1
|
Liang S, Zhao S, Liu H, Liu J, Xie X, Chen R, Chen B, Luan T. A quantitative method for aquaporin-1 protein using magnetic preconcentration and probe-based immunoassay coupling to inductively coupled plasma mass spectrometry in urine analysis. Anal Chim Acta 2024; 1324:343101. [PMID: 39218579 DOI: 10.1016/j.aca.2024.343101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Aquaporin-1 (AQP1) protein plays a crucial role in intracellular and extracellular water homeostasis and fluid transport in organs and tissues associated with diverse life activities and is extremely abundant in the kidney. Accurate detection of AQP1 in urine can be applied as screening of early-stage disease. Application of magnetic preconcentration and probe-based signal amplification strategy coupling to inductively coupled plasma mass spectrometry (ICP-MS) is a more accurate, sensitive and specific detection method for AQP1 in complex biological samples compared to conventional methods. RESULTS We described an element-labelling strategy based on magnetic preconcentration and probe-based immunoassay coupling to ICP-MS detection. The magnetic beads (MBs) modified with epoxy groups were capable of enriching AQP1 proteins and separating them from complex matrices. The probe constructed by conjugating anti-AQP1 antibody molecules on the surface of gold nanoparticles could specifically recognize AQP1 proteins attached on MBs and be analyzed by ICP-MS. The concentration of AQP1 protein could be precisely quantified and amplified by 14,000 times through the corresponding signal of Au atoms. This assay for AQP1 protein quantification achieved a detection limit down to 0.023 ng mL-1, a broad linear calibration curve between 0.3 ng mL-1 and 30 ng mL-1, as well as outstanding specificity. SIGNIFICANCE The proposed method was successfully applied to detect AQP1 protein in human urine samples, showing the potential for its applications concerning accurate AQP1 quantification. It can also screen a wide range of proteins provided the antibodies specific to these target proteins are available.
Collapse
Affiliation(s)
- Shuqi Liang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, 510275, China; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuang Zhao
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongtao Liu
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiahui Liu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiuqin Xie
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Ruohong Chen
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Tiangang Luan
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529020, China
| |
Collapse
|
2
|
Zhang Y, Zheng ZN, Lin XH, Liu AL, Lei Y. A homogeneous electrochemiluminescence immunoassay platform based on carbon quantum dots and magnetic beads enrichment for detection of thyroglobulin in serum. Talanta 2024; 276:126205. [PMID: 38718649 DOI: 10.1016/j.talanta.2024.126205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024]
Abstract
Considering the high probability of recurrence or metastasis after thyroidectomy, it is meaningful to develop a rapid, sensitive and specific method for monitoring thyrophyma-related biomarkers. In this study, a homogeneous electrochemiluminescence immunoassay (HO-ECLIA) coupled with magnetic beads (MBs)-based enrichment tactic was established for the determination of thyrophyma-related thyroglobulin (Tg). Importantly, owing to the abundant surface groups and good biocompatibility of carbon quantum dots (CQDs), the incorporation of CQDs onto the Tg antigen surface was achieved, resulting in the formation of Tg-encapsulated CQDs (CQDs-Tg), which served not only as an ECL probe but as a biorecognition element. Under optimal experimental conditions, the proposed platform demonstrated a wide linear range from 0.01 to 100 ng·mL-1 with a detection limit of 6.9 pg·mL-1 (S/N = 3), and performed well in real serum sample analysis against interference. Collectively, the proposed platform exhibited the rapid response, satisfactory sensitivity and specificity toward Tg in complex serum milieu, and held a considerable potential for clinical prognosis monitoring of thyrophyma.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhen-Ni Zheng
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
3
|
Tabassum R, Sarkar PP, Jalal AH, Ashraf A, Islam N. Laser-Induced Electrochemical Biosensor Modified with Graphene-Based Ink for Label-Free Detection of Alpha-Fetoprotein and 17β-Estradiol. Polymers (Basel) 2024; 16:2069. [PMID: 39065385 PMCID: PMC11280801 DOI: 10.3390/polym16142069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
In this research, a novel electrochemical biosensor is proposed based on inducing graphene formation on polyimide substrate via laser engraving. Graphene polyaniline (G-PANI) conductive ink was synthesized by planetary mixing and applied to the working zone of the developed sensor to effectively enhance the electrical signals. The laser-induced graphene (LIG) sensor was used to detect alpha-fetoprotein (AFP) and 17β-Estradiol (E2) in the phosphate buffer saline (PBS) buffer and human serum. The electrochemical performance of the biosensor in determining these biomarkers was investigated by differential pulse voltammetry (DPV) and chronoamperometry (CA). In a buffer environment, alpha-fetoprotein (AFP) and 17β-Estradiol detection range were 4-400 ng/mL and 20-400 pg/mL respectively. The experimental results showed a limit of detection (LOD) of 1.15 ng/mL and 0.96 pg/mL for AFP and estrogen, respectively, with an excellent linear range (R2 = 0.98 and 0.99). In addition, the designed sensor was able to detect these two types of biomarkers in human serum successfully. The proposed sensor exhibited excellent reproducibility, repeatability, and good stability (relative standard deviation, RSD = 0.96%, 1.12%, 2.92%, respectively). The electrochemical biosensor proposed herein is easy to prepare and can be successfully used for low-cost, rapid detection of AFP and E2. This approach provides a promising platform for clinical detection and is advantageous to healthcare applications.
Collapse
Affiliation(s)
- Ridma Tabassum
- Graduate Research Assistant, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (R.T.); (P.P.S.)
| | - Pritu Parna Sarkar
- Graduate Research Assistant, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (R.T.); (P.P.S.)
| | - Ahmed Hasnain Jalal
- Department of Electrical & Computer Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Ali Ashraf
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Nazmul Islam
- Department of Electrical & Computer Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
4
|
Luo Q, Qiu Z, Liang H, Huang F, Wei C, Cui J, Song Z, Tang Q, Liao X, Liu Z, Wang J, Gao F. Proximity hybridization induced molecular machine for signal-on electrochemical detection of α-synuclein oligomers. Talanta 2024; 271:125720. [PMID: 38309112 DOI: 10.1016/j.talanta.2024.125720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
α-synuclein oligomer is a marker of Parkinson's disease. The traditional enzyme-linked immunosorbent assay for α-synuclein oligomer detection is not conducive to large-scale application due to its time-consuming, high cost and poor stability. Recently, DNA-based biosensors have been increasingly used in the detection of disease markers due to their high sensitivity, simplicity and low cost. In this study, based on the DNAzyme-driven DNA bipedal walking method, we developed a signal-on electrochemical sensor for the detection of α-syn oligomers. Bipedal DNA walkers have a larger walking area and faster walking kinetics, providing higher amplification efficiency compared to conventional DNA walkers. The DNA walker is driven via an Mg2+-dependent DNAzyme, and the binding-induced DNA walker will continuously clamp the MB, resulting in the proliferation of Fc confined near the GE surface. The linear range and limit of detection were 1 fg/mL to 10 pg/mL and 0.57 fg/mL, respectively. The proposed signal-on electrochemical sensing strategy is more selective. It will play a significant role in the sensitive and precise electrochemical analysis of other proteins.
