1
|
Yin M, Tang S, Li C, Qin Z, You H. A novel array-type microdroplet parallel-generation device. ANAL SCI 2023; 39:1777-1787. [PMID: 37258981 DOI: 10.1007/s44211-023-00378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
In this study, the innovative design of a new array microdroplet parallel-generation device is proposed based on the principle of fluid inertial force using a capillary glass needle. The entire device used an electromagnetic actuator as the power source. It was designed as a 9-channel parallel array of glass needles. All glass needles feed independently, allowing different solutions to be sprayed simultaneously while effectively avoiding cross-contamination. We achieved non-contact parallel precision dispensing of nanoliter-sized microdroplet arrays using a relatively simple method. In this study, we first investigated the homogeneity of the generated droplet arrays and the stability of the device over long periods of operation. Then, the influence of the driving-voltage amplitude of the electromagnet and nozzle diameter on microdroplet generation was analyzed. Finally, a prediction model for the droplet size was developed using regression analysis to investigate the on-demand generation of droplets. In summary, the device designed in this study had a novel design, low cost, and modular assembly. It has excellent potential for applications in high precision and low-volume microdroplet-array generation.
Collapse
Affiliation(s)
- Mengchuang Yin
- School of Mechanical Engineering, Guangxi University, Guangxi Provincial, Nanning, 530004, China
| | - Shengchang Tang
- School of Mechanical Engineering, Guangxi University, Guangxi Provincial, Nanning, 530004, China
| | - Caijie Li
- School of Mechanical Engineering, Guangxi University, Guangxi Provincial, Nanning, 530004, China
| | - Zhipeng Qin
- School of Mechanical Engineering, Guangxi University, Guangxi Provincial, Nanning, 530004, China
| | - Hui You
- School of Mechanical Engineering, Guangxi University, Guangxi Provincial, Nanning, 530004, China.
| |
Collapse
|
2
|
Song Y, Zhang Y, Wang L, Hu C, Liu ZF, Feng XS, He ZW. Cocaine in Different Matrices: Recent Updates on Pretreatment and Detection Techniques. Crit Rev Anal Chem 2022; 54:529-548. [PMID: 35708993 DOI: 10.1080/10408347.2022.2087467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cocaine abuse has attracted increased attention in the recent past since it can cause addiction and great harm to the normal human body. Due to cocaine exists in various complex matrices, the detection of it in different matrices is helpful to prevent abuse. It is thus imperative to establish efficient and accurate methods for pretreatment and detection of cocaine in different samples. The present study provides a summary of the research progress of cocaine pretreatment methods (such as different microextraction methods, QuEChERS, and solid phase extraction based on novel extraction materials) and detection approaches (such as liquid chromatography coupled with different detectors, gas chromatography and related techniques, capillary electrophoresis and sensors). A comparison of the pros and cons of different pretreatment and detection methods is presented. The findings of this study will provide a reference for selection of the most suitable cocaine pretreatment and detection techniques.
Collapse
Affiliation(s)
- Yang Song
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Hu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Brown HM, McDaniel TJ, Fedick PW, Mulligan CC. The current role of mass spectrometry in forensics and future prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3974-3997. [PMID: 32720670 DOI: 10.1039/d0ay01113d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry (MS) techniques are highly prevalent in crime laboratories, particularly those coupled to chromatographic separations like gas chromatography (GC) and liquid chromatography (LC). These methods are considered "gold standard" analytical techniques for forensic analysis and have been extensively validated for producing prosecutorial evidentiary data. However, factors such as growing evidence backlogs and problematic evidence types (e.g., novel psychoactive substance (NPS) classes) have exposed limitations of these stalwart techniques. This critical review serves to delineate the current role of MS methods across the broad sub-disciplines of forensic science, providing insight on how governmental steering committees guide their implementation. Novel, developing techniques that seek to broaden applicability and enhance performance will also be highlighted, from unique modifications to traditional hyphenated MS methods to the newer "ambient" MS techniques that show promise for forensic analysis, but need further validation before incorporation into routine forensic workflows. This review also expounds on how recent improvements to MS instrumental design, scan modes, and data processing could cause a paradigm shift in how the future forensic practitioner collects and processes target evidence.
Collapse
Affiliation(s)
- Hilary M Brown
- Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, California 93555, USA.
| | | | | | | |
Collapse
|
4
|
Abdelhamid HN, Wu HF. A New Binary Matrix for Specific Detection of Mercury(II) Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2617-2622. [PMID: 31659719 DOI: 10.1007/s13361-019-02324-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/29/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The development of simple, low-cost, and specific detection method for mercury (Hg(II)) ions in aqueous media using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is a challenge due to matrix interferences and acidity that destroy weak interactions. Herein, a new binary matrix consists of mefenamic acid, and thymine (T) is applied for simple and specific detection of Hg(II) in aqueous solution and blood sample. Mass spectra show metal-to-ligand ratio of 1:2 (Hg(II):T) in which Hg(II) ions are bound to two T molecules and two water molecules, i.e., [Hg(T)2(H2O)2]. The method is simple and fast, and requires cheap reagents. In addition, the spectra show extremely specific signals for Hg(II) ions and insignificant signals in case of other competing metal ions. The concept of our protocol can be applied for other metals. The new matrix may be used for the analysis of small molecules with minimal interferences peaks.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71515, Egypt.
