pt3L icosahedra with compressive strain in Pt shells exhibit the highest electrocatalytic activities for H2 O2 decomposition and glucose oxidation. Such systematic and comprehensive study provides the structure-activity relationships and paves a new way for the rational design of metal-based electrocatalysts. Especially, the charge accumulation degrees may serve as a general performance indicator for metal-based catalysts.
Collapse
Affiliation(s)
- Shuyan Xue
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Guanyu Chen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunhao Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Qingwen Zeng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jiaheng Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wencong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yizhe Wang
- Materials Genome Institute, International Centre of Quantum and Molecular Structures, and Physics Department, Shanghai University, Shanghai, 200444, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
10
|
Jia XX, Yao ZY, Gao ZX, Fan ZC. The Role of Suspension Array Technology in Rapid Detection of Foodborne Pollutants: Applications and Future Challenges. Crit Rev Anal Chem 2021; 52:1408-1421. [PMID: 33611988 DOI: 10.1080/10408347.2021.1882833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food safety is an important livelihood issue, which has always been focused attention by countries and governments all over the world. As food supply chains are becoming global, food quality control is essential for consumer protection as well as for the food industry. In recent years, a great part of food analysis is carried out using new techniques for rapid detection. As the first biochip technology that has been approved by the Food and Drug Administration (FDA), there is an increasing interest in suspension array technology (SAT) for food and environmental analysis with advantages of rapidity, high accuracy, sensitivity, and throughput. Therefore, it is important for researchers to understand the development and application of this technology in food industry. Herein, we summarized the principle and composition of SAT and its application in food safety monitoring. The utility of SAT in detection of foodborne microorganisms, residues of agricultural and veterinary drugs, genetically modified food and allergens in recent years is elaborated, and the further development direction of SAT is envisaged.
Collapse
Affiliation(s)
- Xue-Xia Jia
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China.,Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
11
|
Liu X, Sun Y, Lin X, Pan X, Wu Z, Gai H. Digital Duplex Homogeneous Immunoassay by Counting Immunocomplex Labeled with Quantum Dots. Anal Chem 2021; 93:3089-3095. [DOI: 10.1021/acs.analchem.0c04020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Yuanyuan Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Xiaoyan Pan
- School of Medicine, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Zhangjian Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
12
|
Li CY, Zheng B, Liu YH, Gao JL, Zheng MQ, Pang DW, Tang HW. A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosens Bioelectron 2020; 169:112650. [DOI: 10.1016/j.bios.2020.112650] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
|
13
|
Ortiz-Rivero E, Labrador-Páez L, Rodríguez-Sevilla P, Haro-González P. Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations. Front Chem 2020; 8:593398. [PMID: 33240853 PMCID: PMC7680971 DOI: 10.3389/fchem.2020.593398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022] Open
Abstract
Since Ashkin's pioneering work, optical tweezers have become an essential tool to immobilize and manipulate microscale and nanoscale objects. The use of optical tweezers is key for a variety of applications, including single-molecule spectroscopy, colloidal dynamics, tailored particle assembly, protein isolation, high-resolution surface studies, controlled investigation of biological processes, and surface-enhanced spectroscopy. In recent years, optical trapping of individual sub-100-nm objects has got the attention of the scientific community. In particular, the three-dimensional manipulation of single lanthanide-doped luminescent nanoparticles is of great interest due to the sensitivity of their luminescent properties to environmental conditions. Nevertheless, it is really challenging to trap and manipulate single lanthanide-doped nanoparticles due to the weak optical forces achieved with conventional optical trapping strategies. This limitation is caused, firstly, by the diffraction limit in the focusing of the trapping light and, secondly, by the Brownian motion of the trapped object. In this work, we summarize recent experimental approaches to increase the optical forces in the manipulation of lanthanide-doped nanoparticles, focusing our attention on their surface modification and providing a critical review of the state of the art and future prospects.