Collapse
Affiliation(s)
- Qisheng Luo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Zhili Qiu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Hongqu Liang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Fa Huang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Chen Wei
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Jiuying Cui
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Zichun Song
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Qianli Tang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, 221004, Xuzhou, China.
| | - Jiangbo Wang
- Department of Neurology, Xuzhou Central Hospital, 221004, Xuzhou, China; Xuzhou Institute of Cardiovascular Disease, 221004, Xuzhou, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
5
|
Long LL, Hu WX, Wang X, Yuan R, Chai YQ. Antibody-Protein-Aptamer Electrochemical Biosensor based on Highly Efficient Proximity-Induced DNA Hybridization on Tetrahedral DNA Nanostructure for Sensitive Detection of Insulin-like Growth Factor-1. Anal Chem 2024; 96:3837-3843. [PMID: 38384162 DOI: 10.1021/acs.analchem.3c05035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Herein, an antibody-protein-aptamer electrochemical biosensor was designed by highly efficient proximity-induced DNA hybridization on a tetrahedral DNA nanostructure (TDN) for ultrasensitive detection of human insulin-like growth factor-1 (IGF-1). Impressively, the IGF-1 antibody immobilized on the top vertex of the TDN could effectively capture the target protein with less steric effect, and the ferrocene-labeled signal probe (SP) bound on the bottom vertex of the TDN was close to the electrode surface for generating a strong initial signal. In the presence of target protein IGF-1 and an aptamer strand, an antibody-protein-aptamer sandwich could be formed on the top vertex of TDN, which would trigger proximity-induced DNA hybridization to release the SP on the bottom vertex of TDN; therefore, the signal response would decrease dramatically, enhancing the sensitivity of the biosensor. As a result, the linear range of the proposed biosensor for target IGF-1 was 1 fM to 1 nM with the limit of detection down to 0.47 fM, which was much lower than that of the traditional TDN designs on electrochemical biosensors. Surprisingly, the use of this approach offered an innovative approach for the sensitive detection of biomarkers and illness diagnosis.
Collapse
Affiliation(s)
- Lin-Lin Long
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wen-Xi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
6
|
Chamorro A, Rossetti M, Bagheri N, Porchetta A. Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:71-106. [PMID: 38273204 DOI: 10.1007/10_2023_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.
Collapse
Affiliation(s)
| | - Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Neda Bagheri
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
7
|
Gao H, Ding Y, Ping P, Wang D, Ma Y, Li H. Signal-on electrogenerated chemiluminescence detection of gonyautoxin 1/4 based on proximity ligation-induced an electrode-bound pseudoknot DNA. Talanta 2024; 266:124938. [PMID: 37467666 DOI: 10.1016/j.talanta.2023.124938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
A "signal on" electrogenerated chemiluminescence (electrochemiluminescence, ECL) aptasensor based on proximity ligation-induced an electrode-bound pseudoknot DNA for sensitive detection of gonyautoxin 1/4 (GTX1/4) was developed on basis of the competitive type reaction mode. Aptamer was adopted as recognition element. Ru(bpy)32+ as ECL signal, was attached on the glassy carbon electrode (GCE) surface modified with nafion and gold nanoparticles (AuNPs) by electrostatic attraction to obtain the ECL platform. The pseudoknot DNA as capture probe, was immobilized onto the ECL platform via Au-S bond to obtain the ECL aptasensor. In the absence of GTX1/4, Y-shape proximate cooperative complex among aptamer, pseudoknot DNA and DNA1 was formed, drawing the ferrocene groups Fc, as ECL quencher) of both pseudoknot DNA and DNA1 near the electrode surface and resulting in low ECL signal. In the presence of GTX1/4, GTX1/4 competed with pseudoknot DNA and DNA1 for aptamer in homogeneous solution, preventing the formation of proximate cooperative complex and keeping the capture DNA in the pseudoknot conformation with Fc groups far away from the electrode surface, generating a high ECL signal. The recovery of ECL intensity increased with the GTX1/4 concentration and allowed the detection of GTX1/4 in the range of 0.01 ng/mL to 10 ng/mL with a detection of limit as low as 6.56 pg/mL. Additionally, the accuracy of this method was validated for analysis of spiked sea water samples with good recoveries, which indicates great potential in commercial application.
Collapse
Affiliation(s)
- Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China.
| | - Yilin Ding
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Ping Ping
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Denghong Wang
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Yujie Ma
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Haiyu Li
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| |
Collapse
|
8
|
Li R, Fan H, Zhou H, Chen Y, Yu Q, Hu W, Liu GL, Huang L. Nanozyme-Catalyzed Metasurface Plasmon Sensor-Based Portable Ultrasensitive Optical Quantification Platform for Cancer Biomarker Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301658. [PMID: 37358326 PMCID: PMC10460869 DOI: 10.1002/advs.202301658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Indexed: 06/27/2023]
Abstract
Developing plasmonic biosensors that are low-cost, portable, and relatively simple to operate remains challenging. Herein, a novel metasurface plasmon-etch immunosensor is described, namely a nanozyme-linked immunosorbent surface plasmon resonance biosensor, for the ultrasensitive and specific detection of cancer biomarkers. Gold-silver composite nano cup array metasurface plasmon resonance chip and artificial nanozyme-labeled antibody are used in two-way sandwich analyte detection. Changes in the biosensor's absorption spectrum are measured before and after chip surface etching, which can be applied to immunoassays without requiring separation or amplification. The device achieved a limit of alpha-fetoprotein (AFP) detection < 21.74 fM, three orders of magnitude lower than that of commercial enzyme-linked immunosorbent assay kits. Additionally, carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125) are used for quantitative detection to verify the universality of the platform. More importantly, the accuracy of the platform is verified using 60 clinical samples; compared with the hospital results, the three biomarkers achieve high sensitivity (CEA: 95.7%; CA125: 90.9%; AFP: 86.7%) and specificity (CEA: 97.3%; CA125: 93.9%; AFP: 97.8%). Due to its rapidity, ease of use, and high throughput, the platform has the potential for high-throughput rapid detection to facilitate cancer screening or early diagnostic testing in biosensing.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Hongli Fan
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Hanlin Zhou
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co., Ltd.666 Gaoxin AvenueWuhan430070P. R. China
| | - Youqian Chen
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Qingcai Yu
- School of Life and Health ScienceAnhui Science and Technology UniversityFengyang233100P. R. China
| | - Wenjun Hu
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Gang L. Liu
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Liping Huang
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co., Ltd.666 Gaoxin AvenueWuhan430070P. R. China
| |
Collapse
|
9
|
Li S, Xiang J, Yang F, Yuan R, Xiang Y. Aptamer/proximity hybridization-based label-free and highly sensitive colorimetric detection of methotrexate via polymerization/nicking recycling amplifications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122633. [PMID: 36965245 DOI: 10.1016/j.saa.2023.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Methotrexate (MTX) is one of the commonly used therapeutic drugs for treating various tumors and autoimmune diseases. However, high dose usage of MTX may cause severe side effects and the monitoring of MTX is therefore critical. By coupling a new MTX aptamer-based proximity hybridization with polymerization/nicking reaction (PNR) recycling amplifications, we develop here a sensitive and label-free colorimetric approach for MTX detection in diluted human serums. The MTX molecules can bind and switch the conformation of aptamers in the DNA duplex probes to initiate subsequent proximity hybridization-induced PNR recycling processes for the yield of a great deal of G-quadruplexes with the assistance of two single-stranded assistant DNA sequences. Hemin subsequently combines with these G-quadruplexes to produce lots of G-quadruplex/hemin horseradish peroxidase (HRP) mimicking DNAzymes, which then catalyze intensified color transition of the substrate solution to exhibit highly magnified UV-Vis absorption for label-free and ultrasensitive detection of MTX at concentration as low as 5.66 nM in the range of 10 nM to 1 μM. High selectivity of the developed method also enables it to monitor low levels of MTX in diluted serum samples, which offers such a method enormous potentials for convenient and highly sensitive detection of other small molecule drugs for various clinical applications.
