1
|
Yu ZJ, Yang TT, Liu G, Deng DH, Liu L. Gold Nanoparticles-Based Colorimetric Immunoassay of Carcinoembryonic Antigen with Metal-Organic Framework to Load Quinones for Catalytic Oxidation of Cysteine. SENSORS (BASEL, SWITZERLAND) 2024; 24:6701. [PMID: 39460180 PMCID: PMC11510933 DOI: 10.3390/s24206701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
This work reported gold nanoparticles (AuNPs)-based colorimetric immunoassay with the Cu-based metal-organic framework (MOF) to load pyrroloquinoline quinone (PQQ) for the catalytic oxidation of cysteine. In this method, both Cu2+ and PQQ in the MOF could promote the oxidation of inducer cysteine by redox cycling, thus limiting the cysteine-induced aggregation of AuNPs and achieving dual signal amplification. Specifically, the recombinant carcinoembryonic antigen (CEA) targets were anchored on the MOF through the metal coordination interactions between the hexahistidine (His6) tag in CEA and the unsaturated Cu2+ sites in MOF. The CEA/PQQ-loaded MOF could be captured by the antibody-coated ELISA plate to catalyze the oxidation of cysteine. However, once the target CEA in the samples bound to the antibody immobilized on the plate surface, the attachment of CEA/PQQ-loaded MOF would be limited. Cysteine remaining in the solution would trigger the aggregation of AuNPs and cause a color change from red to blue. The target concentration was positively related to the aggregation and color change of AuNPs. The signal-on competitive plasmonic immunoassay exhibited a low detection limit with a linear range of 0.01-1 ng/mL. Note that most of the proteins in commercial ELISA kits are recombinant with a His6 tag in the N- or C-terminal, so the work could provide a sensitive plasmonic platform for the detection of biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (T.-T.Y.); (G.L.); (D.-H.D.)
| |
Collapse
|
2
|
Feng Y, Gao F, Yi X, La M. Optical Bioassays Based on the Signal Amplification of Redox Cycling. BIOSENSORS 2024; 14:269. [PMID: 38920573 PMCID: PMC11201508 DOI: 10.3390/bios14060269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Optical bioassays are challenged by the growing requirements of sensitivity and simplicity. Recent developments in the combination of redox cycling with different optical methods for signal amplification have proven to have tremendous potential for improving analytical performances. In this review, we summarized the advances in optical bioassays based on the signal amplification of redox cycling, including colorimetry, fluorescence, surface-enhanced Raman scattering, chemiluminescence, and electrochemiluminescence. Furthermore, this review highlighted the general principles to effectively couple redox cycling with optical bioassays, and particular attention was focused on current challenges and future opportunities.
Collapse
Affiliation(s)
- Yunxiao Feng
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ming La
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China;
| |
Collapse
|
3
|
Mosquera-Ortega M, Rodrigues de Sousa L, Susmel S, Cortón E, Figueredo F. When microplastics meet electroanalysis: future analytical trends for an emerging threat. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5978-5999. [PMID: 37921647 DOI: 10.1039/d3ay01448g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Microplastics are a major modern challenge that must be addressed to protect the environment, particularly the marine environment. Microplastics, defined as particles ≤5 mm, are ubiquitous in the environment. Their small size for a relatively large surface area, high persistence and easy distribution in water, soil and air require the development of new analytical methods to monitor their presence. At present, the availability of analytical techniques that are easy to use, automated, inexpensive and based on new approaches to improve detection remains an open challenge. This review aims to outline the evolution and novelties of classical and advanced methods, in particular the recently reported electroanalytical detectors, methods and devices. Among all the studies reviewed here, we highlight the great advantages of electroanalytical tools over spectroscopic and thermal analysis, especially for the rapid and accurate detection of microplastics in the sub-micron range. Finally, the challenges faced in the development of automated analytical methods are discussed, highlighting recent trends in artificial intelligence (AI) in microplastics analysis.