Collapse
Affiliation(s)
- Elisa Ortiz-Rivero
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lucía Labrador-Páez
- Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Paloma Rodríguez-Sevilla
- Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Patricia Haro-González
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Fabrication of novel electrochemical immunosensor by mussel-inspired chemistry and surface-initiated PET-ATRP for the simultaneous detection of CEA and AFP. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Xu J, Zhou J, Chen Y, Yang P, Lin J. Lanthanide-activated nanoconstructs for optical multiplexing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213328] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Zheng B, Kang YF, Zhang T, Li CY, Huang S, Zhang ZL, Wu QS, Qi CB, Pang DW, Tang HW. Improving Flow Bead Assay: Combination of Near-Infrared Optical Tweezers Stabilizing and Upconversion Luminescence Encoding. Anal Chem 2020; 92:5258-5266. [DOI: 10.1021/acs.analchem.9b05800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ting Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People’s Republic of China
| | - Sha Huang
- Electronic information school, Wuhan University, Wuhan 430072, China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Qiong-Shui Wu
- Electronic information school, Wuhan University, Wuhan 430072, China
| | - Chu-Bo Qi
- Hubei Cancer Hospital, Wuhan, 430079, People’s Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
17
|
Li CY, Zheng B, Kang YF, Tang HW, Pang DW. Integrating 808 nm Light-Excited Upconversion Luminescence Powering with DNA Tetrahedron Protection: An Exceptionally Precise and Stable Nanomachine for Intracelluar MicroRNA Tracing. ACS Sens 2020; 5:199-207. [PMID: 31833356 DOI: 10.1021/acssensors.9b02043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although plentiful advanced fluorescence sensors have achieved to analyze microRNAs (miRNAs) in living cells, the prerequisite relating to nucleic acids specific recognition based sensing principle compels them lack favorable accurancy and stability in such complicated biological mediums. Here, we make a double breakthrough for the two challenges by combining a near-infrared (NIR) light powering process with a DNA tetrahedron (DNAT)-based protection concept. In this sensing system, a special nanomachine is first engineered by conjugating a core-shell-structured upconversion nanoparticle capable of highly converting 808 nm NIR photons into ultraviolet ones with self-assembling DNATs. The newly developed nanostructure not only prevents the sensing pathway from triggering during the intracellular delivery as well as reducing the adverse thermal effect for cell viability but also significantly enhances the enzyme resistance to avoid degradation to produce false signals. Furthermore, a fluorescence resonance energy transfer sensing strategy is rationally designed on this nanomachine. Upon using the powering light to excite the upconversion luminescence to activate the nanomachine in living cells, it can stably trace the precise level changes of miRNA-21 sequences at the reaching position with an "off-on" mode of fluorescence outputs.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People’s Republic of China
| | - Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
18
|
Wang X, Gong J, Yuan B, Chen Z, Jiang J. Sensitive and multiplexed detection of antibiotics using a suspension array platform based on silica-agarose hybrid microbeads. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:115-121. [PMID: 30909136 DOI: 10.1016/j.jhazmat.2019.03.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/02/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
A multiplex suspension array detection platform of antibiotics has been developed based on silica-agarose hybrid microbeads (SAHMs). Chloramphenicol (CAP), sulfamethoxazole (SMX), metronidazole (MTZ) and amoxicillin (AMX) were employed as model analytes. The antigens (the antibiotics conjugated with BSA) were immobilized on the surface of four different types of SAHMs. Based on an indirect competition immunoassay, the selected antibiotics are detected through the competition of the specific monoclonal antibodies between the multiple antibiotics and the antigens. Due to high resistance to nonspecific protein absorption of SAHMs, the proposed method exhibited wide linear ranges (0.4˜72.9 ng/mL for CAP, 2.0˜108.5 ng/mL for SMX, 2.6˜142.2 ng/mL for MTZ, 1.0˜63.3 ng/mL for AMX) and low detection limits of 0.09˜0.8 ng/mL. Recoveries for spiked tap water samples were from 82% to 113%, with relative standard deviation lower than 14%, demonstrating the accuracy of the measurements performed with the developed method. This work offered a high-throughput, flexible and accurate tool, which provides a good platform for simultaneous detection of antibiotics.
Collapse
Affiliation(s)
- Xuan Wang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Junhui Gong
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Zhaofang Chen
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Juncheng Jiang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
19
|
Li CY, Kang YF, Qi CB, Zheng B, Zheng MQ, Song CY, Guo ZZ, Lin Y, Pang DW, Tang HW. Breaking Through Bead-Supported Assay: Integration of Optical Tweezers Assisted Fluorescence Imaging and Luminescence Confined Upconversion Nanoparticles Triggered Luminescent Resonance Energy Transfer (LRET). Anal Chem 2019; 91:7950-7957. [DOI: 10.1021/acs.analchem.9b01941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People’s Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
- Hubei Cancer Hospital, Wuhan, 430079, People’s Republic of China
| | - Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Ming-Qiu Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Chong-Yang Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Zhen-Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People’s Republic of China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| |
Collapse
|
20
|
Lv R, Wang Y, Liu J, Feng M, Yang F, Jiang X, Tian J. When a Semiconductor Utilized as an NIR Laser-Responsive Photodynamic/Photothermal Theranostic Agent Integrates with Upconversion Nanoparticles. ACS Biomater Sci Eng 2019; 5:3100-3110. [DOI: 10.1021/acsbiomaterials.9b00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Jun Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Miao Feng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Fan Yang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Xue Jiang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Khoshfetrat SM, Khoshsafar H, Afkhami A, Mehrgardi MA, Bagheri H. Enhanced Visual Wireless Electrochemiluminescence Immunosensing of Prostate-Specific Antigen Based on the Luminol Loaded into MIL-53(Fe)-NH2 Accelerator and Hydrogen Evolution Reaction Mediation. Anal Chem 2019; 91:6383-6390. [DOI: 10.1021/acs.analchem.9b01506] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Seyyed Mehdi Khoshfetrat
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 14117-13137 Tehran, Iran
| | - Hosein Khoshsafar
- Research and Development Department, Farin Behbood Tashkhis LTD, 15489-13111 Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, 65178-38695 Hamedan, Iran
| | | | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, 14359-16471 Tehran, Iran
| |
Collapse
|