1
|
Cheng G, Ding Q, Sun Y, Zhang Y, Zhang W, Li G. Electrochemiluminescence resonance energy transfer detection of HBsAg based on Co doped 3D porous luminol-based conjugates and quencher UiO-66-NH 2@Au. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124574. [PMID: 38838601 DOI: 10.1016/j.saa.2024.124574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
An electrochemiluminescence (ECL) biosensor based on ECL resonance energy transfer (ECL-RET) was designed to sensitively detect hepatitis B virus surface antigen (HBsAg). In this ECL-RET system, luminol was employed as ECL donor, and gold nanoparticles functionalized zirconium organoskeleton (UiO-66-NH2@Au) was prepared and served as ECL acceptor. The UiO-66-NH2@Au possessed an ultraviolet-visible (UV-vis) absorption between 400 nm and 500 nm, and the absorption spectra overlapped with the ECL spectrum of luminol. Furthermore, Graphene oxide-poly(aniline-luminol)-cobalt nanoparticles conjugates (GO-PALu-Co) was prepared to optimize the ECL behavior through the catalysis of Cobalt nanoparticles and served as a stable 3D porous film to load capture probe primary antibody (Ab1). Based on the ECL-RET biosensing method, the UiO-66-NH2@Au-labeled Ab2 and target HBsAg could pair with primary antibody Ab1 to form sandwich-type structure, and the ECL signal of GO-PALu-Co was quenched. Under optimized experimental conditions, the ECL-RET analytical method represented eminent analytical performance for HBsAg detection with a wide linear relationship from 2.2 × 10-13 to 2.2 × 10-5 mg/mL, and a detection limit of 9 × 10-14 mg/mL (S/N = 3), with spiked sample recoveries ranging from 97.27 % to 102.73 %. The constructed sensor has good stability, reproducibility, and specificity. It can be used to detect HBsAg in human serum and has the potential to be used for the sensitive detection of other disease biomarkers.
Collapse
Affiliation(s)
- Gaoxing Cheng
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
| | - Qiaoyu Ding
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
| | - Yue Sun
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
| | - Yanhui Zhang
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
| | - Wanwan Zhang
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
| | - Guixin Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
2
|
Sun D, Zhang J, Wang H, Song Y, Du J, Meng G, Sun S, Deng W, Wang Z, Wang B. Discovering Facet-Dependent Formation Kinetics of Key Intermediates in Electrochemical Ammonia Oxidation by a Electrochemiluminescence Active Probe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402673. [PMID: 38923273 PMCID: PMC11348187 DOI: 10.1002/advs.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Indexed: 06/28/2024]
Abstract
Facile evaluation of formation kinetics of key intermediate is crucial for a comprehensive understanding of electrochemical ammonia oxidation reaction (AOR) mechanisms and the design of efficient electrocatalysts. Currently, elucidating the formation kinetics of key intermediate associated with rate-determining step is still challenging. Herein, 4-phtalamide-N-(4'-methylcoumarin) naphthalimide (CF) is developed as a molecular probe to detect N2H4 intermediate during AOR via electrochemiluminescence (ECL) and further investigated the formation kinetics of N2H4 on Pt catalysts with different crystal planes. CF probe can selectively react with N2H4 to release ECL substance luminol. Thus, N2H4 intermediate as a key intermediate can be sensitively and selectively detected by ECL during AOR. For the first time, Pt(100) facet is discovered to exhibit faster N2H4 formation kinetics than Pt(111) facet, which is further confirmed by Density functional theory calculation and the finite element simulation. The AOR mechanism under the framework of Gerischer and Mauerer is further validated by examining N2H4 formation kinetics during the dimerization process (NH2 coupling). The developed ECL active probe and the discovered facet-dependent formation kinetics of key intermediates provide a promising new tool and strategy for the understanding of electrochemical AOR mechanisms and the design of efficient electrocatalysts.
Collapse
Affiliation(s)
- Dina Sun
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Jiaqi Zhang
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Heng Wang
- School of Mathematics and StatisticsGansu Key Laboratory of Applied Mathematics and Complex SystemsLanzhou UniversityLanzhou730000China
| | - Yanxia Song
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Jing Du
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Genping Meng
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Shihao Sun
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Weihua Deng
- School of Mathematics and StatisticsGansu Key Laboratory of Applied Mathematics and Complex SystemsLanzhou UniversityLanzhou730000China
| | - Zhiyi Wang
- Spin‐X InstituteSchool of Chemistry and Chemical EngineeringState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou511442China
| | - Baodui Wang
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| |
Collapse
|
3
|
Feng Q, Wu T, Wang H, Wu M, Dou B, Wang P. Two-step resonance-energy-transfer-based ratiometric biosensor for sensing and annihilation of Staphylococcus aureus. Chem Commun (Camb) 2024; 60:2046-2049. [PMID: 38287913 DOI: 10.1039/d3cc05300h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
A two-step resonance energy transfer (RET)-based fluorescence/electrochemiluminescence (FL/ECL) biosensor was developed for ratiometric measurement and annihilation of Staphylococcus aureus (S. aureus). Using coupled dual-recognition-triggered target conversion with the catalytic hairpin assembly (CHA) technique, the monitoring of S. aureus was obtained at the single-cell level.