Collapse
Affiliation(s)
- Mónica Mosquera-Ortega
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Basic Science Department, Faculty Regional General Pacheco, National Technological University, Argentina
| | - Lucas Rodrigues de Sousa
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Chemistry Institute, Federal University of Goias, Campus Samambaia, Goiania, Brazil
| | - Sabina Susmel
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Eduardo Cortón
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Department of Biosciences and Bioengineering, Indian Institute of Technology at Guwahati, Assam, India
| | - Federico Figueredo
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
| |
Collapse
|
4
|
Qiu X, Dai Q, Tang H, Li Y. Multiplex Assays of MicroRNAs by Using Single Particle Electrochemical Collision in a Single Run. Anal Chem 2023; 95:13376-13384. [PMID: 37603691 DOI: 10.1021/acs.analchem.3c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
It is important to quantify multiple biomarkers in a single run due to the advantages of precious samples and diagnostic accuracy. Based on the distinguishability of two types of current signals from single particle electrochemical collision (SPEC), step-type current transients produced by Pt nanoparticles (PtNPs) catalyzed hydrazine oxidation and peak-type current transients produced by Ag nanoparticles (AgNPs) oxidation, a kind of multiplex immunoassay of target microRNAs (miRNA-21 and Let-7a) have been established during SPEC in a single run. When the single-stranded DNA (ssDNA1) that was perfectly complementary to miRNA-21 was coupled to the surface of PtNPs, the SPEC of PtNPs electrocatalysis was inhibited and the step-type current transients disappeared, while the single-stranded DNA (ssDNA2) that was perfectly complementary to Let-7a was coupled to the surface of AgNPs, the SPEC of AgNPs oxidation was inhibited, and the peak-type current transients disappeared, thus the signals were in the "off" state at this time. After that, miRNA-21 and Let-7a were added into solution, complementary base pairing disrupted the weak DNA-NP interaction and restored the electrocatalysis of PtNPs and the electrooxidation of AgNPs, and the step-type current signals and peak-type current signals were in the "on" state. Moreover, the frequencies from two different recovered signals (PtNPs catalysis and AgNPs oxidation) corresponded to the amount of added miRNA-21 and Let-7a, thus a multiplex immunoassay method for dual quantification of miRNA-21 and Let-7a in a single run was established.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Qingshan Dai
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| |
Collapse
|
5
|
Liu J, Ma C, Shi S, Liu H, Wen W, Zhang X, Wu Z, Wang S. A general controllable release amplification strategy of liposomes for single-particle collision electrochemical biosensing. Biosens Bioelectron 2022; 207:114182. [PMID: 35305388 PMCID: PMC8925861 DOI: 10.1016/j.bios.2022.114182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
As an important component of the COVID-19 mRNA vaccines, liposomes play a key role in the efficient protection and delivery of mRNA to cells. Herein, due to the controllable release amplification strategy of liposomes, a reliable and robust single-particle collision electrochemical (SPCE) biosensor was constructed for H9N2 avian influenza virus (H9N2 AIV) detection by combining liposome encapsulation-release strategy with immunomagnetic separation. The liposomes modified with biotin and loaded with platinum nanoparticles (Pt NPs) were used as signal probes for the first time. Biotin facilitated the coupling of biomolecules (DNA or antibodies) through the specific reaction of biotin-streptavidin. Each liposome can encapsulate multiple Pt NPs, which were ruptured under the presence of 1 × PBST (phosphate buffer saline with 0.05% Tween-20) within 2 min, and the encapsulated Pt NPs were released for SPCE experiment. The combination of immunomagnetic separation not only improved the anti-interference capabilities but also avoided the agglomeration of Pt NPs, enabling the SPCE biosensor to realize ultrasensitive detection of 18.1 fg/mL H9N2 AIV. Furthermore, the reliable SPCE biosensor was successfully applied in specific detection of H9N2 AIV in complex samples (chicken serum, chicken liver and chicken lung), which promoted the universality of SPCE biosensor and its application prospect in early diagnosis of diseases.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Chong Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Siwei Shi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Heng Liu
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
6
|
Ma X, Deng D, Xia N, Hao Y, Liu L. Electrochemical Immunosensors with PQQ-Decorated Carbon Nanotubes as Signal Labels for Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1757. [PMID: 34361143 PMCID: PMC8308108 DOI: 10.3390/nano11071757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Nanocatalysts are a promising alternative to natural enzymes as the signal labels of electrochemical biosensors. However, the surface modification of nanocatalysts and sensor electrodes with recognition elements and blockers may form a barrier to direct electron transfer, thus limiting the application of nanocatalysts in electrochemical immunoassays. Electron mediators can accelerate the electron transfer between nanocatalysts and electrodes. Nevertheless, it is hard to simultaneously achieve fast electron exchange between nanocatalysts and redox mediators as well as substrates. This work presents a scheme for the design of electrochemical immunosensors with nanocatalysts as signal labels, in which pyrroloquinoline quinone (PQQ) is the redox-active center of the nanocatalyst. PQQ was decorated on the surface of carbon nanotubes to catalyze the electrochemical oxidation of tris(2-carboxyethyl)phosphine (TCEP) with ferrocenylmethanol (FcM) as the electron mediator. With prostate-specific antigen (PSA) as the model analyte, the detection limit of the sandwich-type immunosensor was found to be 5 pg/mL. The keys to success for this scheme are the slow chemical reaction between TCEP and ferricinum ions, and the high turnover frequency between ferricinum ions, PQQ. and TCEP. This work should be valuable for designing of novel nanolabels and nanocatalytic schemes for electrochemical biosensors.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
| | - Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China;
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (D.D.); (N.X.)
| |
Collapse
|
7
|
Zhao XH, Zhou YG. Rapid and Accurate Data Processing for Silver Nanoparticle Oxidation in Nano-Impact Electrochemistry. Front Chem 2021; 9:718000. [PMID: 34381763 PMCID: PMC8350773 DOI: 10.3389/fchem.2021.718000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
In recent years, nano-impact electrochemistry (NIE) has attracted widespread attention as a new electroanalytical approach for the analysis and characterization of single nanoparticles in solution. The accurate analysis of the large volume of the experimental data is of great significance in improving the reliability of this method. Unfortunately, the commonly used data analysis approaches, mainly based on manual processing, are often time-consuming and subjective. Herein, we propose a spike detection algorithm for automatically processing the data from the direct oxidation of sliver nanoparticles (AgNPs) in NIE experiments, including baseline extraction, spike identification and spike area integration. The resulting size distribution of AgNPs is found to agree very well with that from transmission electron microscopy (TEM), showing that the current algorithm is promising for automated analysis of NIE data with high efficiency and accuracy.
