1
|
Xu X, Zhao S, Xie Y, Zhang L, Shao Y, Lin J, Wu A. Advances in SERS detection method combined with microfluidic technology for bio-analytical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125797. [PMID: 39899965 DOI: 10.1016/j.saa.2025.125797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
With the advancement of research on life systems and disease mechanisms, the precision of analysis tends to be at a single molecule or single gene level. The surface-enhanced Raman scattering (SERS) method is highly anticipated because of its sensitive detection ability down to a single molecule level. The SERS-based microfluidic platforms retain both advantages of SERS and microfluidics, working in a complementary way. The combination of microfluidics and SERS can provide rapid, non-destructive, high-sensitive, and high-throughput analysis for biological samples, which is of great significance to developing potential biomedical applications, thus occupying an outstanding position among the current research hot topics. This review briefly summarized the recent developments and applications of SERS-based microfluidic platforms in biological analysis. This paper first introduced the SERS-based microfluidic platforms and gave a classification of this method including continuous flow-based method, microarrays-based method, droplet-based method, lateral flow assay (LFA)-based method, and digital-based method. In particular, the bioanalytical applications of SERS-based microfluidic platforms in recent years, including biomolecule detection, cell analysis, and disease diagnosis, have been reviewed. It illustrated that SERS-based microfluidic platforms have great potential in bioanalysis.
Collapse
Affiliation(s)
- Xiawei Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Songchen Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Lei Zhang
- Zhejiang Key Laboratory of Digital Technology in Medical Diagnostics, Hangzhou 310030, PR China; The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| |
Collapse
|
2
|
Wu J, Dong J, Bao Y, Shang L, Wu Q, Yang Z, Wang H, Yin J. Synovial fluid research based on SERS and SERRS for enhanced detection of biomarkers in staged osteoarthritis. JOURNAL OF BIOPHOTONICS 2024; 17:e202400024. [PMID: 38566479 DOI: 10.1002/jbio.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Surface-enhanced (resonance) Raman scattering (SER(R)S) can extremely enhance Raman intensity of samples, which is helpful for detecting synovial fluid (SF) that does not show Raman activity under normal conditions. In this study, SER(R)S spectra of SF from three different osteoarthritis (OA) stages were collected and analyzed for OA progress, finding that the content of collagen increased throughout the disease, while non-collagen proteins and polysaccharides decreased sharply at advanced OA stage accompanied by the increase of phospholipid. The spectral features and differences were enhanced by salting-out and centrifugation. Much more information on biomolecules at different OA stages was disclosed by using SERRS for the first time, these main trace components (β-carotene, collagen, hyaluronic acid, nucleotide, and phospholipid) can be used as potential biomarkers. It indicates that SERRS has a more comprehensive ability to assist SERS in seeking micro(trace) biomolecules as biomarkers and facilitating accurate and efficient diagnosis and mechanism research of OA.
Collapse
Affiliation(s)
- Jinjin Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jiachun Dong
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yilin Bao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Linwei Shang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qingxia Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zichun Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Huijie Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jianhua Yin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
3
|
Zhang M, Yang J, Yang L, Li Z. A robust SERS calibration using a pseudo-internal intensity reference. NANOSCALE 2023; 15:7403-7409. [PMID: 36970765 DOI: 10.1039/d2nr07161d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) with high molecular sensitivity and specificity is a powerful nondestructive analytical tool. Since its discovery, SERS measurements have suffered from the vulnerability of calibration curve, which makes quantification analysis a great challenge. In this work, we report a robust calibration method by introducing a referenced measurement as the intensity standard. This intensity reference not only has the advantages of the internal standard method such as reflecting the SERS substrate enhancement, but also avoids the introduction of competing adsorption between target molecules and the internal standard. Based on the normalized calibration curve, the magnitude of the R6G concentration can be well evaluated from 10-7 M to 10-12 M. Furthermore, we demonstrate that this pseudo-internal standard method can also work well using a different type of molecule as the reference. This SERS calibration method would be beneficial for the development of quantitative SERS analysis.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Jingran Yang
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Longkun Yang
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| | - Zhipeng Li
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
4
|
Liu J, Fan W, Lv X, Wang C. Rapid Quantitative Detection of Voriconazole in Human Plasma Using Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:47634-47641. [PMID: 36591153 PMCID: PMC9798397 DOI: 10.1021/acsomega.2c04521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
There is an increasing demand for rapid detection techniques for monitoring the therapeutic concentration of voriconazole (VRC) in human biological fluids. Herein, a rapid and selective surface-enhanced Raman scatting method for point-of-care determination of VRC in human plasma was developed via a portable Raman spectrometer. This approach has enabled the quantification of the VRC spiked into human plasma at clinical relevant concentrations. A gold nanoparticle solution (Au sol) was used as the SERS substrate, and the agglomerating conditions on its sensitivity were optimized. The method involves the formation of hot spots, and the signal of VRC molecules adsorbed on the surface of the SERS hot spot was amplified by 105. The calibration curve was linear in the range of 0.02-10 ppm, with satisfactory repeatability. The limit of detection was as low as 12.3 ppb. The variation in VRC spectra over time on different substrates demonstrated good reproducibility. Notably, the salting-out extraction method developed in this study was rapid and suitable for the quantitation of drugs in biological samples. Compared with traditional methods, this approach allows for the point-of-care quantification of VRC directly in a complex matrix, which may open up new exciting opportunities for future use of the SERS technique in clinical applications.
