1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Wang B, Kong Y, Tian X, Xu M. A highly sensitive and selective chemiluminescent probe for peroxynitrite detection in vitro, in vivo and in human liver cancer tissue. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134094. [PMID: 38518698 DOI: 10.1016/j.jhazmat.2024.134094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Peroxynitrite (ONOO-) is one of the important active nitrogen/reactive oxygen species that plays various roles in biological processes, such as inducing apoptosis and necrosis. Recent studies have shown that a significant increases in ONOO- content during tumor development, which is closely related to the level of oxidative stress within the tumor. It has been found that herbicide paraquat (PQ) can significantly increase the level of ONOO- in cells. Therefore, accurate monitoring abnormal changes in ONOO- caused by environmental hazardous materials and tumors is helpful in promoting the diagnosis and treatment of oxidative stress diseases (tumors), evenly environmental detection. Currently, traditional fluorescent probes for ONOO- detection have background interference. To address this, we developed a chemiluminescent probe (CL-1) and a fluorescent probe (Flu-1), using diphenyl phosphonate as a recognition group. CL-1 shows extremely sensitivity (9.8 nM), a high signal-to-noise(S/N) ratio (502), and excellent bioimaging capabilities compared to fluorescent probe (Flu-1). We have successfully used CL-1 to detect ONOO- produced by PQ stimulated cells, as well as endogenous ONOO- in tumor cells, mice, and human liver cancer tissues. Therefore, CL-1 can not only be a valuable tool for visualizing tumor and studying the role of ONOO- in tumor pathology, but the probe has the potential to be a powerful molecular imaging tool for exploring the complex biological role of ONOO- in a variety of biological Settings.
Collapse
Affiliation(s)
- Baoqu Wang
- Centre for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Yating Kong
- Centre for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Xiaoxue Tian
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510080, China
| | - Min Xu
- Centre for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China.
| |
Collapse
|
3
|
Zhang Z, Yu Y, Liu S, Li J, Zhao B, Wang F, Zhao Z, Ni Q, Liu F, Xue J. Simultaneous Visualization and Depletion of Peroxynitrite by a Simple Aggregation-Induced Emission Nanoprobe for Preventing Breast Cancer Metastasis after Surgery. Anal Chem 2024; 96:4180-4189. [PMID: 38436249 DOI: 10.1021/acs.analchem.3c05292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Inflammation has been confirmed to be closely related to the development of tumors, while peroxynitrite (ONOO-) is one of the most powerful oxidative pro-inflammatory factors. Although ONOO- can kill bacteria through oxidation, it will activate matrix metalloproteinases (MMPs), accelerate the degradation of the extracellular matrix (ECM), and subsequently lead to the activation and release of other tumor promotion factors existing in the ECM, promoting tumor metastasis and invasion. Herein, we report a simple aggregation-induced emission (AIE) nanoprobe (NP), TPE-4NMB, that can simultaneously visualize and deplete ONOO-. The probe can light up the endogenous and exogenous ONOO- in cells and selectively inhibit the proliferation and migration of 4T1 cells by inducing an intracellular redox homeostasis imbalance through ONOO- depletion. After being modified with DSPE-PEG2000, the TPE-4NMB NPs can be used to image ONOO- induced by various models in vivo; especially, it can monitor the dynamic changes of ONOO- level in the residual tumor after surgery, which can provide evidence for clarifying the association between surgery, ONOO-, and cancer metastasis. Excitingly, inhibited tumor volume growth and decreased counts of lung metastases were observed in the TPE-4NMB NPs group, which can be attributed to the downregulated expression of MMP-9 and transforming growth factor-β (TGF-β), increased cell apoptosis, and inhibited epithelial-mesenchymal transition (EMT) mediated by ONOO-. The results will provide new evidence for clarifying the relationship between surgery, ONOO-, and tumor metastasis and serve as a new intervention strategy for preventing tumor metastasis after tumor resection.
