1
|
Lu D, Ge M, Qian F, Lv J, Du J. Single-holed cobalt - nitrogen - carbon hollow structure with oxidase-mimicking activity for the chemiluminescence determination of β - galactosidase activity. Mikrochim Acta 2024; 191:200. [PMID: 38488888 DOI: 10.1007/s00604-024-06285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
A single-holed cobalt - nitrogen - carbon (Co - N - C) hollow structure nanozyme has been fabricated by in situ growth of zeolitic imidazolate framework (ZIF - 67) on the polystyrene (PS) sphere and following treatment by high-temperature carbonization. The Co - N - C nanostructure mimics the activity of oxidase and can activate O2 into reactive oxygen species (ROS), giving a remarkable enhancement on the chemiluminescence (CL) signal of luminol - O2 reaction. The Co - N - C oxidase mimic has further been exploited in the biosensing field by the determination of the activity of β - galactosidase (β - gal). The CL method for β - gal activity has a linear range of 0.5 mU·L-1 to 5.0 U·L-1, a detection limit of 0.167 mU·L-1, and the precision of 3.1% (5.0 U·L-1, n = 11). This method has been employed to assess inhibitor screening of β - gal and determine activity of β - gal in spiked human serum samples.
Collapse
Affiliation(s)
- Duo Lu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Mantang Ge
- Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Fangying Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiagen Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianxiu Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
3
|
Cai Y, Zhou H, Li W, Yao C, Wang J, Zhao Y. A chemiluminescence method induced by microplasma jet for nitrites detection and the miniature detection system using smartphone. Anal Chim Acta 2023; 1267:341339. [PMID: 37257970 DOI: 10.1016/j.aca.2023.341339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
A method of luminol-diazonium chemiluminescence (CL) induced by microplasma for hazardous substance detection is proposed. The luminol-diazonium CL is caused by microplasma jet, rather than hydrogen peroxide reagent or other oxidizing agents. The CL intensity is increased by the concentration of nitrites. Based on the process of microplasma generation and CL mechanism, the optimal work conditions of the method are obtained. The linear range for nitrites detection is 0.03-1 mmol L-1 with the limit of detection (LOD) of 0.01 mmol L-1. Furthermore, a miniature system using test paper and smartphone is designed for nitrites detection in emergency. The detection system is confined in the custom-tailored shell which is only 28 cm in length, 18 cm in width and 10 cm in height. After microplasma jet treatment, the color of the test paper changes with the NO2- concentration. The photographs of the test paper are taken by the built-in camera of smartphone and analyzed by visiting the website via smartphone. The LOD is 1 mmol L-1 obtained by the CL miniature detection system based on test paper and smartphone. The accuracy, reliability and practicability of the proposed method is verified in this paper.
Collapse
Affiliation(s)
- Yi Cai
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Han Zhou
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Wei Li
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Cheng Yao
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yong Zhao
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
4
|
Dadi S, Temur N, Gul OT, Yilmaz V, Ocsoy I. In Situ Synthesis of Horseradish Peroxidase Nanoflower@Carbon Nanotube Hybrid Nanobiocatalysts with Greatly Enhanced Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4819-4828. [PMID: 36944167 PMCID: PMC10077815 DOI: 10.1021/acs.langmuir.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Organic-inorganic hybrid nanoflowers (NFs) consisting of horseradish peroxidase (HRP) and copper II (Cu2+) are successfully synthesized with the involvement of carbon nanotubes (CNTs) by in situ and post-modification methods. Catalytic activities of in situ synthesized HRP-NF@CNT (HRP-NF@CNT-Is) and post-modification-synthesized HRP-NF@CNTs (HRP-NF@CNT-Pm) are systematically examined. The 30 mg CNTs incorporated HRP-NF@CNT-Is (HRP-NF@CNT-30Is) exhibits greatly increased catalytic activity and stability toward 3,3',5,5'-tetramethylbenzidine (TMB), thanks to the synergistic effect between HRP-NF and CNTs and the peroxidase-like activity of CNTs in the presence of hydrogen peroxide (H2O2). While HRP-NF@CNT-30Is retains almost 85% of its initial activity even after 10 cycles, HRP-NF (without CNTs) loses half of its initial activity at the same experimental conditions. We study how two experimental parameters, the pH values and temperatures, influence the catalytic activity of HRP-NF@CNT-30Is, in addition to the fact that HRP-NF@CNT-30Is is employed to detect the presence of H2O2 and glutathione (GSH) with colorimetric and spectrophotometric readouts. For instance, HRP-NF@CNT-30Is is used to sensitively detect H2O2 in the range of 20 to 300 μM with an LOD of 2.26 μM. The catalytic activity of HRP-NF@CNT-30Is is suppressed in the presence of GSH, and then an obvious color change from blue to nearly colorless is observed. Using this strategy, GSH is also sensitively determined in the range of 20-200 μM with an LOD of 11.2 μM. We expect that HRP-NF@CNTs can be used as a promising and novel nanobiocatalyst for various biomedical and industrial applications in the near future.