Collapse
Affiliation(s)
- Jing Liu
- Department
of Clinical Laboratory, The Second Affiliated Hospital of Shandong
First Medical University, Shandong First
Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, P. R. China
| | - Wufeng Fan
- Outpatient
Department, Affiliated Hospital of Shandong
University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Xiaoxia Lv
- Central
Sterile Supply Department, Affiliated Hospital
of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Cuijuan Wang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University & Shandong Academy of Medical Sciences, Jinan 250000, P. R. China
| |
Collapse
|
5
|
Sun H, Li Z, Wu Y, Fan X, Zhu M, Chen T, Sun L. Analysis of Sequential Micromixing Driven by Sinusoidally Shaped Induced-Charge Electroosmotic Flow. MICROMACHINES 2022; 13:1985. [PMID: 36422414 PMCID: PMC9695967 DOI: 10.3390/mi13111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Multi-fluid micromixing, which has rarely been explored, typically represents a highly sought-after technique in on-chip biochemical and biomedical assays. Herein, we propose a novel micromixing approach utilizing induced-charge electroosmosis (ICEO) to implement multicomplex mixing between parallel streams. The variations of ICEO microvortices above a sinusoidally shaped floating electrode (SSFE) are first investigated to better understand the microvortex development and the resultant mixing process within a confined channel. On this basis, a mathematical model of the vortex index is newly developed to predict the mixing degree along the microchannel. The negative exponential distribution obtained between the vortex index and mixing index demonstrates an efficient model to describe the mixing performance without solving the coupled diffusion and momentum equations. Specifically, sufficient mixing with a mixing index higher than 0.9 can be achieved when the vortex index exceeds 51, and the mixing efficiency reaches a plateau at an AC frequency close to 100 Hz. Further, a rectangle floating electrode (RFE) is deposited before SSFE to enhance the controlled sequence for three-fluid mixing. One side fluid can fully mix with the middle fluid with a mixing index of 0.623 above RFE in the first mixing stage and achieve entire-channel mixing with a mixing index of 0.983 above SSFE in the second mixing stage, thereby enabling on-demand sequential mixing. As a proof of concept, this work can provide a robust alternative technique for multi-objective issues and structural design related to mixers.
Collapse
Affiliation(s)
- Haizhen Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Ziyi Li
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Yongji Wu
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Xinjian Fan
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Minglu Zhu
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
- School of Future Science and Engineering, Soochow University, Suzhou 215299, China
| | - Lining Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Zhang M, Tian Y, Jiao A, Ma H, Wang C, Zheng L, Li S, Chen M. Synergistic double laser beam-boosted liquid-NIR-SERS for ultralow detection of non-adsorptive polycyclic aromatic hydrocarbons in lake water. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2875-2889. [PMID: 39634091 PMCID: PMC11501877 DOI: 10.1515/nanoph-2022-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 12/07/2024]
Abstract
Ultrasensitive trace-detection of toxic and carcinogenic polycyclic aromatic hydrocarbons (PAHs) can ceaselessly propel the environmental surveillance in aqueous ecosystems. Due to the intrinsic nonadsorptive feature of PAHs, the promising technique of surface-enhanced Raman scattering (SERS) spectroscopy has been restricted to diverse functional ligands-based surface modifications of nano-substrates. However, it is not suitable for practical ultralow liquid analysis. Herein, we propose an extraordinary strategy to boost liquid-near infrared (NIR)-SERS activity of plasmonic Au/Ag nano-urchins (NUs) by introducing extra 808 nm laser-triggered an additional strong electromagnetic enhancement into routine 785 nm laser-Raman system. The synergistic double laser-excited NIR-SERS of colloidal Au/Ag NUs enables the Raman signals of crystal violet to be significantly enhanced, approaching a maximum of ∼34-fold increase than that of traditional bare 785 nm laser-excitation. More importantly, the improved liquid-NIR-SERS enables the in-situ detection limit of pyrene molecules in lake water to be achieved at ∼10-9 M, which is already better than many previous SERS results based on the complicated functionalized nano-substrates. The established double laser-boosted NIR-SERS can also be easily extended to the simultaneous trace-detection of three PAHs-contaminated mixtures, supporting well distinguishable capability. Undoubtedly, the present work opens a new versatile and innovative avenue for ultrasensitive NIR-SERS monitoring of nonadsorptive toxic pollutants in wastewater.