Collapse
Affiliation(s)
- Zhongtao Zhang
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Taishan Academy of Medical Sciences, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Yuanyuan Yu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Taishan Academy of Medical Sciences, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Shaoxia Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Taishan Academy of Medical Sciences, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Jiaming Li
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Bin Zhao
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Taishan Academy of Medical Sciences, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Wang
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Taishan Academy of Medical Sciences, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Ze Zhao
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Taishan Academy of Medical Sciences, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Qingbin Ni
- Taishan Academy of Medical Sciences, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Fulei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Taishan Academy of Medical Sciences, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Jingwei Xue
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Taishan Academy of Medical Sciences, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| |
Collapse
|
4
|
Yang K, Liu Y, Deng M, Wang P, Cheng D, Li S, He L. Imaging peroxynitrite in endoplasmic reticulum stress and acute lung injury with a near-infrared fluorescent probe. Anal Chim Acta 2024; 1286:342050. [PMID: 38049235 DOI: 10.1016/j.aca.2023.342050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The cellular endoplasmic reticulum (ER) is responsible for various functions, including protein synthesis, folding, distribution, and calcium ion storage. Studies have linked ER stress with acute lung injury (ALI), which can result in oxidative stress and even cell death. Peroxynitrite (ONOO-) is a well-known reactive oxygen species (ROS) that contributes to various physiological and pathological processes in oxidative stress diseases. To understand the role of ER ONOO- in ALI, it is crucial to accurately measure its level in the ER. Unfortunately, there is currently no probe available to detect ER ONOO- in an ALI model. RESULTS To address this, we developed three near-infrared (NIR) fluorescent probes (DCM-F-ONOO, DCM-Cl-ONOO, and DCM-Br-ONOO) for the detection of ONOO- using pentafluorobenzenesulfonate (PFBS) moieties as fluorescence quenchers. Through comprehensive testing, we selected DCM-Br-ONOO as the best NIR fluorescent probe due to its rapid response (within 3 min), high selectivity, good sensitivity (LOD = 2.3 nM), and approximately 66-fold enhanced response to ONOO- in fluorescence intensity. The probe was successfully applied to detect changes in ONOO- levels induced by different drugs in the ER of living cells. Importantly, a significant increase in the level of ONOO- was observed in the ER of an ALI cell model (4.5-fold) and an ALI mouse model (2.5-fold) using the probe, which is essential for understanding the role of ONOO- in ER-associated diseases. SIGNIFICANCE Using DCM-Br-ONOO as a probe, present work further validated that the elevated levels of ONOO- secretion were accompanied by the ALI progressed. These findings may provide valuable results for figuring out the biological roles that ONOO- played in ALI.
Collapse
Affiliation(s)
- Ke Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Ying Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Min Deng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Peipei Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Dan Cheng
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China.
| | - Songjiao Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421002, China.
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421002, China.
| |
Collapse
|
5
|
Li M, Lei P, Shuang S, Dong C, Zhang L. Recent advances in fluorescent probes for dual-detecting ONOO - and analytes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123179. [PMID: 37542874 DOI: 10.1016/j.saa.2023.123179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Although peroxynitrite (ONOO-) plays an essential role in cellular redox homeostasis, its excess ONOO- will affect the normal physiological function of cells. Therefore, real-time monitoring of changes in local ONOO- will contribute to further revealing the biological functions. Reliable and accurate detection of biogenic ONOO- will definitely benefit for disentangling its complex functions in living systems. In the past few years, more fluorescent probes have been developed to help understand and reveal cellular ONOO- changes. However, there has been no comprehensive and critical review of multifunctional fluorescent probes for cellular ONOO- and other analytes. To highlight the recent advances, this review first summarized the recent progress of multifunctional fluorescent probes since 2018, focusing on molecular structures, response mechanisms, optical properties, and biological imaging in the detection and imaging of cellular ONOO- and analytes. We classified and discussed in detail the limitations of existing multifunctional probes, and proposed new ideas to overcome these limitations. Finally, the challenges and future development trends of ONOO- fluorescence probes were discussed. We hoped this review will provide new research directions for developing of multifunctional fluorescent probes and contribute to the early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Minglu Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Peng Lei
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China.