Collapse
Affiliation(s)
- Seyma Dadi
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
- Department
of Nanotechnology Engineering, Abdullah
Gül University, Kayseri 38080, Turkey
| | - Nimet Temur
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - O. Tolga Gul
- Department
of Physics, Polatlı Faculty of Science and Letters, Ankara Hacı Bayram Veli University, Ankara 06900, Turkey
| | - Vedat Yilmaz
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
5
|
Yuan S, Yu R, Tu Y, Du Y, Feng X, Nie F. An enhanced chemiluminescence hybrids of luminol by sulfonated polyaniline decorated copper-based metal organic frame composite applicable to the measurement of hydrogen peroxide in a wide pH range. Talanta 2023; 254:124183. [PMID: 36512973 DOI: 10.1016/j.talanta.2022.124183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Here, sulfonated polyaniline (SPAN) was decorated on the surface of copper-based metal organic frame (HKUST-1) and the composite was functionalized by luminol to construct a chemiluminescence (CL) hybrids (SPAN/HKUST-1@Luminol). The as-prepared SPAN/HKUST-1@Luminol demonstrated a great dispersion and stability performance in aqueous solution. Moreover, the resultant SPAN/HKUST-1@Luminol hybrids exhibited extremely strong CL properties, and the CL quantum yield was 136 times higher than that of luminol. In particular, it exhibited outstanding CL activity not only under alkaline conditions, but also under neutral conditions. The sensitive response of the hybrid to hydrogen peroxide was used to construct CL methods for the detection of hydrogen peroxide at a wide range of pH, with the detection limit of 60 nM at a neutral condition and 25 pM at alkaline condition. Due to strong and stable signal of the SPAN/HKUST-1@Luminol, the CL method provides a viable tool for determination of H2O2 in biological systems and enabled the monitoring of stimulated production of H2O2 released by living cells.
Collapse
Affiliation(s)
- Sijie Yuan
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Ru Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Ying Tu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Yanhua Du
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Xuan Feng
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Fei Nie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Ji K, Xia S, Sang X, Zeid AM, Hussain A, Li J, Xu G. Enhanced Luminol Chemiluminescence with Oxidase-like Properties of FeOOH Nanorods for the Sensitive Detection of Uric Acid. Anal Chem 2023; 95:3267-3273. [PMID: 36722089 DOI: 10.1021/acs.analchem.2c04247] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
FeOOH nanorods, as one-dimensional nanomaterials, have been widely used in many fields due to their stable properties, low cost, and easy synthesis, but their application in the field of chemiluminescence (CL) is rarely reported. In this work, FeOOH nanorods were synthesized by a simple and environmentally friendly one-pot hydrothermal method and used for the first time as a catalyst for generating strong CL with luminol without additional oxidant. Remarkably, luminol-FeOOH exhibits about 250 times stronger CL than the luminol-H2O2 system. Its CL intensity was significantly quenched by uric acid. We established a simple, rapid, sensitive, and selective CL method for the detection of uric acid with a linear range of 20-1000 nM and a detection limit of 6.3 nM (S/N = 3). In addition, we successfully applied this method to the detection of uric acid in human serum, and the standard recoveries were 95.6-106.4%.
Collapse
Affiliation(s)
- Kaixiang Ji
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei 230026, China
| | - Xueqing Sang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei 230026, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Guobao Xu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Wang Q, Zhong J, Li K, Wu J, Wang X, Jiang S, Dai J, Cheng Y. Compact Luminol Chemiluminophores for In Vivo Detection and Imaging of β-Sheet Protein Aggregates. Anal Chem 2023; 95:1065-1073. [PMID: 36542087 DOI: 10.1021/acs.analchem.2c03776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein aggregation has been found in a wide range of neurodegenerative protein-misfolding diseases. The demand for in vivo technologies to identify protein aggregation is at the leading edge for the pathogenic study, diagnostic development, and therapeutic intervention of these devastating disorders. Herein, we report a series of luminol analogues to construct a facile chemiluminescence (CL)-based approach for in vivo detection and imaging of β-sheet protein aggregates. The synthesized compounds exhibited a distinct chemiluminescent response with long emission wavelengths toward reactive oxygen species under physiological conditions and displayed signal amplification in the presence of β-sheet protein aggregates, including α-synuclein, β-amyloid, and tau. Among them, CyLumi-3 was further evaluated as a chemiluminescent probe in preclinical models. By intravenous administration into the model mice via the tail vein, in vivo CL imaging noninvasively detected the specific CL of the probe targeting the α-synuclein aggregates in the brains of living mice. Based on its structural characteristics, CyLumi-3 can readily interact with α-synuclein aggregates with significantly enhanced fluorescence and can identify α-synuclein aggregates in vivo via distinctive CL amplification, which could pave the way for a more comprehensive understanding of protein aggregation in preclinical studies and would provide new hints for developing small-molecule chemiluminophores for protein aggregates.