Collapse
Affiliation(s)
- Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jie Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
10
|
Zhou H, Liu R, Pan G, Cao M, Zhang L. Unique Electron-Transfer-Mediated Electrochemiluminescence of AuPt Bimetallic Nanoclusters and the Application in Cancer Immunoassay. BIOSENSORS 2023; 13:bios13050550. [PMID: 37232911 DOI: 10.3390/bios13050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Noble Metal nanoclusters (NCs) are promising electrochemiluminescence (ECL) emitters due to their amazing optical properties and excellent biocompatibility. They have been widely used in the detection of ions, pollutant molecules, biomolecules, etc. Herein, we found that glutathione-capped AuPt bimetallic NCs (GSH-AuPt NCs) emitted strong anodic ECL signals with triethylamine as co-reactants which had no fluorescence (FL) response. Due to the synergistic effect of bimetallic structures, the ECL signals of AuPt NCs were 6.8 and 94 times higher than those of monometallic Au and Pt NCs, respectively. The electric and optical properties of GSH-AuPt NCs differed from those of Au and Pt NCs completely. An electron-transfer mediated ECL mechanism was proposed. The excited electrons may be neutralized by Pt(II) in GSH-Pt and GSH-AuPt NCs, resulting in the vanished FL. Furthermore, abundant TEA radicals formed on the anode contributed electrons to the highest unoccupied molecular orbital of GSH-Au2.5Pt NCs and Pt(II), booming intense ECL signals. Because of the ligand effect and ensemble effect, bimetallic AuPt NCs exhibited much stronger ECL than GSH-Au NCs. A sandwich-type immunoassay for alpha fetoprotein (AFP) cancer biomarkers was fabricated with GSH-AuPt NCs as signal tags, which displayed a wide linear range from 0.01 to 1000 ng·mL-1 and a limit of detection (LOD) down to 1.0 pg·mL-1 at 3S/N. Compared to previous ECL AFP immunoassays, this method not only had a wider linear range but also a lower LOD. The recoveries of AFP in human serum were around 108%, providing a wonderful strategy for fast, sensitive, and accurate cancer diagnosis.
Collapse
Affiliation(s)
- Huiwen Zhou
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ruanshan Liu
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Guangxing Pan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Miaomiao Cao
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Wei Y, Zhang J, Yang X, Wang Z, Wang J, Qi H, Gao Q, Zhang C. Washing-free electrogenerated chemiluminescence magnetic microbiosensors based on target assistant proximity hybridization for multiple protein biomarkers. Anal Chim Acta 2023; 1253:340926. [PMID: 36965986 DOI: 10.1016/j.aca.2023.340926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
This work reports washing-free electrogenerated chemiluminescence (ECL) magnetic microbiosensors based on target assistant proximity hybridization (TAPH) for multiple protein biomarkers for the first time. As a principle-of-proof, alpha-fetoprotein (AFP) was chosen as a model analyte, and biotin-DNA1 bound streptavidin-coated magnetic microbeads (MMB@SA⋅biotin-DNA1) were designed as the universal capture MMB, while the corresponding two antibodies tagged with DNA2 or DNA3 were utilized as hybrid recognition probes, and ruthenium complex-tagged DNA4-10A was designed as a universal ECL signal probe. When the capture MMB was added into the mixture solution (containing the analyte, hybrid recognition probes, signal probe and tri-n-propylamine), biocomplexes were formed on the MMB. After the resulting MMB was efficiently brought to the surface of a magnetic glassy carbon electrode (MGCE), ECL measurement was performed without a washing step, resulting in an increase in the ECL intensity. A model for ECL measuring the second-order rate constants of hybridization reactions on MMB was derived. It was found that the rate constants for hybridization reactions on MMB in rotating mode are 1.6-fold higher than those in shaking mode, and a suitable DNA length of the signal probe can improve the signal-to-noise ratio. The washing-free ECL method was developed for the determination of AFP with a much lower detection limit (LOD) of 0.04 ng mL-1. The developed flexible strategy has been extended to determine D-dimer with an LOD of 0.1 ng mL-1 and myoglobinglobin with an LOD of 1.1 ng mL-1. This work demonstrated that the proposed strategy of ECL TAPH on MMB at MGCE is a washing-free and flexible promising strategy, and can be extended to qualify other multiple protein biomarkers in real clinical assays.
Collapse
Affiliation(s)
- Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Jian Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Zimei Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Junxia Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
12
|
Kumar RR, Kumar A, Chuang CH, Shaikh MO. Recent Advances and Emerging Trends in Cancer Biomarker Detection Technologies. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rajkumar Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Muhammad Omar Shaikh
- Sustainability Science and Management, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
13
|
Gao H, Wang K, Li H, Fan Y, Sun X, Wang X, Sun H. Recent advances in electrochemical proximity ligation assay. Talanta 2023; 254:124158. [PMID: 36502611 DOI: 10.1016/j.talanta.2022.124158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Proximity ligation assay (PLA) is a vigorously developed homogeneous immunoassay assisted by DNA combining dual recognition of target protein by pairs of proximity probes, in which the detection of protein is tactfully converted to the detection of DNA. The booming developments in PLA have enabled a variety of ultrasensitive assays for the detection of protein and this concept of PLA is also extended to the detection of nucleic acids and some small molecule. The association between PLA and electrochemical method, defined as electrochemical proximity ligation assay (ECPLA), has gained much interests in disease diagnosis, food safety and environmental assays with the advantages, such as broad range of targets, simplicity, low cost and rapid response. In this review, we took a different perspective to present the history of PLA, the classical ECPLA biosensing methodology as well as the developments of ECPLA based on several key parameters, such as sensitivity, selectivity, reusability and generalization. In addition, the developments of PLA with electrochemiluminescence as readout are also presented. Finally, perspective and some unresolved challenges in ECPLA that can potentially be addressed have also been discussed.
Collapse
Affiliation(s)
- Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China.
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Haiyu Li
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xiong Sun
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xia Wang
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Huiping Sun
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215000, PR China
| |
Collapse
|
14
|
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023; 149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The family of electrochemiluminescent luminophores has witnessed quick development since the electrochemiluminescence (ECL) phenomenon of silicon nanoparticles was first reported in 2002. Moreover, these developed ECL nanoemitters have extensively been applied in sensitive detection of protein biomarker by combining with immunological recognition. This review firstly summarized the origin and development of various ECL nanoemitters including inorganic and organic nanomaterials, with an emphasis on metal-organic frameworks (MOFs)-based ECL nanoemitters. Several effective strategies to amplify the ECL response of nanoemitters and improve the sensitivity of immunosensing were discussed. The application of ECL nanoemitters in immunoassay of protein biomarkers for diagnosis of cancers and other diseases, especially lung cancer and heart diseases, was comprehensively presented. The recent development of ECL imaging with the nanoemitters as ECL tags for detection of multiplex protein biomarkers on single cell membrane also attracted attention. Finally, the future opportunities and challenges in the ECL biosensing field were highlighted.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Chen H, Huang J, Zhang R, Yan F. Dual-mode electrochemiluminescence and electrochemical sensor for alpha-fetoprotein detection in human serum based on vertically ordered mesoporous silica films. Front Chem 2022; 10:1023998. [PMID: 36419588 PMCID: PMC9676975 DOI: 10.3389/fchem.2022.1023998] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we demonstrated the highly sensitive detection of alpha-fetoprotein (AFP) by electrochemiluminescence (ECL) and electrochemistry (EC) based on the gated transport of the bifunctional probe (tris(1,10-phenanthroline) ruthenium (II) chloride, Ru (phen)3Cl2) into the nanochannels of vertically ordered mesoporous silica films (VMSFs). Due to the negatively charged surface and ultrasmall pore size, VMSF displays a signal amplification effect on Ru (phen)3Cl2 and is suitable for the construction of sensors with excellent sensitivity. With the linkage of (3-glycidyloxypropyl) trimethoxysilane, the anti-AFP antibody could covalently bind to the external surface of VMSF, generating a highly specific recognized sensing interface toward AFP. When AFP is presented, the formed immunocomplex hinders the diffusion of Ru (phen)3Cl2 to the underlying electrode surface, resulting in a decreased ECL or EC response. The dual-mode detection of AFP is achieved with a relatively low limit of detection (0.56 fg/ml for ECL and 4.5 pg/ml for EC) and a wide linear range (10 fg/ml∼1 μg/ml for ECL and 10 pg/ml∼1 μg/ml for EC). Moreover, owing to the inherent anti-fouling property of VMSF, satisfactory results in the analysis of human serum were obtained, showing the great potential of the designed strategy in clinical diagnosis.