Collapse
Affiliation(s)
- Xi-Han Zhao
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
8
|
Shu T, Sun Y, Bai Y, Lin X, Zhou Z, Su L, Zhang X. Rational Design of "Three-in-One" Ratiometric Nanoprobes: Protein-Caged Dityrosine, CdS Quantum Dots, and Gold Nanoclusters. ACS OMEGA 2020; 5:8943-8951. [PMID: 32337458 PMCID: PMC7178766 DOI: 10.1021/acsomega.0c00711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Recently, multiplexed ratiometric fluorescence sensors for detecting several analytes have received much interest because of their multifunctionality. Here, we fabricate a novel trinity fluorescent nanoprobe in which one small-molecule fluorophore, blue-emissive dityrosine (diTyr) residues, and two nanomaterial fluorophores, green-emissive CdS quantum dots (CdSQDs) and red-emissive gold nanoclusters (AuNCs), are cocaged in a bovine serum albumin (BSA) molecule. The large differences of Stokes shifts among diTyr residues, CdSQDs, and AuNCs ensure their emission at a single excitation wavelength. The nanoprobes can be facilely integrated using two-step synthetic reactions. DiTyr residues and AuNCs are formed and bound to the protein cage through the redox reaction between Au3+ and tyrosine residues of BSA, and the CdSQDs are followed to be conjugated to the modified BSA cage-templated CdS combination reaction. With established benign biocompatibility, the nanoprobes can ratiometrically detect intracellular glutathione by significantly enhancing the green emission of the conjugated CdSQDs. Likewise, the ratiometric sensing of solution alkalinity and tris(2-carboxyethyl)phosphine can be achieved using blue-emitted diTyr residues and red-emitted AuNCs as the responsive units, respectively, and the corresponding other two fluorophores as the reference signals. This study addresses a concept of trinity fluorescence ratiometric sensing system with multiple targets and optional references, which should be a promising pathway to meet the challenges from complexing biochemical environments and multivariate analysis.
Collapse
Affiliation(s)
- Tong Shu
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yanping Sun
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yunlong Bai
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiangfang Lin
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ziping Zhou
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lei Su
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xueji Zhang
- Beijing
Key Laboratory for Bioengineering and Sensing Technology, Research
Center for Bioengineering and Sensing Technology, School of Chemistry
and Biological Engineering, University of
Science and Technology Beijing, Beijing 100083, P. R. China
- School
of Biomedical Engineering, Shenzhen University
Health Science Center, Shenzhen, Guangdong 518060, China
| |
Collapse
|
9
|
Nguyen THT, Lee J, Kim HY, Nam KM, Kim BK. Current research on single-entity electrochemistry for soft nanoparticle detection: Introduction to detection methods and applications. Biosens Bioelectron 2020; 151:111999. [DOI: 10.1016/j.bios.2019.111999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
10
|
Patrice FT, Qiu K, Ying YL, Long YT. Single Nanoparticle Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:347-370. [PMID: 31018101 DOI: 10.1146/annurev-anchem-061318-114902] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Experimental techniques to monitor and visualize the behaviors of single nanoparticles have not only revealed the significant spatial and temporal heterogeneity of those individuals, which are hidden in ensemble methods, but more importantly, they have also enabled researchers to elucidate the origin of such heterogeneity. In pursuing the intrinsic structure-function relations of single nanoparticles, the recently developed stochastic collision approach demonstrated some early promise. However, it was later realized that the appropriate sizing of a single nanoparticle by an electrochemical method could be far more challenging than initially expected owing to the dynamic motion of nanoparticles in electrolytes and complex charge-transfer characteristics at electrode surfaces. This clearly indicates a strong necessity to integrate single nanoparticle electrochemistry with high-resolution optical microscopy. Hence, this review aims to give a timely update of the latest progress for both electrochemically sensing and seeing single nanoparticles. A major focus is on collision-based measurements, where nanoparticles or single entities in solution impact on a collector electrode and the electrochemical response is recorded. These measurements are further enhanced with optical measurements in parallel. For completeness, advances in other related methods for single nanoparticle electrochemistry are also included.
Collapse
Affiliation(s)
- Fato Tano Patrice
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Kaipei Qiu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Qiu K, Fato TP, Wang PY, Long YT. Real-time monitoring of electrochemical reactions on single nanoparticles by dark-field and Raman microscopy. Dalton Trans 2019; 48:3809-3814. [DOI: 10.1039/c8dt05141k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dark-field and Raman microscopy to probe the single NP electrochemistry in real time.
Collapse
Affiliation(s)
- Kaipei Qiu
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Tano Patrice Fato
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pei-Yao Wang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|