Collapse
Affiliation(s)
- Qinyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kexin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiajun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoxue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shen Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Su K, Xiang G, Cui C, Jiang X, Sun Y, Zhao W, He L. Smartphone-based colorimetric determination of glucose in food samples based on the intrinsic peroxidase-like activity of nitrogen-doped carbon dots obtained from locusts. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
9
|
Li H, Zhou Y, Du J. Ascorbic acid as an alternative coreactant for luminol reaction and sensitive chemiluminescence determination of ascorbic acid in soft drinks. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
11
|
Abstract
We have developed a turn-on photoluminescence protocol to detect hydrogen peroxide (H2O2) utilizing a supramolecular hydrogel as a sensing platform. Hydrogen peroxide is widely used in formulations, starting from healthcare products to explosives. It is also known to induce deleterious health effects at its irregular physiological concentration and considered as a biomarker in various disease conditions. We designed molecule 2, which releases the Tb3+ sensitizer biphenyl-4-carboxylic acid (1) upon unmasking by hydrogen peroxide. This chemistry led us to develop a sensitive photoluminescence assay for H2O2 through the 1-induced photoluminescence of terbium (Tb3+) in a hydrogel matrix. Paper discs (0.45 cm) were coated with the soft hydrogel to make the sensing process simple and cost-effective. The green luminescence from the paper discs, observed under a UV lamp, allowed naked-eye detection of H2O2 in the micromolar level without any sophisticated instrumentation. Image processing software or a plate reader can be used for the accurate quantification of the analyte in micromolar and nanomolar ranges. Several commercial hand sanitizers containing hydrogen peroxide were tested by this method. The results indicated that this low-cost system could be practically adopted, especially in resource-limited areas, to quantify/detect H2O2 for quality control purposes or other applications.
Collapse
Affiliation(s)
- Arnab Dutta
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
12
|
Romodin LA. Chemiluminescence Detection in the Study of Free-Radical Reactions. Part 2. Luminescent Additives That Increase the Chemiluminescence Quantum Yield. Acta Naturae 2022; 14:31-39. [PMID: 35441047 PMCID: PMC9013440 DOI: 10.32607/actanaturae.11427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022] Open
Abstract
The present review examines the use of chemiluminescence detection to evaluate the course of free radical reactions in biological model systems. The application of the method is analyzed by using luminescent additives that enhance the luminescence thanks to a triplet-singlet transfer of the electron excitation energy from radical reaction products and its emission in the form of light with a high quantum yield; these additives are called chemiluminescence enhancers or activators. Examples of these substances are provided; differences between the so-called chemical and physical enhancers are described; coumarin derivatives, as the most promising chemiluminescence enhancers for studying lipid peroxidation, are considered in detail. The main problems related to the use of coumarin derivatives are defined, and possible ways of solving these problems are presented. Intrinsic chemiluminescence and the mechanism of luminescence accompanying biomolecule peroxidation are discussed in the first part of the review.
Collapse
Affiliation(s)
- L. A. Romodin
- The A. I. Burnazyan Federal Medical Biophysical Center of the Federal Medical Biological Agency of Russia, Moscow, 123098 Russia
| |
Collapse
|
13
|
Ma Y, Zhao Y, Xu X, Ding S, Li Y. Magnetic covalent organic framework immobilized gold nanoparticles with high-efficiency catalytic performance for chemiluminescent detection of pesticide triazophos. Talanta 2021; 235:122798. [PMID: 34517656 DOI: 10.1016/j.talanta.2021.122798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Covalent organic frameworks (COFs) are considered to be a promising support material for catalyst due to their highly ordered porous structure. Here, a core-shell structured Fe3O4 magnetic covalent organic framework (Fe3O4@COF) was synthesized and employed to provide basic sites for immobilization of gold nanoparticles (AuNPs). The AuNPs was in-situ immobilized on the shell of Fe3O4@COF via a citrate reducing method. The Fe3O4@COF-AuNP had convenient magnetic separability and exhibited excellent mimicking peroxidase-like activity in catalyzing chemiluminescence (CL) reaction of luminol with hydrogen peroxide (H2O2). With acetylcholine chloride (ACh) as substrate of acetylcholinesterase (AChE), a CL method was exploited for sensitive detection of organophosphorus pesticide triazophos due to its irreversible inhibiting effect on the AChE activity and subsequently influences the production of H2O2 under the condition of choline oxidase (ChOx). This method gave a good linearity for triazophos in the range of 5.0-300.0 nmol L-1, and a limit of detection (LOD) of 1 nmol L-1 was acquired. The applicability of this method was verified by the determination of triazophos in different spiked vegetable samples.