Collapse
Affiliation(s)
| | - Yue Tian
- Shandong University, Jinan, China
| | | | - Hui Ma
- Shandong University, Jinan, China
| | | | - Linqi Zheng
- Shandong Jianzhu University, Jinan, Shandong, China
| | - Shuang Li
- Shandong Jianzhu University, Jinan, Shandong, China
| | | |
Collapse
|
7
|
Feng N, Li C, Shen J, Hu Y, Fodjo EK, Zhang L, Chen S, Fan Q, Wang L. 1,4-Benzenedithiol-Bridged Nanogap-Based Individual Particle Surface-Enhanced Raman Spectroscopy Mechanical Probe for Revealing the Endocytic Force. ACS NANO 2022; 16:6605-6614. [PMID: 35420023 DOI: 10.1021/acsnano.2c00995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
1,4-Benzenedithiol (BDT)-bridged core-satellite assemblies, as surface-enhanced Raman spectroscopy (SERS) mechanical probes, can be employed for real-time monitoring of the dynamics of endocytic forces and the accompanying trajectory of nanoparticles during the endocytosis process. These mechanical probes exhibit good responses in terms of SERS intensity ratios while undergoing mechanical pressure. Force tracing and the accompanying trajectory of nanoparticles are resolved accurately to render the endocytosis process in live cells. Density functional theory simulation results further proved the sensing scheme due to the electrons transforming between BDT and gold nanoparticles. Furthermore, this SERS mechanical probe is a valid method to visualize endocytic forces at multiple locations and establish a direct criterion to discriminate between cancer cells and normal cells.
Collapse
Affiliation(s)
- Ning Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jingjing Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yanling Hu
- School of Electrical and Control, Nanjing Polytechnic Institute, 188 Xinle Road, Nanjing 211500, China
| | - Essy Kouadio Fodjo
- Laboratory of Constitution and Reaction of Matter, University of Felix Houphouet-Boigny, 22 BP 582 Abidjan 22, Cote d'Ivoire
| | - Lei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shufen Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
8
|
Panneerselvam R, Sadat H, Höhn EM, Das A, Noothalapati H, Belder D. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? LAB ON A CHIP 2022; 22:665-682. [PMID: 35107464 DOI: 10.1039/d1lc01097b] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the continuous development in nanoscience and nanotechnology, analytical techniques like surface-enhanced Raman spectroscopy (SERS) render structural and chemical information of a variety of analyte molecules in ultra-low concentration. Although this technique is making significant progress in various fields, the reproducibility of SERS measurements and sensitivity towards small molecules are still daunting challenges. In this regard, microfluidic surface-enhanced Raman spectroscopy (MF-SERS) is well on its way to join the toolbox of analytical chemists. This review article explains how MF-SERS is becoming a powerful tool in analytical chemistry. We critically present the developments in SERS substrates for microfluidic devices and how these substrates in microfluidic channels can improve the SERS sensitivity, reproducibility, and detection limit. We then introduce the building materials for microfluidic platforms and their types such as droplet, centrifugal, and digital microfluidics. Finally, we enumerate some challenges and future directions in microfluidic SERS. Overall, this article showcases the potential and versatility of microfluidic SERS in overcoming the inherent issues in the SERS technique and also discusses the advantage of adding SERS to the arsenal of microfluidics.
Collapse
Affiliation(s)
- Rajapandiyan Panneerselvam
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
- Department of Chemistry, SRM University AP, Amaravati, Andhra Pradesh 522502, India.