Collapse
Affiliation(s)
- Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Tao Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Huan Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Meisheng Wu
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
4
|
Wang P, Liang Z, Li Z, Wang D, Ma Q. Plasmonic nanocavity-modulated electrochemiluminescence sensor for gastric cancer exosomal miRNA detection. Biosens Bioelectron 2024; 245:115847. [PMID: 37995625 DOI: 10.1016/j.bios.2023.115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Plasmonic nanocavity possessing highly light field confinement and electromagnetic field enhancement can concentrate and enhance the luminescence signal. The plasmonic nanocavity has the great potential value in biosensing research and improve analytical sensitivity. In this work, we constructed a plasmonic nanocavity between circular Au nanoplate-film and spherical Au nanoparticle with tetrahedral DNA nanostructures. The nanocavity structure can regulate the local density of optical states and provide the field restriction to enhance the spontaneous ECL radiation of PEDOT-S dots. Additionally, Au nanoparticle acted as nanoantenna which localized and modulated ECL to directional emission. Because the plasmonic nanocavity effectively collected and redistributed ECL signal, the emission was enhanced by 5.9 times with polarized characteristics. The proposed plasmonic nanocavity-based ECL sensor was further used to detect exosomal miRNA-223-3p in ascites. The detection results indicated the novel sensing strategy can assist early diagnosis of peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dongyu Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Jiao Y, Li H, Wang H, Feng Q, Gao Y. Proximity hybridization regulated dual-mode ratiometric biosensor for estriol detection in pregnancy serum. Anal Chim Acta 2023; 1278:341689. [PMID: 37709442 DOI: 10.1016/j.aca.2023.341689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
Sensitive and accurate determination of estriol level is vastly significant for the fetal growth and development. Herein, we constructed a dual-mode ratiometric biosensor for estriol assay combining the competitive immunoreaction, proximity hybridization with a two-step resonance energy transfer (RET) strategy. Estriol antibody and goat anti-rabbit antibody labeled DNA probes (Ab1-DNA1-Pt NPs and Ab2-DNA2) both hybridized with silver nanoclusters labeled DNA strands (H1-Ag NCs). Thus, the formed proximity hybridization enabled the occurrence of fluorescence RET (FL-RET, as the primary RET) between Ag NCs (donor) and Pt NPs (acceptor), quenching FL intensity of Ag NCs (FL off). When target estriol existed, the competitive reaction of Ab1-DNA1-Pt NPs with estriol and Ab2-DNA2 avoided the proximity hybridization. Then, the estriol-dependent H1-Ag NCs quenched electrochemiluminescence (ECL) emission of CdS quantum dots (CdS QDs, ECL off), generating ECL-RET (as the second RET). Consequently, according to the reverse changes of FL and ECL responses, this sensor realized the quantification of estriol from 1 to 100 ng/mL. Moreover, satisfactory results were achieved while testing estriol in pregnancy serum specimens, suggesting that the system is promising for potential application in samples analysis.
Collapse
Affiliation(s)
- Yan Jiao
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, 199 Jiefang Road, Xuzhou, Jiangsu, China
| | - Hongyuan Li
- Department of Radiology, Xuzhou Central Hospital, 199 Jiefang Road, Xuzhou, Jiangsu, China; Department of Neurology, Xuzhou Central Hospital, 199 Jiefang Road, Xuzhou, Jiangsu, China
| | - Huan Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yongguang Gao
- Department of Radiology, Xuzhou Central Hospital, 199 Jiefang Road, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Li Z, Wang P, Liang Z, Wang D, Nie Y, Ma Q. Bismuth Nano-Nest/Ti 3CN Quantum Dot-Based Surface Plasmon Coupling Electrochemiluminescence Sensor for Ascites miRNA-421 Detection. Anal Chem 2023. [PMID: 37294618 DOI: 10.1021/acs.analchem.3c01946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a novel surface plasmon-coupled electrochemiluminescence (SPC-ECL) biosensor was developed based on bismuth nano-nest and Ti3CN quantum dots (Ti3CN QDs). First, MXene derivative QDs (Ti3CN QDs) with excellent luminescence performance were prepared as the ECL luminescent. The N doping in Ti3CN QDs can effectively improve the luminescence performance and catalytic activity. Therefore, the luminescence performance of QDs has been effectively improved. Furthermore, the bismuth nano-nest structure with a strong localized surface plasmon resonance effect has been designed as the sensing interface via the electrochemical deposition method. It was worth noticed that the morphology of bismuth nanomaterials can be controlled effectively on the electrode surface by the step potential method. Due to the abundant surface plasmon hot spots generated between the bismuth nano-nests, the isotropic ECL signal of Ti3CN QDs can be not only significantly enhanced by 5.8 times but also converted into polarized emission. Finally, the bismuth nano-nest/Ti3CN QD-based SPC-ECL sensor was used to quantify miRNA-421 in the range of 1 fM to 10 nM. The biosensor has been successfully used for miRNA in ascites samples from gastric cancer patients, which indicated that the SPC-ECL sensor developed in this study has great potential for clinical analysis.
Collapse
Affiliation(s)
- Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dongyu Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Ji D, Zhao J, Liu Y, Wei D. Electrical Nanobiosensors for Nucleic Acid Based Diagnostics. J Phys Chem Lett 2023; 14:4084-4095. [PMID: 37125726 DOI: 10.1021/acs.jpclett.3c00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in nanotechnologies have promoted the iterative updating of nucleic acid sensors. Among various sensing technologies, the electrical nanobiosensor is regarded as one of the most promising prospects to achieve rapid, precise, and point-of-care nucleic acid based diagnostics. In this Perspective, we introduce recent progresses in electrical nanobiosensors for nucleic acid detection. First, the strategies for improving detection performance are summarized, including chemical amplification and electrical amplification. Then, the detection mechanism of electrical nanobiosensors, such as electrochemical biosensors, field-effect transistors, and photoelectric enhanced biosensors, is illustrated. At the same time, their applications in cancer screening, pathogen detection, gene sequencing, and genetic disease diagnosis are introduced. Finally, challenges and future prospects in clinical application are discussed.
Collapse
Affiliation(s)
- Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Truong PL, Yin Y, Lee D, Ko SH. Advancement in COVID-19 detection using nanomaterial-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20210232. [PMID: 37323622 PMCID: PMC10191025 DOI: 10.1002/exp.20210232] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/11/2022] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has exemplified how viral growth and transmission are a significant threat to global biosecurity. The early detection and treatment of viral infections is the top priority to prevent fresh waves and control the pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified through several conventional molecular methodologies that are time-consuming and require high-skill labor, apparatus, and biochemical reagents but have a low detection accuracy. These bottlenecks hamper conventional methods from resolving the COVID-19 emergency. However, interdisciplinary advances in nanomaterials and biotechnology, such as nanomaterials-based biosensors, have opened new avenues for rapid and ultrasensitive detection of pathogens in the field of healthcare. Many updated nanomaterials-based biosensors, namely electrochemical, field-effect transistor, plasmonic, and colorimetric biosensors, employ nucleic acid and antigen-antibody interactions for SARS-CoV-2 detection in a highly efficient, reliable, sensitive, and rapid manner. This systematic review summarizes the mechanisms and characteristics of nanomaterials-based biosensors for SARS-CoV-2 detection. Moreover, continuing challenges and emerging trends in biosensor development are also discussed.