Collapse
Affiliation(s)
- Haiyun Chen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Huang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Rongjing Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Rongjing Zhang, ; Fei Yan,
| | - Fei Yan
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Rongjing Zhang, ; Fei Yan,
| |
Collapse
|
16
|
Hu Q, Cao X, Li S, Liang Y, Luo Y, Feng W, Han D, Niu L. Electrochemically Controlled Atom Transfer Radical Polymerization for Electrochemical Aptasensing of Tumor Biomarkers. Anal Chem 2022; 94:13516-13521. [PMID: 36130914 DOI: 10.1021/acs.analchem.2c02797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor biomarkers are of great value in the liquid biopsy of malignant tumors. In this work, a simple and cost-friendly electrochemical aptasensor was presented for the highly sensitive and selective detection of glycoprotein tumor biomarkers. The DNA aptamer-modified electrode was used as the sensing interface to specifically capture the target glycoprotein tumor biomarkers, to which the alkyl halide initiators for atom transfer radical polymerization (ATRP) were then attached via the esterification crosslinking between the boronic acid group and the cis-dihydroxyl sites of the conjugated oligosaccharide chains on glycoprotein tumor biomarkers followed by the growth of long-chain polymers through electrochemically controlled ATRP (eATRP) to efficiently recruit the ferrocene detection tags. As there are tens to hundreds of cis-dihydroxyl sites on a glycoprotein tumor biomarker for attaching ATRP initiators while each long-chain polymer can recruit hundreds to thousands of ferrocene detection tags, a significantly high current signal can be generated even in the presence of ultralow-abundance targets. Hence, the eATRP-based electrochemical aptasensor is capable of sensitively and selectively detecting glycoprotein tumor biomarkers. Using alpha-fetoprotein as the model target, the limit of detection was demonstrated to be 0.32 pg/mL. Moreover, the aptasensor has been successfully applied to detect glycoprotein tumor biomarkers in human serum samples. In view of its high sensitivity and selectivity, simple operation, and cost-friendliness, the eATRP-based electrochemical aptasensor shows great promise in the glycoprotein-based liquid biopsy of malignant tumors, even at the early stage of development.
Collapse
Affiliation(s)
- Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaojing Cao
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiqi Li
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyi Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yilin Luo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wenxing Feng
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.,Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
17
|
Nikolaou P, Sciuto EL, Zanut A, Petralia S, Valenti G, Paolucci F, Prodi L, Conoci S. Ultrasensitive PCR-Free detection of whole virus genome by electrochemiluminescence. Biosens Bioelectron 2022; 209:114165. [DOI: 10.1016/j.bios.2022.114165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/21/2022]
|
18
|
Liu G, Guan X, Li B, Zhou H, Kong N, Wang H. Hemin-graphene oxide-gold nanoflower-assisted enhanced electrochemiluminescence immunosensor for determination of prostate-specific antigen. Mikrochim Acta 2022; 189:297. [PMID: 35900602 DOI: 10.1007/s00604-022-05387-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/19/2022] [Indexed: 11/27/2022]
Abstract
An ultrasensitive luminol electrochemiluminescence (ECL) immunosensor was constructed for the detection of prostate specific antigen (PSA) using glucose oxidase-decorated hemin-graphene oxide-gold nanoflowers ternary nanocomposites as probes. Graphene oxide was first modified with hemin and then with gold nanoflowers through an in situ growth method, which has significantly boosted the catalytic activity of this graphene oxide-based peroxidase mimetics. The biocatalytical activity of this ECL immunosensor was thoroughly investigated to achieve selective recognition of the analyte molecules (PSA) by specific binding between antigens and antibodies. The limit of detection was calculated to be 0.32 pg mL-1 with a signal-to-noise ratio of 3. A broad linear range from 7.5 × 10-4 to 2.5 ng mL-1 was obtained. Such step-by-step assembled biosensor showed controlled nanostructure and exhibited promising application in analysis of human serum samples with a recovery range of 90.6-111.8% and a RSD range of 3.9-5.5%.
Collapse
Affiliation(s)
- Gengjun Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China
| | - Xiaohan Guan
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular, Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hong Zhou
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China.
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Na Kong
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, People's Republic of China.
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
19
|
Li X, Qin X, Tian Z, Wang K, Xia X, Wu Y, Liu S. Gold Nanowires Array-Based Closed Bipolar Nanoelectrode System for Electrochemiluminescence Detection of α-Fetoprotein on Cell Surface. Anal Chem 2022; 94:7350-7357. [PMID: 35543747 DOI: 10.1021/acs.analchem.2c00785] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inspired by the promising applications of a closed bipolar electrodes (c-BPEs) system in electrochemiluminescence (ECL) detection of cell adhesion and disease-related biomarkers, here, a gold nanowires array-based c-BPEs system was constructed for cell surface protein detection. Regular and uniform gold nanowires array were prepared by intermittent potentiostatic deposition. Then, two poly(dimethylsiloxane) (PDMS) chips with a hole diameter of 2 mm as a reservoir were placed at both sides of Au nanowires array to construct c-BPEs system. Thionine-functionalized silicon dioxide nanoparticles conjugated to antibody (Ab2-Th@SiO2) were used as the electrochemical probe, while [Ru(bpy)3]2+-wrapped SiO2 nanoparticles (Ru(II)@SiO2) were employed as the ECL signal readout. Taking α-fetoprotein (AFP) as model, the gold nanowires array-based c-BPEs system allowed sensitive detection of AFP at a linear range from 0.002 to 50.0 ng/mL and at least 6 living cells ascribing to the synergetic amplification effect at both sensing and reporting chambers. Besides, the amount of AFP expressed by HepG2 cells was calculated to be 6.71 pg/cell. The presented strategy with high sensitivity provided a promising and universal platform for the detection of other cancer cells and disease-related biomarkers (such as proteins, glycan, miRNA).