| | - Hasan Sadat
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Eva-Maria Höhn
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Anish Das
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue, Japan
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Zhang H, Wang D, Zhang D, Zhang T, Yang L, Li Z. In Situ Microfluidic SERS Chip for Ultrasensitive Hg 2+ Sensing Based on I --Functionalized Silver Aggregates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2211-2218. [PMID: 34964597 DOI: 10.1021/acsami.1c17832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury(II) ions are causing serious environmental pollution and health damage. Developing a simple, rapid, and sensitive sensor for Hg2+ detection is of great significance. Herein, we demonstrate an I--functionalized surface-enhanced Raman scattering (SERS) substrate for rapid and sensitive Hg2+ sensing on a highly integrated microfluidic platform. Based on the combination reaction between I- and Hg2+, the Hg2+ sensing is achieved via the SERS intensity "turn-off" strategy, where HgI2 precipitation is formed on an SERS substrate interface, dissociating the Raman reporters that coadsorbed with I-. Owing to the strong binding constant between I- and Hg2+, our I--functionalized substrate demonstrates a very fast sensing response (∼150 s). Through reliable in situ SERS detection, a robust calibration curve between the "turn-off" signal and "lgC" is obtained in a broad concentration range of 10-9 to 10-13 M. Additionally, the detectable Hg2+ concentration can be as low as 1 fM. The good selectivity toward Hg2+ is also verified by testing about a dozen common metal ions in water, such as K+, Na+, Ca2+, Mg2+, and so forth. Furthermore, we apply the SERS sensor for real tap and lake water sample detection, and good recoveries of 113, 97, and 107% are obtained. With its advantages of high integration, simple preparation, fast response, high sensitivity, and reliability, the proposed I--functionalized SERS sensor microfluidic chip can be a promising platform for real-time and on-site Hg2+ detection in natural water.
Collapse
Affiliation(s)
- Huijuan Zhang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, P.R. China
| | - Dong Wang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, P.R. China
| | - Duan Zhang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, P.R. China
| | - Tongtong Zhang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, P.R. China
| | - Longkun Yang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, P.R. China
| | - Zhipeng Li
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, P.R. China
| |
Collapse
|
10
|
Huo C, Han W, Tang W, Duan X. Stable SERS substrate based on highly reflective metal liquid-like films wrapped hydrogels for direct determination of small molecules in a high protein matrix. Talanta 2021; 234:122678. [PMID: 34364478 DOI: 10.1016/j.talanta.2021.122678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022]
Abstract
The study of the interaction between small molecules and proteins is important. Surface-enhanced Raman spectroscopy (SERS) is suitable for such applications since it has the power of detecting a molecule based on its intrinsic nature and without labeling. Herein, the MeLLFs@PAAG SERS substrate supporting highly reflective metal liquid-like films (MeLLFs) with polyacrylamide hydrogels (PAAG) has high-density "hot spots" to provide excellent SERS activity. The MeLLFs@PAAG formed by AgNPs only has less than 15% SERS activity loss when stored in the air for more than three weeks. By using rhodamine 6G (R6G) as a model analyte, the AgNPs based MeLLFs@PAAG SERS substrate exhibits an enhancement factor (EF) as high as 8.0 × 106, a limit of detection (LOD) of 76.8 pM (S/N = 3). Also, the formed PAAG provided a 3D molecular network to orderly secure the assembled nanoparticles (NPs), which not only improves the stability of NPs but also shields the Raman signal of proteins as high as 45 g/L allowing the direct determination of the binding rate of human serum albumin (HSA) and doxorubicin (DOX). A binding rate of about 70% was detected, which is consistent with previous reports. Thus, proposed the MeLLFs@PAAG SERS substrate can be used as a promising candidate for SERS measurement in complex biological samples.
Collapse
Affiliation(s)
- Chengcheng Huo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China
| | - Wanying Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China.
| |
Collapse
|
11
|
Yang L, Ren Z, Zhang M, Song Y, Li P, Qiu Y, Deng P, Li Z. Three-dimensional porous SERS powder for sensitive liquid and gas detections fabricated by engineering dense "hot spots" on silica aerogel. NANOSCALE ADVANCES 2021; 3:1012-1018. [PMID: 36133286 PMCID: PMC9418486 DOI: 10.1039/d0na00849d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/30/2020] [Indexed: 06/16/2023]
Abstract
A three-dimensional porous SERS powder material, Ag nanoparticles-engineered-silica aerogel, was developed. Utilizing an in situ chemical reduction strategy, Ag nanoparticles were densely assembled on porous aerogel structures, thus forming three-dimensional "hot spots" distribution with intrinsic large specific surface area and high porosity. These features can effectively enrich the analytes on the metal surface and provide huge near field enhancement. Highly sensitive and homogeneous SERS detections were achieved not only on the conventional liquid analytes but also on gas with the enhancement factor up to ∼108 and relative standard deviation as small as ∼13%. Robust calibration curves were obtained from the SERS data, which demonstrates the potential for the quantification analysis. Moreover, the powder shows extraordinary SERS stability than the conventional Ag nanostructures, which makes long term storage and convenient usage feasible. With all of these advantages, the porous SERS powder material can be extended to on-site SERS "nose" applications such as liquid and gas detections for chemical analysis, environmental monitoring, and anti-terrorism.