Collapse
Affiliation(s)
- Yuyu Ma
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaxin Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaotong Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yinhuan Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
14
|
Meng C, Du F, Abdussalam A, Wang A, Snizhko D, Zhang W, Xu G. Sonochemiluminescence Using Apertureless USB Piezoelectric Ultrasonic Transducer and Its Applications for the Detection of Hydrogen Peroxide, Glucose, and Glucose Oxidase Activity. Anal Chem 2021; 93:14934-14939. [PMID: 34723511 DOI: 10.1021/acs.analchem.1c03834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mesh-type USB piezoelectric ultrasonic transducer (USB-PUT) used in household humidifiers and inhalation therapy devices is very cheap, small, and energy saving. It holds great promise for sonochemistry. However, the microtapered apertures in the center of the stainless steel substrate of mesh-type USB-PUT can lead to rapid atomization of solution, leakage of solutions containing surfactants and organic solvent through the apertures, and high background emission. Herein, we design a new type of USB-PUT by replacing the meshed stainless steel substrate with an apertureless stainless steel substrate. We have found that this apertureless USB-PUT can not only induce intense sonochemiluminescence (SCL) but can also enable sensitive luminol SCL detection of hydrogen peroxide which is practically impossible using mesh-type PUT because of the strong background SCL emission. By using this apertureless device to induce SCL and using smart phone as a detector, a visual hydrogen peroxide SCL detection method with a linear range of 0.5-50 μM and a detection limit of 0.32 μM is established. Moreover, the device can achieve the detection of glucose oxidase (GOD) activity and glucose by enzymatic conversion of glucose to hydrogen peroxide. The linear range of GOD detection is 1-200U/L with a detection limit of 0.86 U/L. The linear range of glucose detection is 0.5-70 μM with a detection limit of 0.43 μM. The cheap (a few dollars) and user-friendly apertureless USB-PUT is promising for sonochemistry applications and chemical education.
Collapse
Affiliation(s)
- Chengda Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Aimin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China.,National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Dmytro Snizhko
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China.,Laboratory of Optochemotronics, Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Geiselhart CM, Mutlu H, Barner‐Kowollik C. Vorbeugen oder Heilen – die beispiellose Notwendigkeit von selbstberichtenden Materialien. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis Laboratory Institut für Biologische Grenzflächen 3 Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Deutschland
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory Institut für Biologische Grenzflächen 3 Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Deutschland
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Christopher Barner‐Kowollik
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
| |
Collapse
|
16
|
Geiselhart CM, Mutlu H, Barner‐Kowollik C. Prevent or Cure-The Unprecedented Need for Self-Reporting Materials. Angew Chem Int Ed Engl 2021; 60:17290-17313. [PMID: 33217121 PMCID: PMC8359351 DOI: 10.1002/anie.202012592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Indexed: 01/08/2023]
Abstract
Self-reporting smart materials are highly relevant in modern soft matter materials science, as they allow for the autonomous detection of changes in synthetic polymers, materials, and composites. Despite critical advantages of such materials, for example, prolonged lifetime or prevention of disastrous material failures, they have gained much less attention than self-healing materials. However, as diagnosis is critical for any therapy, it is of the utmost importance to report the existence of system changes and their exact location to prevent them from spreading. Thus, we herein critically review the chemistry of self-reporting soft matter materials systems and highlight how current challenges and limitations may be overcome by successfully transferring self-reporting research concepts from the laboratory to the real world. Especially in the space of diagnostic self-reporting systems, the recent SARS-CoV-2 (COVID-19) pandemic indicates an urgent need for such concepts that may be able to detect the presence of viruses or bacteria on and within materials in a self-reporting fashion.
Collapse
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces 3Hermann-von-Helmholtz-Platz 176344Eggenstein LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Hatice Mutlu
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces 3Hermann-von-Helmholtz-Platz 176344Eggenstein LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
17
|
Chen X, Zhao L, Wu K, Yang H, Zhou Q, Xu Y, Zheng Y, Shen Y, Liu S, Zhang Y. Bound oxygen-atom transfer endows peroxidase-mimic M-N-C with high substrate selectivity. Chem Sci 2021; 12:8865-8871. [PMID: 34257887 PMCID: PMC8246298 DOI: 10.1039/d1sc02170b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Advances in nanoscience have stimulated the wide exploration of nanozymes as alternatives to enzymes. Nonetheless, nanozymes often catalyze multiple reactions and are not specialized to a specific substrate, restricting their broad application. Here, we report that the substrate selectivity of the peroxidase-mimic M-N-C can be significantly altered via forming bound intermediates with variable interactions with substrates according to the type of metal. Taking two essential reactions in chemical sensing as an example, Fe-N-C and Co-N-C showed opposite catalytic selectivity for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and 3-aminophthalhydrazide (luminol), respectively, by factors of up to 200-fold. It was revealed that specific transition metal-N coordination was the origin of the selective activation of H2O2 forming critically bound oxygen intermediates (M[double bond, length as m-dash]O) for oxygen-atom transfer and the consequent oxidization of substrates. Notably, owing to the embedded ligands in the rigid graphitic framework, surprisingly, the selectivity of M-N-C was even superior to that of commonly used horseradish peroxidase (HRP).