Collapse
Affiliation(s)
- Xiuxiu Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang Qin
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhaoyan Tian
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Kang Wang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinghua Xia
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
20
|
Cao JT, Liu XM, Fu YZ, Ren SW, Liu YM. Label-Free Ratiometric Electrochemiluminescent (ECL) Immunosensor for the Determination of Prostate Specific Antigen (PSA) in Serum. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2027957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| | - Xiang-Mei Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| | - Yi-Zhuo Fu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| | | | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| |
Collapse
|
21
|
Liu S, Wang C, Wang Z, Xiang K, Zhang Y, Fan GC, Zhao L, Han H, Wang W. Binding induced isothermal amplification reaction to activate CRISPR/Cas12a for amplified electrochemiluminescence detection of rabies viral RNA via DNA nanotweezer structure switching. Biosens Bioelectron 2022; 204:114078. [DOI: 10.1016/j.bios.2022.114078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/15/2022] [Accepted: 02/03/2022] [Indexed: 12/26/2022]
|
22
|
Zhou H, Ding K, Li B, Wang H, Zhang N, Liu J. Proximity binding induced nucleic acid cascade amplification strategy for ultrasensitive homogeneous detection of PSA. Anal Chim Acta 2021; 1186:339123. [PMID: 34756258 DOI: 10.1016/j.aca.2021.339123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022]
Abstract
In this work, based on the powerful cycle amplification cascades of proximity hybridization-induced hybridization chain reaction and catalyzed hairpin assembly, we engineered a nonenzymatic and ultrasensitive method which combined the Mg2+-DNAzyme recycling signal amplification for the analysis of the human prostate specific antigen. Herein, we adopted PSA-conjugates as triggers in the self-assembly process of two hairpin DNAs (H1, H2) into the products of the CHA which could activate the HCR to induce repeated hybridization. And both ends of each adjacent sequence of the HCR products could form a unit of Mg2+-DNAzyme which in presence of cofactor Mg2+ could recognize and cyclically cleave the hairpin probes in the solution and thus generate observably enhanced fluorescent signal. Benefit from the nucleic acid circuit amplification strategy, PSA of concentration low to 0.73 pg mL-1 was detected in this system. This homogeneous sensing method in solution avoid the use of the sophisticated equipment and complex operation, as well as addition of artificial enzyme, thus greatly reducing the constraints and complexity of experimental conditions. Moreover, considering most protein biomarkers in serum don't have their corresponding aptamers, this sensing method provide a general sensing approach for homogeneous sensitive detection of these important protein biomarkers which transfer rough antigen-antibody interactivity to smart signal amplification sensing strategies, thus exhibiting a remarkable prospect in clinical application.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Kexin Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Ningbo Zhang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, PR China.
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China.
| |
Collapse
|
23
|
Ultrasensitive electrochemical detection of hepatitis C virus core antigen using terminal deoxynucleotidyl transferase amplification coupled with DNA nanowires. Mikrochim Acta 2021; 188:285. [PMID: 34347172 DOI: 10.1007/s00604-021-04939-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023]
Abstract
Early diagnosis of hepatitis C virus (HCV) infection is essential to prevent disease from spreading and progression. Herein, a novel electrochemical biosensor was developed for ultrasensitive detection of HCV core antigen (HCVcAg) based on terminal deoxynucleotidyl transferase (TdT) amplification and DNA nanowires (DNW). After sandwich-type antibody-antigen recognition, the antibody-conjugated DNA was pulled to the electrode surface and further extended into a long DNA sequence by robust TdT reaction. Then, large numbers of methylene blue-loaded DNW (MB@DNW) as signal labels are linked to the extended DNA sequence. This results in an amplified electrochemical signal for HCVcAg determination, typically measured at around -0.25 V (Ag/AgCl). Under the optimum conditions, the proposed biosensor achieved a wide linear range for HCVcAg from 0.1 to 312.5 pg/mL with a low limit of detection of 32 fg/mL. The good practicality of the biosensor was demonstrated by recovery experiment (recoveries from 98 to 104% with RSD of 2.5-4.4%) and comparison with enzyme-linked immunosorbent assay (ELISA). Given the highlighted performance, the biosensor is expected to act as a reliable sensing tool for HCVcAg determination in clinics. Schematic representation of the ultrasensitive electrochemical biosensor based on terminal deoxynucleotidyl transferase (TdT) amplification linked with methylene blue-loaded DNA nanowires (MB@DNW), which can be applied to the determination of hepatitis C virus core antigen (HCVcAg) in clinical samples. dTTPs, 2'-deoxythymidine 5'-triphosphate.
Collapse
|
24
|
Ning Z, Chen M, Wu G, Zhang Y, Shen Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens Bioelectron 2021; 191:113462. [PMID: 34198172 DOI: 10.1016/j.bios.2021.113462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Electroluminescence (ECL) has been used in extensive applications ranging from bioanalysis to clinical diagnosis owing to its simple device requirement, low background, high sensitivity, and wide dynamic range. Nucleic acid is a significant theme in ECL bioanalysis. The inherent versatile selective molecular recognition of nucleic acids and their programmable self-assembly make it desirable for the robust construction of nanostructures. Benefiting from their unique structures and physiochemical properties, ECL biosensing based on nucleic acids has experienced rapid growth. This review focuses on recent applications of nucleic acids in ECL sensing systems, particularly concerning the employment of nucleic acids as molecular recognition elements, signal amplification units, and sensing interface schemes. In the end, an outlook of nucleic acid-based ECL biosensing will be provided for future developments and directions. We envision that nucleic acids, which act as an essential component for both bioanalysis and clinical diagnosis, will provide a new thinking model and driving force for developing next-generation sensing systems.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Mengyuan Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Zhou H, Yu Q, Wang H, Zhu W, Liu J, Wang Z. A general scattering proximity immunoassay with the formation of dimer of gold nanoparticle. Talanta 2021; 233:122515. [PMID: 34215130 DOI: 10.1016/j.talanta.2021.122515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/02/2021] [Accepted: 05/09/2021] [Indexed: 11/29/2022]
Abstract
In this work, we structured a colorimetric ultrasensitive detection of carcinoembryonic antigen (CEA) based on a proximity hybridization-induced gold nanoparticles (Au NPs) dimers structure. Under the dark-field microscope, this method takes advantage of the distinctive and strong distance-relative localized surface plasmon resonance (LSPR) of Au NPs and their oriented assembly. DNA served as a medium showing wonderful flexibility to label antibody and Au NPs, and tune interparticle spacing as well. Two capture probes were formed by the integration of DNA labeled antibody (DNA1-Ab1 or DNA2-Ab2) and asymmetrically assembled DNA (DNA 3 or DNA 4)- Au NPs via partly hybridization between DNA sequences. In the presence of antigen, the reaction between target protein and capture probes could trigger the generation of immunocomplex which led to the proximity hybridization of the DNA1 and DNA2, and then change the distance of interparticle to form Au NP dimers and thus showed a different color under dark-field microscope. A limit of detection of 14.25 pg/mL was obtained for the detection of CEA, which indicated a promising sensing method in clinical diagnosis of protein biomarkers.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Qiao Yu
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Haiyan Wang
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Wenjing Zhu
- Department of Pharmacy, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China.
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, PR China
| |
Collapse
|
26
|
Zhang Y, Zhao Y, Han Z, Zhang R, Du P, Wu Y, Lu X. Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yinpan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yaqi Zhao
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences Department of Chemistry Tianjin University Tianjin 300072 China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences Department of Chemistry Tianjin University Tianjin 300072 China
| | - Yanxia Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
27
|
Liao X, Zhang C, Machuki JO, Wen X, Tang Q, Shi H, Gao F. Proximity hybridization-triggered DNA assembly for label-free surface-enhanced Raman spectroscopic bioanalysis. Anal Chim Acta 2020; 1139:42-49. [PMID: 33190708 DOI: 10.1016/j.aca.2020.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 11/24/2022]
Abstract
We have developed a versatile label-free surface-enhanced Raman spectroscopic platform for detecting various biotargets via proximity hybridization-triggered DNA assembly based on the 736 cm-1 Raman peak of adenine breathing mode. We initially immobilized the first probe to AuNPs and modified the second with poly adenine. Presence of target DNA or protein molecules assembled a sandwich complex that brought the poly adenine close to the AuNPs surface, generating Raman signals, that were proportional to target molecule concentration. These approach exhibits high sensitivity, with a detection limit of 5.4 pM, 47 fM, and 0.51 pg/mL for target DNA, thrombin and CEA, respectively. Owing to a one step proximity dependent complex formation, this technique is simple and can be completed within 40 min, making it a promising candidate for point-of-care testing applications.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Hengliang Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
28
|
Ren H, Zhang S, Huang Y, Chen Y, Lv L, Dai H. Dual-readout proximity hybridization-regulated and photothermally amplified protein analysis based on MXene nanosheets. Chem Commun (Camb) 2020; 56:13413-13416. [PMID: 33035288 DOI: 10.1039/d0cc05148a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, an ingenious dual-readout sensing platform based on a proximity hybridization-regulated strategy is proposed for protein detection. For the first time, Ti3C2 MXene@thionine composites (MXene@Thi) with an excellent photothermal effect not only acted as an amplifier to enhance the electrochemical signal, but were also used as a converter to achieve the temperature readout.