Collapse
Affiliation(s)
- Phuoc Loc Truong
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Yiming Yin
- New Materials InstituteDepartment of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingboChina
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
| | - Daeho Lee
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
- Institute of Advanced Machinery and Design (SNU‐IAMD)/Institute of Engineering ResearchSeoul National UniversityGwanak‐guSeoulKorea
| |
Collapse
|
9
|
Zhang P, Zhuo Y, Chai YQ, Yuan R. Structural DNA tetrahedra and its electrochemical-related surface sensing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Ma C, Zhang Z, Tan T, Zhu JJ. Recent Progress in Plasmonic based Electrochemiluminescence Biosensors: A Review. BIOSENSORS 2023; 13:bios13020200. [PMID: 36831966 PMCID: PMC9953926 DOI: 10.3390/bios13020200] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 05/25/2023]
Abstract
Electrochemiluminescence (ECL) analysis has become a powerful tool in recent biomarker detection and clinic diagnosis due to its high sensitivity and broad linear range. To improve the analytical performance of ECL biosensors, various advanced nanomaterials have been introduced to regulate the ECL signal such as graphene, gold nanomaterials, and quantum dots. Among these nanomaterials, some plasmonic nanostructures play important roles in the fabrication of ECL biosensors. The plasmon effect for the ECL signal includes ECL quenching by resonant energy transfer, ECL enhancement by surface plasmon resonance enhancement, and a change in the polarized angle of ECL emission. The influence can be regulated by the distance between ECL emitters and plasmonic materials, and the characteristics of polarization angle-dependent surface plasmon coupling. This paper outlines the recent advances of plasmonic based ECL biosensors involving various plasmonic materials including noble metals and semiconductor nanomaterials. The detection targets in these biosensors range from small molecules, proteins, nucleic acids, and cells thanks to the plasmonic effect. In addition to ECL biosensors, ECL microscopy analysis with plasmonic materials is also highlighted because of the enhanced ECL image quality by the plasmonic effect. Finally, the future opportunities and challenges are discussed if more plasmonic effects are introduced into the ECL realm.
Collapse
Affiliation(s)
- Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhichen Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Tingting Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Yu X, Jiang B, Wang L. A signal-on electrochemical DNA biosensor based on exonuclease III-assisted recycling amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5041-5046. [PMID: 36448304 DOI: 10.1039/d2ay01592g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA electrochemical detection technology has attracted tremendous interest in recent years. However, a facile and sensitive method for the detection of the disease indicators or genes is still waiting. Herein, we constructed a signal-on electrochemical platform for detecting the manganese superoxide dismutase (MnSOD) gene by incorporating a redox electrochemical signal probe (methylene blue) and exonuclease III-assisted target recycling signal amplification strategy. The sensor was prepared by self-assembly of a capture DNA probe of thiol-modified on GCE with gold electrodeposition. In the presence of target DNA, the exonuclease III can cleave the duplexes formed by the target DNA and the redox-labeled hairpin probes, release the target DNA and produce a residual sequence. The target DNA can continue to hybridize with the hairpin probe for the next cycle of amplification. The residual sequence hybridized with the surface-immobilized capture probes on AuNPs-modified GCE to generate a significantly amplified redox current. In particular, the redox current value of the resultant sensor showed a linear relationship with MnSOD gene concentration in the range of 1-104 pM with the detection limit as low as 0.3 pM. Furthermore, the sensor has excellent specificity and can distinguish single-base mismatch from perfectly matched target DNA. The sensor is fast in operation, and simple in design for detecting different DNA sequences or DNA identification by selecting the appropriate probe sequence, thus shedding light on a good promising application when encountering disease outbreaks or for the early clinical diagnosis of gene-related diseases.
Collapse
Affiliation(s)
- Xiongtao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Bowen Jiang
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
12
|
Yu X, Wang Z, Cui H, Wu X, Chai W, Wei J, Chen Y, Zhang Z. A Review on Gold Nanotriangles: Synthesis, Self-Assembly and Their Applications. Molecules 2022; 27:8766. [PMID: 36557899 PMCID: PMC9783914 DOI: 10.3390/molecules27248766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles (AuNPs) with interesting optical properties have attracted much attention in recent years. The synthesis and plasmonic properties of AuNPs with a controllable size and shape have been extensively investigated. Among these AuNPs, gold nanotriangles (AuNTs) exhibited unique optical and plasmonic properties due to their special triangular anisotropy. Indeed, AuNTs showed promising applications in optoelectronics, optical sensing, imaging and other fields. However, only few reviews about these applications have been reported. Herein, we comprehensively reviewed the synthesis and self-assembly of AuNTs and their applications in recent years. The preparation protocols of AuNTs are mainly categorized into chemical synthesis, biosynthesis and physical-stimulus-induced synthesis. The comparison between the advantages and disadvantages of various synthetic strategies are discussed. Furthermore, the specific surface modification of AuNTs and their self-assembly into different dimensional nano- or microstructures by various interparticle interactions are introduced. Based on the unique physical properties of AuNTs and their assemblies, the applications towards chemical biology and sensing were developed. Finally, the future development of AuNTs is prospected.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yuqin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zhide Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
13
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Singh SP, Chandra P. Nano-Engineered Surface Comprising Metallic Dendrites for Biomolecular Analysis in Clinical Perspective. BIOSENSORS 2022; 12:1062. [PMID: 36551029 PMCID: PMC9775260 DOI: 10.3390/bios12121062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 09/28/2023]
Abstract
Metallic dendrites, a class of three-dimensional nanostructured materials, have drawn a lot of interests in the recent years because of their interesting hierarchical structures and distinctive features. They are a hierarchical self-assembled array of primary, secondary, and terminal branches with a plethora of pointed ends, ridges, and edges. These features provide them with larger active surface areas. Due to their enormous active areas, the catalytic activity and conductivity of these nanostructures are higher as compared to other nanomaterials; therefore, they are increasingly used in the fabrication of sensors. This review begins with the properties and various synthetic approaches of nanodendrites. The primary goal of this review is to summarize various nanodendrites-engineered biosensors for monitoring of small molecules, macromolecules, metal ions, and cells in a wide variety of real matrices. Finally, to enlighten future research, the limitations and future potential of these newly discovered materials are discussed.