Collapse
Affiliation(s)
- Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Lufang Zhao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Kaiqing Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yongjun Zheng
- Medical School, Southeast University Nanjing 210009 China
| | - Yanfei Shen
- Medical School, Southeast University Nanjing 210009 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
18
|
Zhao P, Chen S, Yang M, Wang Y, Luo H, Huo D, Ji Z, Hou C. A novel multifunctional platform based on ITO/APTES/ErGO/AuNPs for long-term cell culture and real-time biomolecule monitoring. Talanta 2021; 228:122232. [PMID: 33773736 DOI: 10.1016/j.talanta.2021.122232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 11/25/2022]
Abstract
Integrating long-term cell culture with real-time electrochemical monitoring is a promising strategy for future studies of physiological and pathological processes. However, great challenges still remain in fabricating such a platform with satisfactory electrochemical performance as well as desirable biocompatibility. Herein, we proposed a novel multifunctional platform based on gold nanoparticles/electrochemically reduced graphene oxide/3-aminopropyl-triethoxysilane modified indium tin oxide plate (ITO/APTES/ErGO/AuNPs). The unique biological and electrical properties of AuNPs and ErGO endow the platform with superior electrocatalytic activity and desirable biocompatibility. As a proof of concept, the present platform showed satisfactory electrochemical performance for sensitive and selective detection of hydrogen peroxide (H2O2) with a sensitivity about 0.25 μA μM-1 cm-2 and a detection limit of 0.38 μM in a linear range of 0.5-1461 μM. And the principle of catalytic reduction was clarified through density functional calculations (DFT). Furthermore, cells grew on the platform exhibited excellent proliferation ability and considerable viability after a long-term cultivation. Based on those desirable performances, in-situ and real-time monitoring of endogenously produced H2O2 released from cancer cells cultured on the platform has been successfully realized, which will be of great significance in pathophysiology research.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Sha Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Zhong Ji
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
19
|
Geiselhart CM, Mutlu H. The Vibrant Interplay of Light and Self‐Reporting Macromolecular Architectures. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis Laboratory (SML) Institute for Biological Interfaces 3 (IBG 3) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein Leopoldshafen 76344 Germany
- Macromolecular Architectures Institute for Technical Chemistry and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 Karlsruhe 76131 Germany
- School of Chemistry and Physics Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory (SML) Institute for Biological Interfaces 3 (IBG 3) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein Leopoldshafen 76344 Germany
| |
Collapse
|
20
|
Xu Y, Yang W, Zhang B. ROS-responsive probes for low-background optical imaging: a review. Biomed Mater 2021; 16:022002. [PMID: 33142272 DOI: 10.1088/1748-605x/abc745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optical imaging is a facile tool for visualizing biological processes and disease progression, but its image quality is largely limited by light-induced autofluorescence or background signals. To overcome this issue, low-background optical-imaging techniques including chemiluminescence imaging, afterglow imaging and photoacoustic imaging have been developed, based on their unique working mechanisms, which are: the detection of light emissions from chemical reactions, the cessation of light excitation before signal collection, and the detection of ultrasonic signals instead of light signals, respectively. Stimuli-responsive probes are highly desirable for improved imaging results since they can significantly reduce surrounding interference signals. Reactive oxygen species (ROS), which are closely implicated in a series of diseases such as cancer and inflammation, are frequently employed as initiators for responsive agents to selectively change the imaging signal. Thus, ROS-responsive agents incorporated into low-background imaging techniques can achieve a more promising imaging quality. In this review, recent advances in ROS-responsive probes for low-background optical-imaging techniques are summarized. Moreover, the approaches to improving the sensitivity of probes and tissue penetration depth are discussed in detail. In particular, we highlight the reaction mechanisms between the probes and ROS, revealing the potential for low-background optical imaging.