| |
Collapse
|
6
|
Zhou X, Zhang C, Zhou Q, Liang J, Zhang X, Shi Y, Zhu J, Zhong L. Imaging application of an MMP2-sensitive tumor-targeted prussian blue fluorescent nanoprobe. J Biomater Appl 2023; 38:372-380. [PMID: 37531192 DOI: 10.1177/08853282231194147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In recent years, the application of nanoimaging technology on standardize tumor diagnosis has become a new research hotspot, especially nanoprobes. Our research group has synthesized a kind of nanocarrier, mPEG2000-GPLGIAGQ-DSPE, which has the characteristic of matrix metalloproteinase-2 (MMP2) sensitive ability in tumor microenvironment. Meanwhile, the encapsulation method is adopted to prepare MMP2-sensitive tumor-targeted prussian blue fluorescent nanoprobe with mPEG2000-GPLGIAGQ-DSPE as the carrier. On the one hand, this novel nanoprobe not only can effectively improve the solubility of prussian blue, but is non-toxic and safe for cells. On the other hand, octapeptide (GPLGIAGQ) in mPEG2000-GPLGIAGQ-DSPE nanocarrier can specifically respond to MMP2 in tumor cells to release prussian blue, and achieve targeted intelligent imaging of tumor cells.
Collapse
Affiliation(s)
- Xinglu Zhou
- Department of PET/CT Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Changmei Zhang
- Department of Pharmaceutics, Harbin Medical University-Daqing Campus, Harbin, China
| | - Qiquan Zhou
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Liang
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Zhang
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujie Shi
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingna Zhu
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhong
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Wang X, Wang X, Han Q. Intelligent detection strategy and bioimaging application of dual-responsive Hg 2+ and ONOO - using near-infrared probes. Anal Chim Acta 2023; 1266:341358. [PMID: 37244665 DOI: 10.1016/j.aca.2023.341358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
Mercury is a highly toxic heavy metal pollutant. Mercury and its derivatives pose serious threats to the environment and the health of organisms. Numerous reports have indicated that Hg2+ exposure induces a burst of oxidative stress in organisms, causing severe damage to the health of the organism. A large number of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced under conditions of oxidative stress, and superoxide anions (O2-) and NO radicals react rapidly with each other to produce peroxynitrite (ONOO-), an important downstream product. Therefore, developing an efficient and highly responsive screening method to monitor the fluctuations of Hg2+ and ONOO- levels is particularly important. In this work, we designed and synthesized a highly sensitive and highly specific near-infrared probe W-2a, which can effectively detect and distinguish Hg2+ and ONOO- through fluorescence imaging. In addition, we developed a WeChat mini-program called "Colorimetric acquisition" and built an intelligent detection platform to assess the environmental hazards of Hg2+ and ONOO-. The probe can detect Hg2+ and ONOO- in the body through dual signaling, as evidenced by cell imaging, and has successfully monitored fluctuations in the ONOO- levels in inflamed mice. In conclusion, the W-2a probe provides a highly efficient and reliable method for assessing oxidative stress-induced changes in the ONOO- levels in the body.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, PR China
| | - Xuechuan Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
8
|
Zhou Z, Wang X, Wang Z, Wu J, Zhang F, Mao Z. Evaluation of peroxynitrite fluxes in inflammatory mice with a ratiometric fluorescence probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122503. [PMID: 36848859 DOI: 10.1016/j.saa.2023.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Inflammation is a critical physiological process in the human body, which is closely related to numerous disorders and cancers. ONOO- is generated and functionalized in the inflamed process, but the roles of ONOO- are still blurred. To illuminate the roles of ONOO-, we fabricated an intramolecular charge transfer (ICT)-based fluorescence probe, HDM-Cl-PN, for the ratiometric determination of ONOO- in the inflamed mouse model. The probe displayed a gradual fluorescence increase at 676 nm and a fluorescence drop at 590 nm toward 0-10.5 μM ONOO-, and the ratio of 676 nm fluorescence and 590 nm fluorescence varied from 0.7 to 24.7. The significantly changed ratio and favorable selectivity ensure the sensitive detection of subtle changes in cellular ONOO-. Thanks to the excellent sensing performance, HDM-Cl-PNin vivo ratiometrically visualized ONOO- fluctuations in the LPS-triggered inflammatory process. Overall, this work not only expatiated the rational design for a ratiometric ONOO- probe but also built a bridge to investigate the connections between ONOO- and inflammation in living mice.