Collapse
Affiliation(s)
- Huizhu Ren
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China.
| | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Zhao Y, Han Z, Zhang R, Du P, Wu Y, Lu X. Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angew Chem Int Ed Engl 2020; 59:23261-23267. [PMID: 32888252 DOI: 10.1002/anie.202010216] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Indexed: 01/10/2023]
Abstract
By a facile peripheral decoration of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (ATPP) with inherent aggregation-induced emission (AIE) active tetraphenylethene (TPE), a versatile AIEgenic porphyrin derivative (ATPP-TPE) was obtained, which greatly abolishes the detrimental π-π stacking and thus surmounts the notorious aggregation-caused quenching (ACQ) effect of ATPP in aqueous phase. The photoluminescence of ATPP-TPE is 4.5-fold stronger than ATPP at aggregation state. Moreover, an unequivocal aggregation induced electrochemiluminescence (AIECL) of ATPP-TPE was found to be seriously dependent on its aggregation property in aqueous solution with efficiency of 34 %, which is 6 times higher than pure ATPP. The versatility of this molecular structure modulation strategy along with the ACQ-to-AIE transformation in this work provides direction to guide for applying liposoluble porphyrins in aqueous phase by designs of synthetic porphyrin AIEgens.
Collapse
Affiliation(s)
- Yinpan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yaqi Zhao
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Yanxia Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
30
|
Zanut A, Palomba F, Rossi Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L. Dye‐Doped Silica Nanoparticles for Enhanced ECL‐Based Immunoassay Analytical Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Tandon School of Engineering New York University Brooklyn NY 11201 USA
| | - Francesco Palomba
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Department of Biomedical Engineering University of California Irvine Irvine CA 92697 USA
| | - Matilde Rossi Scota
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Sara Rebeccani
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Massimo Marcaccio
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Enrico Rampazzo
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Giovanni Valenti
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Francesco Paolucci
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Luca Prodi
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| |
Collapse
|
31
|
Zanut A, Palomba F, Rossi Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L. Dye‐Doped Silica Nanoparticles for Enhanced ECL‐Based Immunoassay Analytical Performance. Angew Chem Int Ed Engl 2020; 59:21858-21863. [DOI: 10.1002/anie.202009544] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Tandon School of Engineering New York University Brooklyn NY 11201 USA
| | - Francesco Palomba
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Department of Biomedical Engineering University of California Irvine Irvine CA 92697 USA
| | - Matilde Rossi Scota
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Sara Rebeccani
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Massimo Marcaccio
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Enrico Rampazzo
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Giovanni Valenti
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Francesco Paolucci
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Luca Prodi
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| |
Collapse
|
32
|
Development of biosensors for detection of alpha-fetoprotein: As a major biomarker for hepatocellular carcinoma. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115961] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Li D, Li Y, Luo F, Qiu B, Lin Z. Ultrasensitive Homogeneous Electrochemiluminescence Biosensor for a Transcription Factor Based on Target-Modulated Proximity Hybridization and Exonuclease III-Powered Recycling Amplification. Anal Chem 2020; 92:12686-12692. [DOI: 10.1021/acs.analchem.0c03086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dan Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Li
- Department of Ultrasound, Fourth People’s Hospital of Taizhou City, Jianshu, 225300, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
34
|
Zheng J, Li X, Wang K, Song J, Qi H. Electrochemical Nanoaptasensor for Continuous Monitoring of ATP Fluctuation at Subcellular Level. Anal Chem 2020; 92:10940-10945. [PMID: 32700526 DOI: 10.1021/acs.analchem.0c00569] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monitoring the fluctuation of adenosine 5'-triphosphate (ATP) at the subcellular level is important for the study of cell energy metabolism. Herein, we fabricated an electrochemical nanoaptasensor for continuously monitoring ATP fluctuation at the subcellular level. A gold nanoelectrode with a diameter of 120 nm was fabricated, and ferrocene (Fc)-labeled anti-ATP aptamer was self-assembled onto the nanoelectrode surface to form a nanoaptasensor. In the presence of ATP, the ferrocene-labeled anti-ATP aptamer bound with two ATP units to form an ATP-aptamer conjugation, resulting in the close proximity of Fc to the nanoelectrode surface and then an increase of oxidation current of Fc. ATP can be detected with a detection limit of 26 μM within 2 min. Cell viability assays indicated that the nanoaptasensor was biocompatible with negligible biological effects. By taking advantage of the good biocompatibility of the nanoaptasensor, ATP fluctuation at the subcellular level was monitored under glucose starvation and Ca2+ induction. This work demonstrates that the nanoaptasensor is a useful tool for investigating ATP-relevant biological processes via the electrochemical method.
Collapse
Affiliation(s)
- Jingyi Zheng
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Ke Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jiajia Song
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
35
|
Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y. Facile Preparation of WO 3-x Dots with Remarkably Low Toxicity and Uncompromised Activity as Co-reactants for Clinical Diagnosis by Electrochemiluminescence. Angew Chem Int Ed Engl 2020; 59:16747-16754. [PMID: 32524717 DOI: 10.1002/anie.202007451] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 01/26/2023]
Abstract
The exceptional nature of WO3-x dots has inspired widespread interest, but it is still a significant challenge to synthesize high-quality WO3-x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand-free WO3-x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow-up chemical conversion. Surprisingly, the WO3-x dots emerged as co-reactants for the electrochemiluminescence (ECL) of Ru(bpy)3 2+ with a comparable ECL efficiency to the well-known Ru(bpy)3 2+ /tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3-x dots were ca. 300-fold less toxic. The potency of WO3-x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far.