Collapse
Affiliation(s)
- Longkun Yang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Zhifang Ren
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Meng Zhang
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Yanli Song
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Pan Li
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
- Beijing Center for Physical and Chemical Analysis, Beijing Academy of Science and Technology Beijing 100089 P. R. China
| | - Yun Qiu
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| | - Pingye Deng
- Beijing Center for Physical and Chemical Analysis, Beijing Academy of Science and Technology Beijing 100089 P. R. China
| | - Zhipeng Li
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University Beijing 100048 P. R. China
| |
Collapse
|
12
|
Li L, Wang Z, Lu Y, Zhu K, Zong S, Cui Y. DNA-assisted synthesis of Ortho-NanoDimer with sub-nanoscale controllable gap for SERS application. Biosens Bioelectron 2021; 172:112769. [PMID: 33166801 DOI: 10.1016/j.bios.2020.112769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022]
Abstract
Nanostructure with precisely controllable narrow gap width remains a great challenge, especially at the sub-nanoscale level. Here, a versatile strategy named as DNA-assisted synthesis of ortho-nanodimer (DaSON) is proposed to fabricate Ag (Au) nanodimers with a uniform gap width from nanometers to angstroms. In such a strategy, two nanoparticles are constrained by the equilibrium state of the DNA hybridization and electrostatic repulsion to form zipper-like ortho-nanostructures with an extremely uniform gap whose width can be finely adjusted at nanoscale or sub-nanoscale by changing the DNA sequence and the surface charge of nanoparticles. The inherent strong electromagnetic coupling in the uniform sub-nanometer gap can generates an unparalleled SERS enhancement together with an extraordinary reproducibility. Compared with conventional DNA-based nano-gap fabrication strategy, the DaSON strategy enhances the SERS intensity for more than two orders of magnitude with a detection limit of 100 aM for DNA, and significantly improves the reproducibility in both labeled and label-free SERS sensing applications. Moreover, the DaSON strategy holds wide applicability for arbitrary kinds of DNA-modifiable nanoparticles. Therefore, we believe that the DaSON strategy provides an innovative method for the synthesis of nanostructures with controllable nanogaps and has a promising future in multiple fields including nanotechnology, catalysis and photonics.
Collapse
Affiliation(s)
- Lang Li
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Yang Lu
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Kai Zhu
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
13
|
Lin T, Song YL, Liao J, Liu F, Zeng TT. Applications of surface-enhanced Raman spectroscopy in detection fields. Nanomedicine (Lond) 2020; 15:2971-2989. [PMID: 33140686 DOI: 10.2217/nnm-2020-0361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a Raman spectroscopy technique that has been widely used in food safety, environmental monitoring, medical diagnosis and treatment and drug monitoring because of its high selectivity, sensitivity, rapidness, simplicity and specificity in identifying molecular structures. This review introduces the detection mechanism of SERS and summarizes the most recent progress concerning the use of SERS for the detection and characterization of molecules, providing references for the later research of SERS in detection fields.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Juan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Fang Liu
- Department of Laboratory Pathology, Xijing Hospital, Fourth Military Medical University, Xian, 710054, PR China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
14
|
Zhang D, Hao R, Zhang L, You H, Fang J. Ratiometric Sensing of Polycyclic Aromatic Hydrocarbons Using Capturing Ligand Functionalized Mesoporous Au Nanoparticles as a Surface-Enhanced Raman Scattering Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11366-11373. [PMID: 32877608 DOI: 10.1021/acs.langmuir.0c02271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The absorption behavior between plasmonic nanostructures and a target molecule plays key roles in effective surface-enhanced Raman scattering (SERS) detection. However, for analytes with low surface affinity to the metallic surface, e.g., polycyclic aromatic hydrocarbons (PAHs), it remains challenging to observe the enhanced Raman signal. In this work, we reported a ratiometric SERS strategy for sensitive PAH detection through the surface functionalization of 3D ordered mesoporous Au nanoparticles (meso-Au NPs). By employing mono-6-thio-β-cyclodextrin (HS-β-CD) as capture ligands, the hydrophobic molecules, e.g., anthracene, could be effectively absorbed on the meso-Au NP surface via a host-guest interaction. Besides, a hydrophobic slippery surface is used as a concentrator to deliver and enrich the Au/analyte droplets into a small area. Consequently, the detection limits of anthracene and naphthalene are down to 1 and 10 ppb. The improved SERS enhancement is mainly ascribed to the host-guest effect of HS-β-CD ligands, large surface area and high-density of sub-10 nm mesopores of Au networks, as well as the enrichment effect of hydrophobic slippery surface. Moreover, the HS-β-CD (480 cm-1 band) could serve as an internal standard, leading to the ratiometric determination of anthracene ranging from 1 ppm to 1 ppb. The proposed surface modification strategy in combination with the hydrophobic slippery surface shows great potential for active capture and trace detection of persistent organic pollutants in real-world SERS applications.