Collapse
Affiliation(s)
- Yan Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | | | | |
Collapse
|
21
|
Molodtsova T, Gorshenkov M, Saliev A, Vanyushin V, Goncharov I, Smirnova N. One-step synthesis of γ-Fe2O3/Fe3O4 nanocomposite for sensitive electrochemical detection of hydrogen peroxide. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Xu J, Liu Z, Ma W, Liu Y, Ding Y, Wang L. Polyaniline-intercalated manganese dioxide nanolayers prepared by a delamination/reassembling process and its application for hydrogen peroxide sensing. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Zhan Z, Dai Y, Li Q, Lv Y. Small molecule-based bioluminescence and chemiluminescence probes for sensing and imaging of reactive species. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
UV-Vis detection of hydrogen peroxide using horseradish peroxidase/copper phosphate hybrid nanoflowers. Enzyme Microb Technol 2020; 140:109620. [DOI: 10.1016/j.enzmictec.2020.109620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
|
25
|
Li H, Wang J, Du J. A novel luminol chemiluminescence system induced by black phosphorus quantum dots for cobalt (II) detection. Talanta 2020; 223:121712. [PMID: 33303161 DOI: 10.1016/j.talanta.2020.121712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Black phosphorus quantum dots (BP QDs) were prepared through a solvothermal exfoliation method in alkaline N-methyl-2-pyrrolidinone. The BP QDs induce distinct chemiluminescence (CL) of alkaline luminol directly. A possible reaction mechanism is proposed by the study of CL spectrum, ultraviolet-visible absorption spectra, electron paramagnetic resonance spectra as well as radical scavenging experiments. The presence of BP QDs significantly increases generation of active oxygen species, which oxidize luminol and lead to intense CL emission at 425 nm. The reaction of luminol with BP QDs are specifically catalyzed by cobalt (II) ion, this presents a sensitive CL method for cobalt (II) ion. A linear response range extends from 2.5 to 2000.0 pmol/L cobalt (II) ion and a detection limit of 0.7 pmol/L (3sb) is acquired. The method displays a good precision approved by a relative standard deviation of 1.9% at 100.0 pmol/L cobalt (II) ion solution (n = 11). A preliminary application of the method was conducted by successful determination of cobalt amount in silica gel and rain water samples.
Collapse
Affiliation(s)
- Hongdan Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiawei Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianxiu Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
26
|
Xu Y, Xue J, Zhou Q, Zheng Y, Chen X, Liu S, Shen Y, Zhang Y. The Fe-N-C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug-Drug Interactions. Angew Chem Int Ed Engl 2020; 59:14498-14503. [PMID: 32515070 DOI: 10.1002/anie.202003949] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Indexed: 11/10/2022]
Abstract
Emerging as a cost-effective and robust enzyme mimic, nanozymes have drawn increasing attention with broad applications ranging from cancer therapy to biosensing. Developing nanozymes with both accelerated and inhibited biocatalytic properties in a biological context is intriguing to peruse more advanced functions of natural enzymes, but remains challenging, because most nanozymes are lack of enzyme-like molecular structures. By re-visiting and engineering the well-known Fe-N-C electrocatalyst that has a heme-like Fe-Nx active sites, herein, it is reported that Fe-N-C could not only catalyze drug metabolization but also had inhibition behaviors similar to cytochrome P450 (CYP), endowing it a potential replacement of CYP for preliminary evaluation of massive potential chemicals, drug dosing guide, and outcome prediction. In addition, in contrast to electrocatalysts, the highly graphitic framework of Fe-N-C may not be obligatory for a competitive CYP-like activity.
Collapse
Affiliation(s)
- Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Jing Xue
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| |
Collapse
|
27
|
Xu Y, Xue J, Zhou Q, Zheng Y, Chen X, Liu S, Shen Y, Zhang Y. The Fe‐N‐C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug–Drug Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Jing Xue
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| |
Collapse
|
28
|
Zhao Y, Xu X, Ma Y, Tan H, Li Y. A novel peroxidase/oxidase mimetic Fe-porphyrin covalent organic framework enhanced the luminol chemiluminescence reaction and its application in glucose sensing. LUMINESCENCE 2020; 35:1366-1372. [PMID: 32533573 DOI: 10.1002/bio.3899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
A Fe-porphyrin covalent organic framework (Fe-PorCOF) was prepared through a postmodification strategy and characterized using different techniques. Fe-PorCOF exhibits an inherent peroxidase/oxidase mimetic catalytic activity and sharply accelerates chemiluminescence (CL) reactions between luminol and hydrogen peroxide (H2 O2 ) or dissolved oxygen (O2 ) under alkaline conditions. The catalytic role was attributed to a significant increase in production of reactive oxygen species. Using the imminent peroxidase mimetic catalytic activity of Fe-PorCOF, a new CL method was developed for determination of H2 O2 over a linear range from 0.01 to 10.0 μmol·L-1 and with a limit of detection of 5.3 nmol·L-1 . The combination of the peroxidase mimetic catalytic activity of Fe-PorCOF with the catalytic activity of glucose oxidase on glucose oxidation presents a sensitive CL method for glucose assay. The linear range and the detection limit for glucose were 0.05-8.0 μmol·L-1 and 4.0 nmol·L-1 , respectively. The practicability of this method was assessed by determination of glucose in human sera. As a peroxidase/oxidase mimetic, Fe-PorCOF is easy to prepare and exhibits good catalytic efficiency in the luminol reaction. We believe that this strategy will promote the development of a CL field with functional COFs as a catalyst.