Collapse
Affiliation(s)
- Deng Pan
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.,Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhengzou Fang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Erli Yang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Zhenqiang Ning
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Qing Zhou
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Kaiyang Chen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
36
|
Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y. Facile Preparation of WO
3−
x
Dots with Remarkably Low Toxicity and Uncompromised Activity as Co‐reactants for Clinical Diagnosis by Electrochemiluminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deng Pan
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Zhengzou Fang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Erli Yang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Zhenqiang Ning
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Qing Zhou
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Kaiyang Chen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yongjun Zheng
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yuanjian Zhang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| |
Collapse
|
37
|
Fluorescent detection of Cu (II) ions based on DNAzymatic cascaded cyclic amplification. Mikrochim Acta 2020; 187:443. [PMID: 32661732 DOI: 10.1007/s00604-020-04430-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
A fluorescent biosensor based on the cascaded cyclic amplification-lighted copper nanoparticles has been developed, optimized, and validated. In the double-modular cascaded cyclic amplification, a DNAzymatic cyclic amplification unit transforms metal ion signal to specific DNA sequences, and a linear/exponential integrated amplification unit converts as-prepared DNA codes to identical thymine (T)-rich DNA templates. T-rich scaffolds can induce the generation of red fluorescent copper nanoparticles, with fluorescence emission at 625 nm upon the excitation at 340 nm, as signal vehicles for quantitative detection of metal ions. Copper ions, selected as the model target, could be detected in a wide linear range from 10 to 104 nM depending on the increased fluorescent intensity, and the detection limit is 5.6 ± 0.52 nM (n = 3) within 40 min, which is 4 orders of magnitude lower than the limits set in drinking water. In the detection of Cu2+ in real tap and lake water, the results between inductively coupled plasma mass spectrometry (ICP-MS) and our proposed biosensor were consistent, illustrating the practicability of the fabricated method. In summary, the established fluorescent biosensor compensates the deficiency of immunoassays failing to analyze metal ions, broadens ranges of biomarkers responding to cleaved DNAzymes, provides an open platform sensing different metal ions, and meets the increasing need for the ultrasensitive detection in the field of food safety, environmental monitoring, and medical diagnosis.
Collapse
|
38
|
Recent advances in optical biosensors for the detection of cancer biomarker α-fetoprotein (AFP). Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Gao H, Han W, Qi H, Gao Q, Zhang C. Electrochemiluminescence Imaging for the Morphological and Quantitative Analysis of Living Cells under External Stimulation. Anal Chem 2020; 92:8278-8284. [PMID: 32458679 DOI: 10.1021/acs.analchem.0c00528] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, a simple electrochemiluminescence (ECL) imaging method based on the cell shield of the ECL emission was developed for the morphological and quantitative analysis of living cells under external stimulation. ECL images of MCF-7 cells cultured on or captured at the glassy carbon electrode (GCE) surface in a solution of tris(2,2'-bipyridyl)ruthenium(II)-tri-n-propylamine were recorded. Important morphological characteristics of living cells, including cell shape, cell area, average cell boundary, and junction distance between two adjacent cells, were directly obtained using the developed negative ECL imaging method. The ECL images revealed gradual morphological changes in cells on the GCE surface. During the course of H2O2 stimulation of cells on the GCE surface, cells shrunk, rounded up, disengaged from surrounding cells, and finally detached from the electrode surface. During the course of electrical stimulation (0.8 V), the cells on the GCE surface exhibited aggregation as demonstrated by increases in the average cell boundary and decreases in the junction distance between two adjacent cells. Additionally, a quantitative method for the sensitive determination of MCF-7 cells with a limit of detection of 29 cells/mL was developed using the negative ECL imaging strategy. This work demonstrates that the proposed negative ECL imaging strategy is a promising approach to assess important morphological characteristics of living cells during the course of external stimulation and to obtain quantitative information on cell concentrations in solution.
Collapse
Affiliation(s)
- Hongfang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Weijuan Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
40
|
Synergistic amplification effect for electrochemiluminescence immunoassay based on dual coreactants coupling with resonance energy transfer. Talanta 2020; 212:120798. [DOI: 10.1016/j.talanta.2020.120798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 11/23/2022]
|
41
|
Ding H, Guo W, Su B. Electrochemiluminescence Single‐Cell Analysis: Intensity‐ and Imaging‐Based Methods. Chempluschem 2020; 85:725-733. [DOI: 10.1002/cplu.202000145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Hao Ding
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Weiliang Guo
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| |
Collapse
|
42
|
Zhang S, Chen Y, Huang Y, Dai H, Lin Y. Design and application of proximity hybridization-based multiple stimuli-responsive immunosensing platform for ovarian cancer biomarker detection. Biosens Bioelectron 2020; 159:112201. [PMID: 32364942 DOI: 10.1016/j.bios.2020.112201] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022]
Abstract
The development of convenient and sensitive multi-readout immunoassay is crucial but highly challenged for meeting the demand of exactness and diversity in early clinical diagnosis. Herein, a split-type multiple stimuli-responsive biosensor was outlined combined with the outstanding superiority of luminol probe-based electrochemiluminescence (ECL) strategy, mimicking enzyme-mediated colorimetric system and portable photothermal effect-induced temperature sensing. Especially, versatile MoS2 nanosheets (MoS2 NSs) with distinguished property not only acted as dual-promoter to improve the cathodic ECL of luminol because of its good electrocatalytic activity for dissolved O2 and favorable photothermal effect for elevating electrode temperature, but also used as nanozyme to regulate subsequent split-type visual colorimetric sensing due to its peroxidase-like activity for the generation of oxidized 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) in ABTS-H2O2 colorimetric system. More importantly, the green oxidized ABTS (ABTS•+) also exhibited strong near-infrared (NIR) laser-triggered photothermal performance, which can be innovatively employed as sensitive photothermal agent for converting biological signals into temperature under the irradiation of NIR laser, accomplishing more simpler temperature quantitative detection by a portable thermometer. Furthermore, on account of the affinity discrepancy of MoS2 NSs to single-stranded and double-stranded nucleic acids, a label-free proximity hybridization-based multifunctional assay platform was proposed for target detection with human epididymis-specific protein 4 (HE4) as model protein, demonstrating good analytical performances. Significantly, this innovative work not only enriches the foundational study of multi-model biosensing based on the unitary material but also provides an unambiguous guideline for exploring more accurate and simpler point-of-care diagnosis.
Collapse
Affiliation(s)
- Shupei Zhang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China; Fujian Provincial Maternity and Children Hospital, Fuzhou, Fujian, 350108, China
| | - Yanjie Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Yitian Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Hong Dai
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China; Fujian Provincial Maternity and Children Hospital, Fuzhou, Fujian, 350108, China.
| | - Yanyu Lin
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
43
|
Abstract
This Feature simply introduces the history and mechanism of classical electrogenerated chemiluminescence (ECL) systems for the detection of biomolecules, highlights new advances and emerging fields of the ECL biosensing with recent illustrative examples, and presents the challenges and perspectives of ECL biosensing.