Collapse
Affiliation(s)
- Zhenhua Zhou
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoyu Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhao Wang
- Wuhan Business University, Wuhan 430056, China
| | - Jiao Wu
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Fan Zhang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Zhiqiang Mao
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
9
|
Wang J, Liu SY, Yu GH, Hu HR, Fang Y, Chen SJ, Wang KP, Hu ZQ. Highly selective and sensitive benzopyran-based fluorescent probes for imaging exogenous and endogenous peroxynitrite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122747. [PMID: 37080056 DOI: 10.1016/j.saa.2023.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/23/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Peroxynitrite is widely present in organisms and closely related to many pathophysiological functions. Therefore, it is of great physiological significance to develop capable probes for detecting ONOO-. In this work, a novel fluorescent probe B-Ch was designed based on the intramolecular charge transfer (ICT) effect. By means of molecular engineering, the replacement from diethylamine group to hydroxyl group has improved the detection sensitivity of the probe. After the addition of ONOO-, the solution color and fluorescence showed noticeable changes, which were visible to the naked eye. The probe showed excellent advantages: visualization, good selectivity, low sensitivity (22.4 nM), good stability and biocompatibility, exogenous and endogenous imaging of ONOO- in HeLa cells.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shu-Yang Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guan-Hua Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao-Ran Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ying Fang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shao-Jin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
10
|
Xu Z, Xu Z, Zhang D. A near infrared fluorescent probe for rapid sensing of peroxynitrite in living cells and breast cancer mice. RSC Adv 2023; 13:8262-8269. [PMID: 36926017 PMCID: PMC10013131 DOI: 10.1039/d3ra01024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Peroxynitrite (ONOO-) plays an essential role in numerous physiological and pathological processes owing to its strong oxidation and nitrification. Many studies have shown that ONOO- abnormalities are associated with inflammatory diseases, even cancer, such as arthritis, hepatitis, pneumonia, and breast cancer. Thus, developing a trustworthy technology to monitor ONOO- levels is critical in inflammatory or cancer illnesses. Herein, an ultrafast near-infrared (NIR) fluorescent probe (Cy-OH-ONOO) is proposed to detect ONOO- within 30 s. The probe's borate moiety is oxidized and separated from Cy-OH-ONOO, releasing a NIR fluorescence signal after interacting with ONOO- under physiological circumstances. In addition, the probe displays good selectivity and sensitivity towards ONOO- compared to other related biological species. Moreover, it is applied to the image and detects the level fluctuation of ONOO- in living cells and breast cancer mice based on excellent features with high biocompatibility and low toxicity of the developed probe. Therefore, Cy-OH-ONOO could serve as a powerful imaging tool to understand the correlation of ONOO- with inflammatory or breast cancer pathophysiological processes and to assess ONOO- levels in cellular oxidative stress.