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71515, Egypt.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
5
|
Hajduk J, Wolf M, Steinhoff R, Karst D, Souquet J, Broly H, Morbidelli M, Zenobi R. Monitoring of antibody glycosylation pattern based on microarray MALDI-TOF mass spectrometry. J Biotechnol 2019; 302:77-84. [PMID: 31260704 DOI: 10.1016/j.jbiotec.2019.06.306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Biologically manufactured monoclonal antibodies (mAb) can strongly vary in their efficacy and affinity. Therefore, engineering and production of the mAb is highly regulated and requires product monitoring, especially in terms of N-glycosylation patterns. In this work, we present a high-throughput matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method based on a microarray technology to monitor N-glycopeptides of IgG1 produced in a perfusion cell culture. A bottom-up approach combined with zwitterionic-hydrophilic interaction liquid chromatography for sample purification was used to determine the day-by-day variation of the terminal galactose within two major N-glycoforms. Our results show that microarrays for mass spectrometry (MAMS) are a robust platform for the rapid determination of the carbohydrate distribution. The spectral repeatability is characterized by a low coefficient of variations (1.7% and 7.1% for the FA2 and FA2G1 structures, respectively) and allows to detect the N-glycosylation variability resulting from operating conditions during the bioreactor process. The observed trend of released N-glycans was confirmed using capillary gel electrophoresis with laser-induced fluorescence detection. Therefore, the microarray technology is a promising analytical tool for glycosylation control during the production process of recombinant proteins.
Collapse
Affiliation(s)
- Joanna Hajduk
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Moritz Wolf
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Robert Steinhoff
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Daniel Karst
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Jonathan Souquet
- Biotech Process Science Technology & Innovation, Merck-Serono S.A., Corsier-sur-Vevey, Switzerland
| | - Hervé Broly
- Biotech Process Science Technology & Innovation, Merck-Serono S.A., Corsier-sur-Vevey, Switzerland
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland.
| |
Collapse
|
6
|
Liu H, Gao W, Tian Y, Liu A, Wang Z, Cai Y, Zhao Z. Rapidly detecting tetrabromobisphenol A in soils and sediments by paper spray ionization mass spectrometry combined with isotopic internal standard. Talanta 2019; 191:272-276. [DOI: 10.1016/j.talanta.2018.08.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/02/2023]
|
7
|
Kempa EE, Hollywood KA, Smith CA, Barran PE. High throughput screening of complex biological samples with mass spectrometry – from bulk measurements to single cell analysis. Analyst 2019; 144:872-891. [DOI: 10.1039/c8an01448e] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We review the state of the art in HTS using mass spectrometry with minimal sample preparation from complex biological matrices. We focus on industrial and biotechnological applications.
Collapse
Affiliation(s)
- Emily E. Kempa
- Michael Barber Centre for Collaborative Mass Spectrometry
- Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| | - Katherine A. Hollywood
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)
- Manchester Institute of Biotechnology
- The University of Manchester
- Manchester M1 7DN
- UK
| | - Clive A. Smith
- Sphere Fluidics Limited
- The Jonas-Webb Building
- Babraham Research Campus
- Cambridge
- UK
| | - Perdita E. Barran
- Michael Barber Centre for Collaborative Mass Spectrometry
- Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
8
|
Mogollón NGS, Quiroz-Moreno CD, Prata PS, de Almeida JR, Cevallos AS, Torres-Guiérrez R, Augusto F. New Advances in Toxicological Forensic Analysis Using Mass Spectrometry Techniques. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:4142527. [PMID: 30228926 PMCID: PMC6136463 DOI: 10.1155/2018/4142527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/30/2018] [Accepted: 07/12/2018] [Indexed: 05/04/2023]
Abstract
This article reviews mass spectrometry methods in forensic toxicology for the identification and quantification of drugs of abuse in biological fluids, tissues, and synthetic samples, focusing on the methodologies most commonly used; it also discusses new methodologies in screening and target forensic analyses, as well as the evolution of instrumentation in mass spectrometry.
Collapse
Affiliation(s)
- Noroska Gabriela Salazar Mogollón
- Ikiam-Universidad Regional Amazónica, Km 7 Via Muyuna, Tena, Napo, Ecuador
- Institute of Chemistry, State University of Campinas, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP, Brazil
| | | | - Paloma Santana Prata
- Institute of Chemistry, State University of Campinas, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP, Brazil
| | | | | | | | - Fabio Augusto
- Institute of Chemistry, State University of Campinas, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
9
|
Caractérisation de la cocaïne et de ses métabolites par imagerie MALDI-MS 2 et comparaison avec une technique MAMS-MALDI-MS 2 et LC-MS 2. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2018. [DOI: 10.1016/j.toxac.2018.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|