Collapse
Affiliation(s)
- Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| |
Collapse
|
44
|
Wang B, Shi S, Yang X, Wang Y, Qi H, Gao Q, Zhang C. Separation-Free Electrogenerated Chemiluminescence Immunoassay Incorporating Target Assistant Proximity Hybridization and Dynamically Competitive Hybridization of a DNA Signal Probe. Anal Chem 2019; 92:884-891. [DOI: 10.1021/acs.analchem.9b03662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bing Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Suwen Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Yue Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| |
Collapse
|
45
|
Ma C, Cao Y, Gou X, Zhu JJ. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal Chem 2019; 92:431-454. [PMID: 31679341 DOI: 10.1021/acs.analchem.9b04947] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
46
|
Kannan P, Chen J, Su F, Guo Z, Huang Y. Faraday-Cage-Type Electrochemiluminescence Immunoassay: A Rise of Advanced Biosensing Strategy. Anal Chem 2019; 91:14792-14802. [PMID: 31692335 DOI: 10.1021/acs.analchem.9b04503] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemiluminescence immunoassays are usually carried out through "on-electrode" strategy, i.e., sandwich-type immunoassay format, the sensitivity of which is restricted by two key bottlenecks: (1) the number of signal labels is limited and (2) only a part of signal labels could participate in the electrode reaction. In this Perspective, we discuss the development of an "in-electrode" Faraday-cage-type concept-based immunocomplex immobilization strategy. The biggest difference from the traditional sandwich-type one is that the designed "in-electrode" Faraday-cage-type immunoassay uses a conductive two-dimensional (2-D) nanomaterial simultaneously coated with signal labels and a recognition component as the detection unit, which could directly overlap on the electrode surface. In such a case, electrons could flow freely from the electrode to the detection unit, the outer Helmholtz plane (OHP) of the electrode is extended, and thousands of signal labels coated on the 2-D nanomaterial are all electrochemically "effective." Thus, then, the above-mentioned bottlenecks obstructing the improvement of the sensitivity in sandwich-type immunoassay are eliminated, and as a result a much higher sensitivity of the Faraday-cage-type immunoassay can be obtained. And, the applications of the proposed versatile "in-electrode" Faraday-cage-type immunoassay have been explored in the detection of target polypeptide, protein, pathogen, and microRNA, with the detection sensitivity improved tens to hundreds of times. Finally, the outlook and challenges in the field are summarized. The rise of Faraday-cage-type electrochemiluminescence immunoassay (FCT-ECLIA)-based biosensing strategies opens new horizons for a wide range of early clinical identification and diagnostic applications.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , People's Republic of China
| | - Jing Chen
- Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science (CAS) , Ningbo 315201 , People's Republic of China
| | - Fengmei Su
- National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education , Zhengzhou University , Zhengzhou 450002 , People's Republic of China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , People's Republic of China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , People's Republic of China
| |
Collapse
|
47
|
Cui A, Zhang J, Bai W, Sun H, Bao L, Ma F, Li Y. Signal-on electrogenerated chemiluminescence biosensor for ultrasensitive detection of microRNA-21 based on isothermal strand-displacement polymerase reaction and bridge DNA-gold nanoparticles. Biosens Bioelectron 2019; 144:111664. [DOI: 10.1016/j.bios.2019.111664] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/10/2019] [Accepted: 08/28/2019] [Indexed: 01/15/2023]
|
48
|
Zhu L, Li Y, Zhang L, Wen Y, Ju H, Lei J. Controlled assembly of AIEgens based on a super-quadruplex scaffold for detection of plasma membrane proteins. Anal Chim Acta 2019; 1094:130-135. [PMID: 31761039 DOI: 10.1016/j.aca.2019.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
Quantification of plasma membrane proteins (PMPs) is crucial for understanding the fundamentals of cellular signaling systems and their related diseases. In this work, a super-quadruplex scaffold was designed to regulate assembly of oligonucleotide-grafted AIEgens for detection of PMPs. The nonfluorescence oligonucleotide-grafted AIEgen (Oligo-AIEgen) was firstly synthesized by attaching the AIEgen to 3'-terminus of the oligonucleotide through click chemistry. Meanwhile, the tetramolecular hairpin-conjugated super-quadruplex (THP-G4) as cleavage element and signal enhancement scaffold composited of three elements: a substrate sequence of DNAzyme in the loop region, partial hybridization region in the stem, and six guanine nucleotides to form G-quadruplex. Once the DNAzyme was anchored on the specific PMPs through aptamer-protein recognition, the substrate sequence on the loop of THP-G4 was cleaved by DNAzyme with the aid of cofactor MnII, resulting in the conformation switch of THP-G4 to the activated G-quadruplex scaffold. The latter could assemble Oligo-AIEgens to generate aggregation-induced emission (AIE) enhancement, resulting in a simple and sensitive strategy for detection of membrane proteins. Moreover, the DNAzyme continuously cut the next THP-G4 to achieve recycling amplification. Under the optimized conditions, this AIE-based strategy exhibited good linear relationship with the logarithm of MUC1 concentration from 0.01 to 10 μg mL-1 with the limit of detection down to 4.3 ng mL-1. The G4-assembled AIEgens provides a universal platform for detecting various biomolecules and a proof-of concept for AIE biosensing.
Collapse
Affiliation(s)
- Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yunjie Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
49
|
Zhang H, Gao W, Liu Y, Sun Y, Jiang Y, Zhang S. Electrochemiluminescence-Microscopy for microRNA Imaging in Single Cancer Cell Combined with Chemotherapy-Photothermal Therapy. Anal Chem 2019; 91:12581-12586. [PMID: 31539224 DOI: 10.1021/acs.analchem.9b03694] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, a new technology using ECL as a microscopy to parallel image miRNA-21 in single cancer cell was built. Phorbol-12-myristate-13-acetate (PMA) loaded gold nanocages (Au NCs) was closed with DNA gate which could be recognized and opened by miRNA-21 in HeLa cell. PMA was then released and further induced HeLa cells to produce reactive oxygen species (ROS; including O2-•, •OH and H2O2 etc.). With H2O2 as coreactant and luminol as ECL active material, ECL imaging of intracellular miRNA-21 in single HeLa cell was obtained by EMCCD. Moreover, ROS therapy and photothermal therapy (PPT) of Au NCs@PMA probe were also motivated by in situ miRNA-21 marker instead of the external source. The combined therapy leads to dramatically enhanced ability for cancer cell killing. Au NCs@PMA probe alone could not only achieve a high sensitivity and high resolution ECL-microscopy for imaging of intracellular miRNA-21 for the first time, but also realize the integrated diagnosis like ROS induced tumor damage and photothermal-induced intelligent therapy. This multifunctional platform is believed to be capable of playing an important role in future oncotherapy by the synergistic effects between chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Huairong Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering , Linyi University , Linyi , 276005 , China
| | - Wanxia Gao
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering , Linyi University , Linyi , 276005 , China.,Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering , Qingdao University , Qingdao , Shandong 266071 , China
| | - Yong Liu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering , Linyi University , Linyi , 276005 , China
| | - Yingnan Sun
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering , Linyi University , Linyi , 276005 , China
| | - Yanxialei Jiang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering , Linyi University , Linyi , 276005 , China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering , Linyi University , Linyi , 276005 , China
| |
Collapse
|
50
|
Bai W, Cui A, Liu M, Qiao X, Li Y, Wang T. Signal-Off Electrogenerated Chemiluminescence Biosensing Platform Based on the Quenching Effect between Ferrocene and Ru(bpy) 32+-Functionalized Metal-Organic Frameworks for the Detection of Methylated RNA. Anal Chem 2019; 91:11840-11847. [PMID: 31414596 DOI: 10.1021/acs.analchem.9b02569] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N6-methyladenine (m6A), one of the most common chemical modifications of eukaryotic RNA, participates in many important biological processes. An effective strategy for the quantitative determination of m6A is of great significance. Herein, we used methylated microRNA-21 (miRNA21) as the model target to propose a simple and sensitive electrogenerated chemiluminescence (ECL) biosensing platform to detect a specific m6A RNA sequence. This strategy is based on the fact that the anti-m6A-antibody can specifically recognize and bind to the m6A site in the RNA sequence, resulting in a quenching effect between Ru(bpy)32+-functionalized metal-organic frameworks and ferrocene. Luminescent metal-organic frameworks (Ru@MOFs) not only act as ECL indicators but also serve as nanoreactors for the relative ECL reactions owing to their porous or multichannel structure, which overcomes the fact that Ru(bpy)32+ is easily released when used for aqueous-phase detection, thus enhancing the ECL efficiency. Moreover, the ECL method has fewer modification steps and uses only one antibody to recognize the target RNA sequence, which simplifies the operation process and reduces the detection time, presenting a wide linear range (0.001-10 nM) for m6A RNA determination with a low detection limit (0.0003 nM). Additionally, this developed strategy was validated for m6A RNA detection in human serum. Thus, the ECL biosensing method provides a new method for m6A RNA determination that is simple, highly specific, and sensitive.
Collapse
Affiliation(s)
- Wanqiao Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Aiping Cui
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Meizhou Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|