Collapse
Affiliation(s)
- Zixiang Xu
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University Nantong 226001 China
| | - Zhencai Xu
- Guanyun People's Hospital Lianyungang Jiangsu 222000 China
| | - Dong Zhang
- Guanyun People's Hospital Lianyungang Jiangsu 222000 China
| |
Collapse
|
11
|
Yan H, Xu X, Li J, Xie P, Cao W, Yang X, Ye Y. A novel fluorescence-on fluorescent probe for ONOO- detection in HeLa cells. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
12
|
Yadav AK, Zhao Z, Weng Y, Gardner SH, Brady CJ, Pichardo Peguero OD, Chan J. Hydrolysis-Resistant Ester-Based Linkers for Development of Activity-Based NIR Bioluminescence Probes. J Am Chem Soc 2023; 145:1460-1469. [PMID: 36603103 PMCID: PMC10120059 DOI: 10.1021/jacs.2c12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activity-based sensing (ABS) probes equipped with a NIR bioluminescence readout are promising chemical tools to study cancer biomarkers owing to their high sensitivity and deep tissue compatibility. Despite the demand, there is a dearth of such probes because NIR substrates (e.g., BL660 (a NIR luciferin analog)) are not equipped with an appropriate attachment site for ABS trigger installation. For instance, our attempts to mask the carboxylic acid moiety with standard self-immolative benzyl linkers resulted in significant background signals owing to undesirable ester hydrolysis. In this study, we overcame this longstanding challenge by rationally designing a new hydrolysis-resistant ester-based linker featuring an isopropyl shielding arm. Compared to the parent, the new design is 140.5-fold and 67.8-fold more resistant toward spontaneous and esterase-mediated hydrolysis, respectively. Likewise, we observed minimal cleavage of the ester moiety when incubated with a panel of enzymes possessing ester-hydrolyzing activity. These impressive in vitro results were corroborated through a series of key experiments in live cells. Further, we showcased the utility of this technology by developing the first NIR bioluminescent probe for nitroreductase (NTR) activity and applied it to visualize elevated NTR expression in oxygen deficient lung cancer cells and in a murine model of non-small cell lung cancer. The ability to monitor the activity of this key biomarker in a deep tissue context is critical because it is associated with tumor hypoxia, which in turn is linked to drug resistance and aggressive cancer phenotypes.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yourong Weng
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarah H Gardner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catharine J Brady
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Oliver D Pichardo Peguero
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Zhang C, Zhang X, Shen Y, Zhou Z. A mitochondrion targetable dimethylphosphorothionate-based far-red and colorimetric fluorescent probe with large Stokes shift for monitoring peroxynitrite in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:196-202. [PMID: 36515437 DOI: 10.1039/d2ay01614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Peroxynitrite (ONOO-) is a biological oxidant that is related to numerous physiological and pathological processes. An overdose of ONOO- is the cause of various serious diseases. Some evidence demonstrates that mitochondria are the major sites of ONOO- production. Therefore, monitoring mitochondrial ONOO- is important to understand the related pathological processes in living systems. Herein, a colorimetric and far-red fluorescent sensing probe (PCPA) for the determination of ONOO- was constructed based on a dicyanoisophorone skeleton using dimethylphosphorothionate as the recognition group and pyridine salt as the mitochondrion-targeting unit. PCPA showed a far-red fluorescence response to ONOO- accompanied by a distinct color change from colorless to yellow via the ONOO- induced deprotection of dimethylphosphorothionate. In addition, PCPA exhibited a large Stokes shift (200 nm), high selectivity detection and high sensibility (LOD = 39 nM). Furthermore, PCPA was successfully employed for imaging ONOO- and tracing ONOO- in mitochondria. PCPA presents a new recognition group and has potential applications in the biology field.
Collapse
Affiliation(s)
- Chunxiang Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China, +86 746-7186115.
| | - Xiangyang Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China, +86 746-7186115.
| | - Youming Shen
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China, +86 746-7186115.
| | - Zile Zhou
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China, +86 746-7186115.
| |
Collapse
|
14
|
Freidel L, Li S, Choffart A, Kuebler L, Martins AF. Imaging Techniques in Pharmacological Precision Medicine. Handb Exp Pharmacol 2023; 280:213-235. [PMID: 36907970 DOI: 10.1007/164_2023_641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Biomedical imaging is a powerful tool for medical diagnostics and personalized medicines. Examples of commonly used imaging modalities include Positron Emission Tomography (PET), Ultrasound (US), Single Photon Emission Computed Tomography (SPECT), and hybrid imaging. By combining these modalities, scientists can gain a comprehensive view and better understand physiology and pathology at the preclinical, clinical, and multiscale levels. This can aid in the accuracy of medical diagnoses and treatment decisions. Moreover, biomedical imaging allows for evaluating the metabolic, functional, and structural details of living tissues. This can be particularly useful for the early diagnosis of diseases such as cancer and for the application of personalized medicines. In the case of hybrid imaging, two or more modalities are combined to produce a high-resolution image with enhanced sensitivity and specificity. This can significantly improve the accuracy of diagnosis and offer more detailed treatment plans. In this book chapter, we showcase how continued advancements in biomedical imaging technology can potentially revolutionize medical diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Lucas Freidel
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Sixing Li
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Anais Choffart
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Laura Kuebler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - André F Martins
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.