Collapse
Affiliation(s)
- Dongjie Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| | - Rui Hao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| | - Lingling Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| | - Hongjun You
- School of Science, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| | - Jixiang Fang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shann xi 710049, China
| |
Collapse
|
15
|
Sun H, Ren Y, Tao Y, Jiang T, Jiang H. Three-Fluid Sequential Micromixing-Assisted Nanoparticle Synthesis Utilizing Alternating Current Electrothermal Flow. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Haizhen Sun
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
16
|
Li M, Ge A, Liu M, Ma B, Ma C, Shi C. A fully integrated hand-powered centrifugal microfluidic platform for ultra-simple and non-instrumental nucleic acid detection. Talanta 2020; 219:121221. [PMID: 32887122 DOI: 10.1016/j.talanta.2020.121221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022]
Abstract
Hand-powered centrifugal microfluidics combined with isothermal nucleic acid amplification testing (NAAT) have been one of the most promising rapid detection platforms in resource-limited settings. However, current hand-powered centrifuges still suffer from customized instrument-based operation and low rotation rate; and most isothermal NAAT were conducted with complicated reaction systems for DNA detection and required an additional step for RNA detection. Herein, we built a fully hand-powered centrifugal miniaturized NAAT platform inspired by buzzer toys, which embedded sample preparation, strand exchange amplification (SEA) and visual fluorescence detection together. The centrifugal disc was easily fabricated, and operated the mixing in 1 min by simply dragging the looped rope through it with a mean input force of 16.5 N, enabling its rotation rate reach 5000 rpm. In addition, SEA was an ultra-simple one-step DNA or RNA detection method initiated by Bst DNA polymerase and a pair of primers, and thus we took all its merits and integrate it into microfluidic systems firstly. Furthermore, taking Vibrio parahemolyticus as an example, the microfluidic platform achieved DNA or RNA detection within 1 h; and the detection limit of the microchip for artificially spiked oysters was 103 CFU/g without cumbersome sample preparation, and reached to 100 CFU/g after enrichment. Therefore, we provided an ultra-simple and non-instrumental microfluidic platform powered merely by hands, performing general potential in sample-to-answer NAAT for versatile pathogens in remote regions.
Collapse
Affiliation(s)
- Mengzhe Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Anle Ge
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, PR China
| | - Mengmeng Liu
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, PR China
| | - Cuiping Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
17
|
Su M, Wang C, Wang T, Jiang Y, Xu Y, Liu H. Breaking the Affinity Limit with Dual-Phase-Accessible Hotspot for Ultrahigh Raman Scattering of Nonadsorptive Molecules. Anal Chem 2020; 92:6941-6948. [PMID: 32329602 DOI: 10.1021/acs.analchem.9b05727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For surface-enhanced Raman scattering (SERS) analysis, only analytes that can be absorbed spontaneously onto a noble metal surface can be detected effectively. Therefore, getting nonadsorptive molecules close enough to the surface has always been a key challenge in SERS analysis. Here absorbance measurements show that the liquid-interfacial array (LIA) does not adsorb or enrich benzopyrene (Bap) molecules, which lack effective functional groups that can interact with the noble metal surfaces. But the SERS intensity of 0.1 ppm Bap on the LIA is 10 times larger than that of 10 ppm Bap on traditional solid substrate, i.e., 3 orders of magnitude of enhancement. The LIA overcomes the restriction of affinity between Bap molecules and the metal surface, and the Bap molecules can easily enter nanogaps without steric hindrance. Furthermore, both adsorptive and nonadsorptive molecules were used to observe the SERS enhancement behavior on the LIA platforms. In multiple detection, competitive SERS signal changes could be observed between adsorptive and nonadsorptive molecules or between nonadsorptive and nonadsorptive molecules. A theoretical scheme was profiled for localized surface plasmon resonance (SPR) properties of the LIA. Finite difference-time domain (FDTD) simulation shows that the LIAs have biphasic and accessible asymmetric hotspots, and the electric field enhancement in the CHCl3 (O) phase is approximately four times larger than that of the water (W) phase. In addition, the position and relative strength of the electromagnetic field depend on the spatial position of gold nanoparticles (GNPs) relative to the liquid-liquid interface (LLI), i.e., when the GNP dimer is completely immersed in a certain phase, the electromagnetic field enhancement of the CHCl3 phase is approximately 7 times larger than that of the W phase. We speculate that dual-phase-accessible hotspots and the hydrophobic environment provided by CHCl3 are two important factors contributing to successful detection of four common polycyclic aromatic hydrocarbons (PAHs) with a detection limit of 10 ppb. Finally, the LIA platform successfully realizes simultaneous detection of multiple PAHs in both plant and animal oils with good stability. This study provides a new direction for the development of high-efficiency and practical SERS technology for nonadsorptive molecules.