Collapse
Affiliation(s)
- Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Daphika S. Dkhar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Surinder P. Singh
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
14
|
A dual-stimuli responsive electrochemiluminescence biosensor for pathogenic bacterial sensing and killing in foods. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Strategies for Enhancing the Sensitivity of Electrochemiluminescence Biosensors. BIOSENSORS 2022; 12:bios12090750. [PMID: 36140135 PMCID: PMC9496703 DOI: 10.3390/bios12090750] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Electrochemiluminescence (ECL) has received considerable attention as a powerful analytical technique for the sensitive and accurate detection of biological analytes owing to its high sensitivity and selectivity and wide dynamic range. To satisfy the growing demand for ultrasensitive analysis techniques with high efficiency and accuracy in complex real sample matrices, considerable efforts have been dedicated to developing ECL strategies to improve the sensitivity of bioanalysis. As one of the most effective approaches, diverse signal amplification strategies have been integrated with ECL biosensors to achieve desirable analytical performance. This review summarizes the recent advances in ECL biosensing based on various signal amplification strategies, including DNA-assisted amplification strategies, efficient ECL luminophores, surface-enhanced electrochemiluminescence, and ratiometric strategies. Sensitivity-enhancing strategies and bio-related applications are discussed in detail. Moreover, the future trends and challenges of ECL biosensors are discussed.
Collapse
|
16
|
Novel nanocomposite of spiky-shaped gold nanourchins/ titanium dioxide/nafion for amplified signal and efficient electrochemiluminescence detection of ovomucoid. Bioelectrochemistry 2022; 147:108172. [PMID: 35716580 DOI: 10.1016/j.bioelechem.2022.108172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
Abstract
This work reports on the first electrochemiluminescence (ECL) immunosensor employing a novel nanostructured composite of titanium dioxide (TiO2) and gold nanourchins (AuNU) to detect protein allergen Ovomucoid (Ovm) found in eggs. TiO2 and AuNU were dispersed in Nafion and drop-casted onto SPGE with Tris(2,2'-bipyridyl)-ruthenium (II) ([Ru(bpy)3]2+) and tri-n-propylamine (TPrA) served as strong luminophore/co-reactant pairs as a source of ECL signals. The linear range, limit of detection, reproducibility and practical applications of the sensor were assessed. The fabricated ECL immuosensor produced a promising limit of detection of as low as 0.01 pg/mL. Two linear ranges of 0.01-50 pg/mL and 100-750 pg/mL with corresponding correlation coefficients of R2 = 0.99136 and R2 = 0.97829) respectively, were determined. Despite its simple fabrication method, this label-free immunosensor also showcased excellent selectivity, reproducibility, interference-resistance and yielded outstanding recoveries between 97.42 and 104.05% of Ovm analysis in spiked real food samples.
Collapse
|
17
|
Bezuneh TT, Fereja TH, Kitte SA, Li H, Jin Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022; 248:123611. [PMID: 35660995 DOI: 10.1016/j.talanta.2022.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Since the content levels of biomarkers at the early stage of many diseases are generally lower than the detection threshold concentration, achieving ultrasensitive and accurate detection of these biomarkers is still one of the major goals in bio-analysis. To achieve ultrasensitive and reliable bioassay, it requires developing highly sensitive biosensors. Among all kinds of biosensors, electrogenerated chemiluminescence (ECL) based biosensors have attracted enormous attention due to their excellent properties. In order to improve the performance of ECL biosensors, gold nanoparticles (Au NPs) have been widely utilized as signal amplification tags. The introduction of Au NPs could dramatically enhance the performance of the constructed ECL biosensors via diverse ways such as electrode modification material, efficient energy acceptor in ECL resonant energy transfer (ECL-RET), reaction catalyst, surface plasmon resonance (SPR) enhancer, and as nanocarrier. Herein, we summarize recent developments and progress of ECL biosensors based on Au NPs signal amplification strategies. We will cover ECL applications of Au NPs as a signal amplification tag in the detection of proteins, metal ions, nucleic acids, small molecules, living cells, exosomes, and cell imaging. Finally, brief summary and future outlooks of this field will be presented.
Collapse
Affiliation(s)
- Terefe Tafese Bezuneh
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China; Department of Chemistry, College of Natural Sciences, Arbaminch University, P.O. Box 21, Arbaminch, Ethiopia
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; Department of Pharmacy, College of Medicine and Health Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China.
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
18
|
Zhao W, Xu J. Chemical Measurement and Analysis: from Phenomenon to Essence. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
19
|
Li L, Chen B, Liu X, Jiang P, Luo L, Li X, You T. ‘On-off-on’ electrochemiluminescent aptasensor for Hg2+ based on dual signal amplification enabled by a self-enhanced luminophore and resonance energy transfer. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Zhang K, Fan Z, Ding Y, Xie M. A pH-engineering regenerative DNA tetrahedron ECL biosensor for the assay of SARS-CoV-2 RdRp gene based on CRISPR/Cas12a trans-activity. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 429:132472. [PMID: 34539224 PMCID: PMC8440004 DOI: 10.1016/j.cej.2021.132472] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 05/16/2023]
Abstract
In this work, we constructed an exonuclease III cleavage reaction-based isothermal amplification of nucleic acids with CRISPR/Cas12a-mediated pH-induced regenerative Electrochemiluminescence (ECL) biosensor for ultrasensitive and specific detection of SARS-CoV-2 nucleic acids for SARS-CoV-2 diagnosis. The triple-stranded nucleic acid in this biosensor has an extreme dependence on pH, which makes our constructed biosensor reproducible. This is essential for effective large-scale screening of SARS-CoV-2 in areas where resources are currently relatively scarce. Using this pH-induced regenerative biosensor, we detected the SARS-CoV-2 RdRp gene with a detection limit of 43.70 aM. In addition, the detection system has good stability and reproducibility, and we expect that this method may provide a potential platform for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Zhenqiang Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| |
Collapse
|
21
|
Li J, Luo M, Jin C, Zhang P, Yang H, Cai R, Tan W. Plasmon-Enhanced Electrochemiluminescence of PTP-Decorated Eu MOF-Based Pt-Tipped Au Bimetallic Nanorods for the Lincomycin Assay. ACS APPLIED MATERIALS & INTERFACES 2022; 14:383-389. [PMID: 34978181 DOI: 10.1021/acsami.1c21528] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmonic bimetal nanostructures can be employed to amplify electrochemiluminescence (ECL) signals. In this work, a high-performance ECL platform was constructed using a europium metal-organic framework (MOF) as a luminophore and Au-Pt bimetallic nanorods (NRs) as a plasma source. Due to the SPR effect of Au-Pt NRs, the aptasensor exhibits 2.6-fold ECL intensity compared to that of pure polyaniline (PANI)-decorated perylene tetracarboxylic dianhydride (PTCA)/Eu MOF. Moreover, decoration with PTP greatly enhances the conductivity and stability of Eu MOF, resulting in sizeable plasmon-enhanced electrochemical luminescence. The as-designed plasmon-enhanced ECL aptasensor displayed highly sensitive detection for lincomycin (Lin). The as-proposed aptasensor could quantify Lin from 0.1 mg/mL to 0.1 ng/mL with a limit of detection (LOD) of 0.026 ng/mL.