Collapse
Affiliation(s)
- Yaxin Zhao
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Xiaotong Xu
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Yuyu Ma
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Haonan Tan
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Yinhuan Li
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
29
|
Kishikawa N, El-Maghrabey M, Nagamune Y, Nagai K, Ohyama K, Kuroda N. A Smart Advanced Chemiluminescence-Sensing Platform for Determination and Imaging of the Tissue Distribution of Natural Antioxidants. Anal Chem 2020; 92:6984-6992. [PMID: 32316724 DOI: 10.1021/acs.analchem.0c00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antioxidants have gained marked attention owing to their ability to prevent the oxidation of biological components and to protect the body from reactive oxygen species, thereby maintaining human health. Thus, antioxidant-rich dietary supplements and natural foods can be effective against oxidative stress and can even act as chemopreventive agents. Therefore, a simple and rapid assay for evaluation of antioxidant capacity and assessment of their distribution profile in natural sources is vital. Herein, we report a rapid, innovative chemiluminescence (CL) platform for evaluation and visualization of antioxidant capacity. We found that intense and long-lasting CL was formed upon the redox reaction of quinones, e.g., menadione, with antioxidants, e.g., l-ascorbic acid, in the presence of luminol. The produced CL intensities were proportional to the antioxidants' concentrations with a detection limit of 0.18 μM for the model antioxidant, l-ascorbic acid. As the formed CL was long-lasting, it could be easily captured and detected with a charge-coupled device (CCD) camera. To evaluate the quantification ability of the CCD camera, we developed a smart and fast microplate-based assay based on photographing the generated CL with a cooled CCD camera. The photographed CL intensities were linearly proportional with the antioxidant concentrations, and then the method was applied for photographing multiple food sample extracts. Ultimately, we utilized our method for the distribution profiling of antioxidant capacity in food cut sections. Samples were dipped in luminol and then in quinone, followed by CCD camera photography, without the need for any pulverization/extraction procedure, giving precise antioxidant distribution information.
Collapse
Affiliation(s)
- Naoya Kishikawa
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yuusuke Nagamune
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kaishu Nagai
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kaname Ohyama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto-machi, Nagasaki 852-8588, Japan
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
30
|
Zhang Y, Yan C, Wang C, Guo Z, Liu X, Zhu W. A Sequential Dual‐Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angew Chem Int Ed Engl 2020; 59:9059-9066. [DOI: 10.1002/anie.202000165] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Yutao Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chao Wang
- Fluorescence Research Group Science and Math Cluster Singapore University of Technology and Design Singapore 487372 Singapore
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Xiaogang Liu
- Fluorescence Research Group Science and Math Cluster Singapore University of Technology and Design Singapore 487372 Singapore
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
31
|
Zhang Y, Yan C, Wang C, Guo Z, Liu X, Zhu W. A Sequential Dual‐Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yutao Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chao Wang
- Fluorescence Research Group Science and Math Cluster Singapore University of Technology and Design Singapore 487372 Singapore
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Xiaogang Liu
- Fluorescence Research Group Science and Math Cluster Singapore University of Technology and Design Singapore 487372 Singapore
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
32
|
Geiselhart CM, Mutlu H, Tzvetkova P, Barner-Kowollik C. Chemiluminescent self-reporting supramolecular transformations on macromolecular scaffolds. Polym Chem 2020. [DOI: 10.1039/d0py00332h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We introduce the synthesis of a self-reporting system with chemiluminescent output, which is regulated via dynamic supramolecular complex formation.