Collapse
Affiliation(s)
- Mengke Su
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Tengfei Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yifan Jiang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yue Xu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Honglin Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai 200050, China
| |
Collapse
|
18
|
Yang L, Yang J, Li Y, Li P, Chen X, Li Z. Controlling the Morphologies of Silver Aggregates by Laser-Induced Synthesis for Optimal SERS Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1529. [PMID: 31717864 PMCID: PMC6915404 DOI: 10.3390/nano9111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 05/12/2023]
Abstract
Controlling the synthesis of metallic nanostructures for high quality surface-enhanced Raman scattering (SERS) materials has long been a central task of nanoscience and nanotechnology. In this work, silver aggregates with different surface morphologies were controllably synthesized on a glass-solution interface via a facile laser-induced reduction method. By correlating the surface morphologies with their SERS abilities, optimal parameters (laser power and irradiation time) for SERS aggregates synthesis were obtained. Importantly, the characteristics for largest near-field enhancement were identified, which are closely packed nanorice and flake structures with abundant surface roughness. These can generate numerous hot spots with huge enhancement in nanogaps and rough surface. These results provide an understanding of the correlation between morphologies and SERS performance, and could be helpful for developing optimal and applicable SERS materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhipeng Li
- Beijing Key Laboratory of Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| |
Collapse
|
19
|
Lu H, Zhu L, Lu Y, Su J, Zhang R, Cui Y. Manipulating "Hot Spots" from Nanometer to Angstrom: Toward Understanding Integrated Contributions of Molecule Number and Gap Size for Ultrasensitive Surface-Enhanced Raman Scattering Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39359-39368. [PMID: 31565918 DOI: 10.1021/acsami.9b13518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Narrower gaps between metal nanoparticles (so-called "hot spots") in surface-enhanced Raman scattering (SERS) substrates contribute to stronger electromagnetic (EM) enhancement; however, the accompanying steric effect hinders analyte molecules entering hot spots to access the benefit. To comprehensively understand integrated contributions of the gap size and molecule number accommodated in hot spots and then optimize design of SERS substrates, the thermal shrinking method was employed to manipulate hot spots and the "hottest zone" was defined to evaluate the integrated contributions to SERS intensity of the two factors. In the conventional shrink-adsorption mode, the contributions of the molecule number and gap size are competitive when the gap width is comparable with the target molecule size, which leads to oscillating behavior of SERS intensity versus gap size, and it is analyte molecule size dependent. This result suggests that engineering hot spots should be target molecule directed to achieve ultrasensitive detection. In the proposed adsorption-shrink mode, the contributions of the molecule number and gap size are synergistic, which makes the detection ability of the adsorption-shrink mode attains a single-molecule (SM) level. Excellent performance of the adsorption-shrink SERS strategy benefits detection of trace level pollutants in complex environments. Detection ranges for contaminants with different metal affinity, such as thiram, malachite green (MG), and formaldehyde, are as low as parts per billion, even down to parts per trillion.