Collapse
Affiliation(s)
- Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Mengyu Luo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Can Jin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Penghui Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Hongfen Yang
- University of Texas at Austin, Austin, Texas 78712, United States
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Jalili R, Chenaghlou S, Khataee A, Khalilzadeh B, Rashidi MR. An Electrochemiluminescence Biosensor for the Detection of Alzheimer's Tau Protein Based on Gold Nanostar Decorated Carbon Nitride Nanosheets. Molecules 2022; 27:431. [PMID: 35056745 PMCID: PMC8779933 DOI: 10.3390/molecules27020431] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Human Tau protein is the most reliable biomarker for the prediction of Alzheimer's disease (AD). However, the assay to detect low concentrations of tau protein in serum is a great challenge for the early diagnosis of AD. This paper reports an electrochemiluminescence (ECL) immunosensor for Tau protein in serum samples. Gold nanostars (AuNSs) decorated on carbon nitride nanosheets (AuNS@g-CN nanostructure) show highly strong and stable ECL activity compared to pristine CN nanosheets due to the electrocatalytic and surface plasmon effects of AuNSs. As a result of the strong electromagnetic field at branches, AuNSs showed a better ECL enhancement effect than their spherical counterpart. For the fabrication of a specific immunosensor, immobilized AuNSs were functionalized with a monoclonal antibody specific for Tau protein. In the presence of Tau protein, the ECL intensity of the immunosensor decreased considerably. Under the optimal conditions, this ECL based immunosensor exhibits a dynamic linear range from 0.1 to 100 ng mL-1 with a low limit of detection of 0.034 ng mL-1. The LOD is less than the Tau level in human serum; thus, this study provides a useful method for the determination of Tau. The fabricated ECL immunosensor was successfully applied to the detection of Tau, the biomarker in serum samples. Therefore, the present approach is very promising for application in diagnosing AD within the early stages of the disease.
Collapse
Affiliation(s)
- Roghayeh Jalili
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran or (R.J.); (S.C.)
| | - Salimeh Chenaghlou
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran or (R.J.); (S.C.)
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran or (R.J.); (S.C.)
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey
- Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russia
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz 51666-14711, Iran;
| | - Mohammad-Reza Rashidi
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz 51666-14711, Iran;
| |
Collapse
|
23
|
Recent advances in II-VI quantum dots based-signal strategy of electrochemiluminescence sensor. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
24
|
Nie Y, Liang Z, Wang P, Ma Q, Su X. MXene-Derived Quantum Dot@Gold Nanobones Heterostructure-Based Electrochemiluminescence Sensor for Triple-Negative Breast Cancer Diagnosis. Anal Chem 2021; 93:17086-17093. [PMID: 34914874 DOI: 10.1021/acs.analchem.1c04184] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MXene material has been gradually studied in recent years due to its fascinating characteristics. This work developed a novel MXene-derived quantum dots (MQDs) @gold nanobones (Au NBs) heterostructure as the electrochemiluminescence (ECL) sensor. First, MXene and MQDs were synthesized via the green preparation process, which avoided the harm of hydrofluoric acid to humans and the environment. There was a strong ECL signal enhancement in the MQD@Au NBs heterostructure. On the one hand, Au NBs with surface plasmon resonance (SPR) effect acted as an "electronic regulator" that can transfer electrons to itself to control over-injection of electrons into the conduction band of MQDs. The luminous signal of MQDs can be efficiently generated and significantly amplified in the ECL sensing process. On the other hand, the work function of MQDs with excellent conductivity was relatively close to that of Au NBs in the heterostructure. So, ECL quenching caused by short-distance electron transfer between luminophore and Au nanomaterial has been effectively suppressed. The MQD@Au NBs heterostructure-based ECL sensing system was applied to determine miRNA-26a in the serum of patients with triple-negative breast cancer. It not only provides ideas for the green synthesis of MXene but also provides a guide for the application of MQD@Au NBs heterostructure in the field of ECL sensing.
Collapse
Affiliation(s)
- Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
25
|
Kitte SA, Bushira FA, Xu C, Wang Y, Li H, Jin Y. Plasmon-Enhanced Nitrogen Vacancy-Rich Carbon Nitride Electrochemiluminescence Aptasensor for Highly Sensitive Detection of miRNA. Anal Chem 2021; 94:1406-1414. [PMID: 34927425 DOI: 10.1021/acs.analchem.1c04726] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of biosensors for biologically important substances with ultralow content such as microRNA is of great significance. Herein, a novel surface plasmon-enhanced electrogenerated chemiluminescence-based aptasensor was developed for ultrasensitive sensing of microRNA by using nitrogen vacancy-rich carbon nitride nanosheets as effective luminophores and gold nanoparticles as plasmonic sources. The introduction of nitrogen vacancies improved the electrochemiluminescence behavior due to improved conductance and electrogenerated chemiluminescence activity. The introduction of plasmonic gold nanoparticles increased the electrochemiluminescence signal intensity by more than eightfold. The developed surface plasmon-enhanced electrogenerated chemiluminescence aptasensor exhibited good selectivity, ultrasensitivity, excellent stability, and reproducibility for the determination of microRNA-133a, with a dynamic linear range of 1 aM to 100 pM and a limit of detection about 0.87 aM. Moreover, the surface plasmon-enhanced electrogenerated chemiluminescence sensor obtained a good recovery when detecting the content of microRNA in actual serum.