Collapse
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis Laboratory
- Institut für Biologische Grenzflächen 3
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory
- Institut für Biologische Grenzflächen 3
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Pavleta Tzvetkova
- Institute for Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| |
Collapse
|
33
|
Zhang Y, Cui G, Qin N, Yu X, Zhang H, Jia X, Li X, Zhang X, Hun X. An assay for Staphylococcus aureus based on a self-catalytic ampicillin–metal (Fe3+)-organic gels–H2O2 chemiluminescence system with near-zero background noise. Chem Commun (Camb) 2020; 56:3421-3424. [DOI: 10.1039/c9cc09166a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-catalytic ampicillin–metal (Fe3+)-organic gels (AMP–MOGs (Fe))–H2O2 CL system, which is not influenced by transition metal ions, was studied.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Gaoxi Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Nana Qin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xijuan Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Hui Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xiaohua Li
- School of Chemistry and Environmental Engineering
- Shanxi Datong University
- Shanxi 037009
- China
| | - Xuzhi Zhang
- Yellow Sea Fisheries Research Institute
- Chinese Academy of Fishery Sciences
- Laboratory for Marine Fisheries Science and Food Production Processes
- Qingdao National Laboratory for Marine Science and Technology
- Qingdao 266071
| | - Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| |
Collapse
|
34
|
Jia Q, Liu Y, Duan Y, Zhou J. Interference-Free Detection of Hydroxyl Radical and Arthritis Diagnosis by Rare Earth-Based Nanoprobe Utilizing SWIR Emission as Reference. Anal Chem 2019; 91:11433-11439. [DOI: 10.1021/acs.analchem.9b02855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qi Jia
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Yuai Duan
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China
| |
Collapse
|
35
|
Sun M, Su Y, Yang W, Zhang L, Hu J, Lv Y. Organosiloxane and Polyhedral Oligomeric Silsesquioxanes Compounds as Chemiluminescent Molecular Probes for Direct Monitoring Hydroxyl Radicals. Anal Chem 2019; 91:8926-8932. [DOI: 10.1021/acs.analchem.9b00637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Bifunctional gold nanoclusters enable ratiometric fluorescence nanosensing of hydrogen peroxide and glucose. Talanta 2019; 197:599-604. [DOI: 10.1016/j.talanta.2019.01.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 11/20/2022]
|
37
|
Su Y, Song H, Lv Y. Recent advances in chemiluminescence for reactive oxygen species sensing and imaging analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Dou J, Li D, Li H, Kang Q, Lu J, Shen D. A differential photoelectrochemical hydrogen peroxide sensor based on catalytic activity difference between two zeolitic imidazolate framework surface coatings. Talanta 2019; 197:138-144. [DOI: 10.1016/j.talanta.2018.12.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 12/26/2022]
|
39
|
Zhang S, Cui H, Gu M, Zhao N, Cheng M, Lv J. Real-Time Mapping of Ultratrace Singlet Oxygen in Rat during Acute and Chronic Inflammations via a Chemiluminescent Nanosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804662. [PMID: 30924255 DOI: 10.1002/smll.201804662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Sensing nonradiation-induced singlet oxygen (1 O2 ) in whole-animal is deemed as one of the most challenging tasks in noninvasive techniques due to the µs level lifetime of 1 O2 and quenching by numerous reductants in tissues. Here a distinct chemiluminescent (CL) nanosensor (NTPE-PH) that boasts ultrahigh concentrated CL units in one nanoparticle is reported. Taking advantage of the intramolecular energy transfer mechanism that promises high energy transfer efficiency and the aggregation-induced emission behavior that guarantees high CL amplification, the NTPE-PH sensor is sensitive to a nm level 1 O2 . Experiments demonstrate that the NTPE-PH yields a highly selective CL response toward 1 O2 among common reactive oxygen species. With proved low cytotoxicity and good animal compatibility, real-time mapping of ultratrace 1 O2 in whole-animal during acute and chronic inflammations is first achieved. It is anticipated that the NTPE-PH sensor can be a useful tool for monitoring 1 O2 variation during immune response and pathological processes corresponding to different stimuli, even with drug treatment included.
Collapse
Affiliation(s)
- Shenghai Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongbo Cui
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, China
| | - Min Gu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, China
| | - Na Zhao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengqi Cheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiagen Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
40
|
Zhou Y, Du J, Wang Z. Fluorescein and its derivatives: New coreactants for luminol chemiluminescence reaction and its application for sensitive detection of cobalt ion. Talanta 2019; 191:422-427. [DOI: 10.1016/j.talanta.2018.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
|
41
|
Fan Y, Xing H, Zhai Q, Fan D, Li J, Wang E. Chemiluminescence of CsPbBr3 Perovskite Nanocrystal on the Hexane/Water Interface. Anal Chem 2018; 90:11651-11657. [DOI: 10.1021/acs.analchem.8b03249] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yongchao Fan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huanhuan Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qingfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
42
|
Deepa S, kumar KR. A symmetrical luminol based azo derivative for trimodal ratiometric Hg2+ sensing and its application to bioimaging in living cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Jiang X, Wang H, Yuan R, Chai Y. Functional Three-Dimensional Porous Conductive Polymer Hydrogels for Sensitive Electrochemiluminescence in Situ Detection of H2O2 Released from Live Cells. Anal Chem 2018; 90:8462-8469. [DOI: 10.1021/acs.analchem.8b01168] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinya Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Huijun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|