Collapse
Affiliation(s)
- Hui Lu
- Advanced Photonics Center, School of Electronic Science & Engineering , Southeast University , Nanjing 210096 , Jiangsu , China
| | - Li Zhu
- Advanced Photonics Center, School of Electronic Science & Engineering , Southeast University , Nanjing 210096 , Jiangsu , China
| | - Yu Lu
- Advanced Photonics Center, School of Electronic Science & Engineering , Southeast University , Nanjing 210096 , Jiangsu , China
| | - Jingting Su
- Advanced Photonics Center, School of Electronic Science & Engineering , Southeast University , Nanjing 210096 , Jiangsu , China
| | - Ruohu Zhang
- Advanced Photonics Center, School of Electronic Science & Engineering , Southeast University , Nanjing 210096 , Jiangsu , China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science & Engineering , Southeast University , Nanjing 210096 , Jiangsu , China
| |
Collapse
|
20
|
Feng X, Ren Y, Hou L, Tao Y, Jiang T, Li W, Jiang H. Tri-fluid mixing in a microchannel for nanoparticle synthesis. LAB ON A CHIP 2019; 19:2936-2946. [PMID: 31380864 DOI: 10.1039/c9lc00425d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is becoming more difficult to use bulk mixing and bi-fluid micromixing in multi-step continuous-flow reactions, multicomponent reactions, and nanoparticle synthesis because they typically involve multiple reactants. To date, most micromixing studies, both passive and active, have focused on how to efficiently mix two fluids, while micromixing of three or more fluids together (multi-fluid mixing) has been rarely explored. This study is the first on tri-fluid mixing in microchannels. We investigated tri-fluid mixing in three microchannel models: a straight channel, a classical staggered herringbone mixing (SHM) channel, and a three-dimensional (3D) X-crossing microchannel. Numerical simulations and experiments were jointly conducted. A two-step experimental process was performed to determine the tri-fluid mixing efficiencies of these microchannels. We found that the SHM cannot significantly enhance mixing of three streams especially for a Reynolds number (Re) higher than 10. However, the 3D X-crossing channel based on splitting-and-recombination (SAR) showed effective tri-mixing performance over a wide Re range up to 275 (with a corresponding flow rate of 1972.5 μL min-1), thereby enabling high microchannel throughput. Furthermore, this tri-fluid micromixing process was used to synthesize a kind of Si-based nanoparticle. This achieved a narrower particle size distribution than traditional bulk mixing. Therefore, SAR-based tri-fluid mixing is an alternative for chemical and biochemical reactions where three reactants need to be mixed.
Collapse
Affiliation(s)
- Xiangsong Feng
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China.
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China. and School of Engineering and Applied Sciences, Department of Physics, Harvard University, 29 Oxford Street, Cambridge, USA
| | - Likai Hou
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China.
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China. and School of Engineering and Applied Sciences, Department of Physics, Harvard University, 29 Oxford Street, Cambridge, USA
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China.
| | - Wenying Li
- Research Center of Applied Solid State Chemistry, Chemistry Institute for Synthesis and Green Application, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China. and State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
| |
Collapse
|
21
|
Höhn EM, Panneerselvam R, Das A, Belder D. Raman Spectroscopic Detection in Continuous Microflow Using a Chip-Integrated Silver Electrode as an Electrically Regenerable Surface-Enhanced Raman Spectroscopy Substrate. Anal Chem 2019; 91:9844-9851. [DOI: 10.1021/acs.analchem.9b01514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eva-Maria Höhn
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany
| | | | - Anish Das
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany
| | - Detlev Belder
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany
| |
Collapse
|
22
|
Ultra-sensitive detection of uranyl ions with a specially designed high-efficiency SERS-based microfluidic device. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9468-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Zhang D, You H, Yuan L, Hao R, Li T, Fang J. Hydrophobic Slippery Surface-Based Surface-Enhanced Raman Spectroscopy Platform for Ultrasensitive Detection in Food Safety Applications. Anal Chem 2019; 91:4687-4695. [DOI: 10.1021/acs.analchem.9b00085] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dongjie Zhang
- Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Hongjun You
- School of Science, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Lei Yuan
- Shaanxi Institute for Food and Drug Control, Xi’an, Shaanxi 710065, China
| | - Rui Hao
- Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Xi’an, Shaanxi 710065, China
| | - Jixiang Fang
- Key Laboratory of Physical Electronics and Devices of Ministry of Education, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
24
|
Týčová A, Klepárník K. Combination of liquid-based column separations with surface-enhanced Raman spectroscopy. J Sep Sci 2018; 42:431-444. [PMID: 30267463 DOI: 10.1002/jssc.201800852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023]
Abstract
Surface-enhanced Raman spectroscopy is a constantly developing analytical method providing not only high-sensitive quantitative but also qualitative information on an analyte. Thus, it is reasonable that it has been tested as a promising detection method in column separations. Although its implementation in analytical separations is not widespread, some surprising results, like enormous signal enhancement and demonstrations of single-molecule identifications, proved in only a few special examples, indicate the potential of the method. The high detection sensitivity and selectivity would be of paramount importance in trace analyses of biologically relevant molecules in complex matrices. However, the combination of surface-enhanced Raman spectroscopy with column separation methods brings two principal issues. Interactions of analytes with metal substrates can cause deteriorations of separations and the detection can be affected by background electrolytes or elution agents. Thus, in principle, this review is on the experimental and methodological solutions to these problems. First, theoretical and practical aspects of Raman scattering, and excitation of surface plasmon in colloid suspensions of nanoparticles and on planar nanostructured substrates are briefly explained. Advances in experimental arrangements of on-line and at-line couplings with column liquid phase separation methods, including microfluidic devices, are described together with chosen analytical applications.
Collapse
Affiliation(s)
- Anna Týčová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|