Collapse
Affiliation(s)
- Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma 378, Ethiopia
| | - Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma 378, Ethiopia.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
26
|
Jing L, Xie C, Li Q, Yang M, Li S, Li H, Xia F. Electrochemical Biosensors for the Analysis of Breast Cancer Biomarkers: From Design to Application. Anal Chem 2021; 94:269-296. [PMID: 34854296 DOI: 10.1021/acs.analchem.1c04475] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Le Jing
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chongyu Xie
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qianqian Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meiqing Yang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
27
|
Ultrasensitive prostate specific antigen monitoring based on electrochemiluminescent immunesystem with synergistic signal amplification effect of resonance energy transfer coupling with K2S2O8-H2O2 dual coreactants. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Liu Y, Sun X, Yuan H, Liu B, Zhou B, Chen X, Li X, Xue Q. Sensitive detection of p53 DNA based on spatially confined fluorescence resonance energy transfer and multivalent assembly of branched DNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4314-4319. [PMID: 34476425 DOI: 10.1039/d1ay01110c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A key challenge for the discrete distribution-based Förster resonance energy transfer system (D-FRET) is the reduced intensity and stability of signal probes in complex biological matrices. Here, we present a spatially confined FRET (SC-FRET) probe with a stable structure and strong signal output. It consists of multivalent FRET pairs labeled with FAM or TAMRA. In this assay, p53 DNA was chosen as a model hairpin probe (HP), and two kinds of branched DNA probes (ssDNA-FAM, ssDNA-TAMRA) were involved. Under the action of p53 DNA, the unfolded HP acts as a primer to initiate polymerization extension of KFP polymerase and cleavage of Nb.BbvCI endonuclease, which produces plenty of ssDNA (primer-DNA). The branched DNA is designed to have the same binding core and different sticky ends, the core part of which can self-assemble to form X-shaped branched DNA (X-FAM or X-TAMRA), and the sticky ends of which are complementary to the primer-DNA. Therefore, the primer-DNAs released during the polymerization cleavage process will combine a large number of X-FAM and X-TAMRA in a limited space through complementary base pairing. Fluorescence was transferred from FAM to TAMRA, and a strong FRET response was generated by the locational effects. The proposed SC-FRET system based on the multivalent assembly of branched DNA exhibited a strong FRET response with an LOD of 0.01394 pM. Importantly, it also showed a high-contrast and stable FRET response in HeLa cells. Its superior biological stability is attributed to the large steric hindrance of the compact and rigid frame of the SC-FRET probe, which helps prevent intracellular degradation and provides a powerful tool for biomedical research.
Collapse
Affiliation(s)
- Yeling Liu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| | - Xia Sun
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| | - Hui Yuan
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| | - Bingxin Liu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| | - Bingqian Zhou
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| | - Xuening Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
29
|
Zhao J, He Y, Tan K, Yang J, Chen S, Yuan R. Novel Ratiometric Electrochemiluminescence Biosensor Based on BP-CdTe QDs with Dual Emission for Detecting MicroRNA-126. Anal Chem 2021; 93:12400-12408. [PMID: 34469691 DOI: 10.1021/acs.analchem.1c02408] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The electrochemiluminescence (ECL) ratiometric assay is usually based on two different ECL luminophores, and the choice of two suitable luminophores and shared co-reactant makes its construction challenging. The single-emitter-based ECL ratio mode could overcome the limitation of two luminophores and simplify the construction process, so it is an ideal choice. In this work, CdTe quantum dots (CdTe QDs) were modulated using black phosphorus (BP) nanosheet to simultaneously emit the cathodic and anodic ECL signals, and H2O2 and tripropylamine (TPrA) served as the cathodic and anodic co-reactants, respectively. MicroRNA-126 (miRNA-126) was selected as the template target to exploit the application of BP-CdTe QDs in the single-emitter-based ECL ratio detection. Through the target recycling triggering rolling-circle amplification (RCA) reaction, a large amount of glucose oxidase (GOx)-modified single strand 1 was introduced. GOx catalyzed glucose to produce H2O2 in situ, which acted as a dual-role moderator to quench the anodic ECL emission with TPrA as the co-reactant while enhancing the cathodic emission, thereby realizing the ratiometric detection of miRNA-126 with a low detection limit of 29 aM (S/N = 3). The dual-ECL-emitting BP-CdTe QDs with TPrA-H2O2 as dual co-reactant provide a superior ECL ratio platform involving enzyme catalytic reaction, expanding the application of single-emitter-based ratio sensing in the diverse biological analysis.
Collapse
Affiliation(s)
- Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jun Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
30
|
Sun Y, Qin Y, Zhang J, Ren Q. Electrochemiluminescent determination of prostate-specific antigen using Au@(MoS 2/GO/o-MWNTs) nanohybrids as co-reaction accelerator and hyperbranched hybridization chain reaction for signal amplification. Mikrochim Acta 2021; 188:300. [PMID: 34409505 DOI: 10.1007/s00604-021-04957-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Three-dimensional flowerlike Au@(MoS2/GO/o-MWNTs) nanohybrids (abbreviated as AMGMs) were synthesized and then introduced into an electrochemiluminescence (ECL) system as a new co-reaction accelerator for the ultrasensitive prostate-specific antigen (PSA). The AMGMs not only served as a substrate with good conductivity and a large specific surface area for loading abundant primary antibodies but also acted as an effective co-reaction accelerator; the co-reaction accelerator could interact with a co-reactant rather than the luminophore to boost the generation of free radical intermediates, thereby producing abundant excited states of luminophores to amplify the ECL signal response. Additionally, an anticipated signal amplification strategy based on the hybridization chain reaction (HCR) was developed by gathering a large amount of a DNA initiator on gold nanoparticles. These gathered DNA initiators could generate multiple DNA concatemers and attach more signal molecules, which resulted in outstanding exponential signal amplification. Consequently, the ECL immunosensor demonstrated high sensitivity, with a linear range from 0.1 pg mL-1 to 50 ng mL-1 and a detection limit of 0.028 pg mL-1. In addition, the immunosensor displayed excellent stability and selectivity. It was evaluated by analyzing human serum sample. The recovery obtained was 98.80-112.00% and the RSD was 1.73-3.12%, indicating the immunosensor could be applied to the simultaneous detection of PSA in human serum samples. Graphical abstract.
Collapse
Affiliation(s)
- Yingying Sun
- Department of Medical Laboratory Science, Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Yan Qin
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| | - Jun Zhang
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| | - Qunxiang Ren
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| |
Collapse
|
31
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
32
|
Ning Z, Chen M, Wu G, Zhang Y, Shen Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens Bioelectron 2021; 191:113462. [PMID: 34198172 DOI: 10.1016/j.bios.2021.113462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Electroluminescence (ECL) has been used in extensive applications ranging from bioanalysis to clinical diagnosis owing to its simple device requirement, low background, high sensitivity, and wide dynamic range. Nucleic acid is a significant theme in ECL bioanalysis. The inherent versatile selective molecular recognition of nucleic acids and their programmable self-assembly make it desirable for the robust construction of nanostructures. Benefiting from their unique structures and physiochemical properties, ECL biosensing based on nucleic acids has experienced rapid growth. This review focuses on recent applications of nucleic acids in ECL sensing systems, particularly concerning the employment of nucleic acids as molecular recognition elements, signal amplification units, and sensing interface schemes. In the end, an outlook of nucleic acid-based ECL biosensing will be provided for future developments and directions. We envision that nucleic acids, which act as an essential component for both bioanalysis and clinical diagnosis, will provide a new thinking model and driving force for developing next-generation sensing systems.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Mengyuan Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
33
|
Heiderscheit TS, Oikawa S, Sanders S, Minamimoto H, Searles EK, Landes CF, Murakoshi K, Manjavacas A, Link S. Tuning Electrogenerated Chemiluminescence Intensity Enhancement Using Hexagonal Lattice Arrays of Gold Nanodisks. J Phys Chem Lett 2021; 12:2516-2522. [PMID: 33667339 DOI: 10.1021/acs.jpclett.0c03564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrogenerated chemiluminescence (ECL) microscopy shows promise as a technique for mapping chemical reactions on single nanoparticles. The technique's spatial resolution is limited by the quantum yield of the emission and the diffusive nature of the ECL process. To improve signal intensity, ECL dyes have been coupled with plasmonic nanoparticles, which act as nanoantennas. Here, we characterize the optical properties of hexagonal arrays of gold nanodisks and how they impact the enhancement of ECL from the coreaction of tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate and tripropylamine. We find that varying the lattice spacing results in a 23-fold enhancement of ECL intensity because of increased dye-array near-field coupling as modeled using finite element method simulations.
Collapse
Affiliation(s)
- Thomas S Heiderscheit
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Shunpei Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Stephen Sanders
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Hiro Minamimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Emily K Searles
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Alejandro Manjavacas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States
- Instituto de Óptica (IO-CSIC), Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
34
|
Zhang Q, Tian Y, Liang Z, Wang Z, Xu S, Ma Q. DNA-Mediated Au–Au Dimer-Based Surface Plasmon Coupling Electrochemiluminescence Sensor for BRCA1 Gene Detection. Anal Chem 2021; 93:3308-3314. [DOI: 10.1021/acs.analchem.0c05440] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qian Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yu Tian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zizhun Wang
- Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
35
|
He Y, Liu Y, Cheng L, Yang Y, Qiu B, Guo L, Wang Y, Lin Z, Hong G. Highly Reproducible and Sensitive Electrochemiluminescence Biosensors for HPV Detection Based on Bovine Serum Albumin Carrier Platforms and Hyperbranched Rolling Circle Amplification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:298-305. [PMID: 33382593 DOI: 10.1021/acsami.0c20742] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most DNA-based electrochemiluminescence (ECL) biosensors are established through the self-assembly of thiolated single-stranded DNA (ssDNA) probes on the Au electrode surface. Because of this random assembly process, a significant discrepancy exists in the distribution of a modified DNA film on different electrodes, which greatly affects the reproducibility of a biosensor. In this study, a porous bovine serum albumin (BSA) layer was first modified on the electrode surface, which can improve the position distribution and spatial orientation of the self-assembly ssDNA probe. It was then coupled with hyperbranched rolling circle amplification to develop the high-reproducibility-and-sensitivity ECL biosensor for human papillomavirus 16 E6 and E7 oncogene detection. In the presence of the target DNA, the surface of the electrode accumulates abundant amplified products through reaction, which contain double-stranded DNA (dsDNA) fragments of different lengths, followed by plentiful dichlorotris (1,10-phenanthroline) ruthenium(II) hydrate (Ru(phen)32+, acting as an ECL indicator) insertion into grooves of dsDNA fragments, and a strong signal can be detected. There is a linear relationship between the signal and the target concentration range from 10 fM to 15 pM, and the detection limit is 7.6 fM (S/N = 3). After the BSA modification step, the relative standard deviation was reduced from 9.20 to 3.96%, thereby achieving good reproducibility. The proposed ECL strategy provides a new method for constructing high-reproducibility-and-sensitivity ECL biosensors.
Collapse
Affiliation(s)
- Yinghao He
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Yinhuan Liu
- Department of Laboratory Medicine, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| | - Lingjun Cheng
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Yan Wang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen 361004, People's Republic of China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| |
Collapse
|
36
|
Zhang Q, Liang Z, Nie Y, Zhang X, Ma Q. Tunable plasmon-assisted electrochemiluminescence strategy for determination of the rapidly accelerated fibrosarcoma B-type (BRAF) gene using concave gold nanocubes. Mikrochim Acta 2020; 187:599. [DOI: 10.1007/s00604-020-04584-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023]
|
37
|
A FRET-based aptasensor for ochratoxin A detection using graphitic carbon nitride quantum dots and CoOOH nanosheets as donor-acceptor pair. Talanta 2020; 218:121159. [DOI: 10.1016/j.talanta.2020.121159] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022]
|
38
|
Kitte SA, Tafese T, Xu C, Saqib M, Li H, Jin Y. Plasmon-enhanced quantum dots electrochemiluminescence aptasensor for selective and sensitive detection of cardiac troponin I. Talanta 2020; 221:121674. [PMID: 33076177 DOI: 10.1016/j.talanta.2020.121674] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
The development of highly sensitive electrochemiluminescence (ECL) immunosensors by using functional nanoparticles as signal amplifiers is a solution towards sensitive determination of many low concentration disease biomarkers. Herein, a sensitive aptamer-based, sandwich-type surface plasmon enhanced electrochemiluminescence (SPEECL) immunosensor was demonstrated for the detection of cardiac troponin I (cTnI), by means of aptamer conjugated CdS QDs and AuNPs as ECL luminophores and plasmon sources, respectively, in which Tro4 aptamer was used as a capture probe for cTnI and Tro6 aptamer as a detecting probe. The signal of the developed SPEECL system showed ~ 5-fold increment as compared to that of without AuNPs. Using this ECL platform for the detection of cTnI, a linear range and the limit of detection (LOD) were found to be 1 fg/mL - 10 ng/mL and 0.75 fg/mL, respectively.
Collapse
Affiliation(s)
- Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; Department of Chemistry, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia
| | - Terefe Tafese
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Saqib
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
39
|
Chenaghlou S, Khataee A, Jalili R, Rashidi MR, Khalilzadeh B, Woo Joo S. Gold nanostar-enhanced electrochemiluminescence immunosensor for highly sensitive detection of cancer stem cells using CD133 membrane biomarker. Bioelectrochemistry 2020; 137:107633. [PMID: 32891010 DOI: 10.1016/j.bioelechem.2020.107633] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Gold nanostars (AuNSs) demonstrate an intense electromagnetic field around tip of branches. In this research, we employed AuNSs-enhanced electrochemiluminescence (ECL) emission from graphitic carbon nitride nanosheets (g-CN nanosheets) to detect CD133 peptide as a cancer stem cell membrane biomarker. In this biosensor, the g-CN nanosheets were decorated with AuNSs (AuNSs@g-CN nanosheets). AuNSs@g-CN nanosheets exhibited strong and stable cathodic ECL emission compared to that of pure g-CN nanosheets. The ECL intensity from the AuNSs@g-CN nanosheets was over 30% higher than that of spherical gold nanoparticles (spherical AuNPs) decorated g-CN nanosheets. The additional ECL enhancement of AuNSs was due to the localized surface plasmon resonance (LSPR) effect located around multiple branch tips of AuNSs. The RSD of ECL curves intensities, obtained from successive potential scans for 10 cycles, were less than 4%, indicating the superior stability of the AuNSs@g-CN nanosheets. Under optimum conditions, the ECL intensity of GCE/AuNSs@g-CN nanosheets/anti-CD133 decreased linearly with CD133 peptide concentration in the range of 0.05-100 ng mL-1. The LOD achieved was 0.257 ng mL-1 (S/N = 3). The applicability of the designed biosensor in real samples was examined through the determination of CD133 peptide in spiked serum samples, from which satisfactory results were obtained.
Collapse
Affiliation(s)
- Salimeh Chenaghlou
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Roghayeh Jalili
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, 51666-14711 Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, 51666-14711 Tabriz, Iran; Biosensors and Bioelectronics Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea.
| |
Collapse
|
40
|
Zhang Q, Zhang X, Ma Q. Recent Advances in Visual Electrochemiluminescence Analysis. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00129-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Synergistic amplification effect for electrochemiluminescence immunoassay based on dual coreactants coupling with resonance energy transfer. Talanta 2020; 212:120798. [DOI: 10.1016/j.talanta.2020.120798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 11/23/2022]
|
42
|
Xie N, Wang H, Quan K, Feng F, Huang J, Wang K. Self-assembled DNA-Based geometric polyhedrons: Construction and applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Chen Y, Chen Z, Fang L, Weng A, Luo F, Guo L, Qiu B, Lin Z. Electrochemiluminescence Sensor for Cancer Cell Detection Based on H2O2-Triggered Stimulus Response System. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00124-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
DNA framework-engineered electrochemical biosensors. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1130-1141. [PMID: 32253588 DOI: 10.1007/s11427-019-1621-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Self-assembled DNA nanostructures have shown remarkable potential in the engineering of biosensing interfaces, which can improve the performance of various biosensors. In particular, by exploiting the structural rigidity and programmability of the framework nucleic acids with high precision, molecular recognition on the electrochemical biosensing interface has been significantly enhanced, leading to the development of highly sensitive and specific biosensors for nucleic acids, small molecules, proteins, and cells. In this review, we summarize recent advances in DNA framework-engineered biosensing interfaces and the application of corresponding electrochemical biosensors.
Collapse
|
45
|
Lian H, Huang S, Wei X, Guo J, Sun X, Liu B. Gold nanodendrite-based differential potential ratiometric sensing strategy for enantioselective recognition of DOPA. Talanta 2020; 210:120654. [DOI: 10.1016/j.talanta.2019.120654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/04/2023]
|
46
|
Sun J, Zhou F, Hu H, Li N, Xia M, Wang L, Wang X, Wang G. Photocontrolled Thermosensitive Electrochemiluminescence Hydrogel for Isocarbophos Detection. Anal Chem 2020; 92:6136-6143. [DOI: 10.1021/acs.analchem.0c00719] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jiahui Sun
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; and College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Fu Zhou
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; and College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Hui Hu
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; and College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Na Li
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; and College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Mengmeng Xia
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; and College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Li Wang
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; and College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing, Anhui Province; Key Laboratory of Functional Molecular Solids, Anhui Province; and College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
47
|
Chen C, Hildebrandt N. Resonance energy transfer to gold nanoparticles: NSET defeats FRET. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115748] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Lu HJ, Xu JJ, Zhou H, Chen HY. Recent advances in electrochemiluminescence resonance energy transfer for bioanalysis: Fundamentals and applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115746] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Xu T, Dai H, Jin Y. Electrochemical sensing of lead(II) by differential pulse voltammetry using conductive polypyrrole nanoparticles. Mikrochim Acta 2019; 187:23. [DOI: 10.1007/s00604-019-4027-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/09/2019] [Indexed: 12/24/2022]
|
50
|
Ma C, Cao Y, Gou X, Zhu JJ. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal Chem 2019; 92:431-454. [PMID: 31679341 DOI: 10.1021/acs.analchem.9b04947] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|