- German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
15
|
Ji X, Zhou J, Liu C, Zhang J, Dong X, Zhang F, Zhao W. Regulating the activity of boronate moiety to construct fluorescent probes for the detection of ONOO -in vitro and in vivo. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5027-5033. [PMID: 36468627 DOI: 10.1039/d2ay01727j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Abnormal intracellular peroxynitrite (ONOO-) concentration is related to oxidative damage, which is correlated with many pathological consequences, such as local inflammation and other diseases. In this work, a series of resorufin benzyl ether-based fluorescent probes were designed using boronate as a recognizing moiety installed on a phenyl moiety for ONOO- detection via a self-immolation mechanism. The location of the boronate as well as the substitution patterns on the phenyl moiety were investigated and the responding behaviors of the designed probes to ONOO-, other reactive oxygen species, and biothiols were examined. It was found that all the immolative probes were inevitably dominated by ONOO-. Compared with other probes, p-Borate possessed favorable selectivity and high sensitivity to ONOO-. Moreover, p-Borate was successfully used to detect ONOO- in cells and inflamed mice.
Collapse
Affiliation(s)
- Xin Ji
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Junliang Zhou
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Chang Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
| | - Fuli Zhang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P. R. China.
| | - Weili Zhao
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
16
|
Xiao-Ping W, Rong L, Min Z, Lulu Z, Hongyan R, Meiling P, Gao-Hui Z. Coumarin-based fluorescence turn-on probes for high selectivity peroxynitrite detection and imaging in living cells and γ-carrageenan-induced inflammatory tissue and mice. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Xie C, Zhou Y, Luo K, Yang Q, Tan L, Zhou L. Activated Two-Photon Near-Infrared Ratiometric Fluorescent Nanoprobe for ONOO – Detection and Early Diagnosis and Assessment of Liver Injury. Anal Chem 2022; 94:15518-15524. [DOI: 10.1021/acs.analchem.2c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yizhuang Zhou
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, Guangxi 541001, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiaomei Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Tan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
18
|
Recent advance of fluorescent probes for detection of drug-induced liver injury markers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Tang C, Wang X, Jin Y, Wang F. Recent advances in HDAC-targeted imaging probes for cancer detection. Biochim Biophys Acta Rev Cancer 2022; 1877:188788. [PMID: 36049581 DOI: 10.1016/j.bbcan.2022.188788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Histone Deacetylases (HDACs) are abnormally high expressed in various cancers and play a crucial role in regulating gene expression. While HDAC-targeted inhibitors have been rapidly developed and approved in the last twenty years, noninvasive monitoring and visualizing the expression levels of HDACs in tumor tissues might help to early diagnosis in cancer and predict the response to HDAC-targeted cancer therapy. In this review, we summarize the recent advancements in the development of HDAC-targeted probes and their applications in cancer imaging and image-guided surgery. We also discuss the design strategies, advantages and disadvantages of these probes. We hope that this review will provide guidance for the design of HDAC-targeted imaging probes and clinical applications in future.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
20
|
Zhang L, Ying W, Sheng Z, Lv L, Gao J, Xue Y, Liu L. Bioluminescence imaging of fibroblast activation protein-alpha in vivo and human plasma with highly sensitive probe. Anal Biochem 2022; 655:114859. [PMID: 35988797 DOI: 10.1016/j.ab.2022.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
Abstract
Fibroblast activation protein-alpha (FAPα) has emerged as a biomarker of tumor stromal fibroblasts. FAP was overexpressed in stromal fibroblasts of human malignancies and positively correlated with the depth of tumor invasion, lymphatic metastasis, distant metastases, high TNM stage and poor prognosis. However, the circulating FAP levels in the plasma of gastric cancer patients and the relationship between FAP levels and gastric cancer remain unknown. Moreover, probes with super selectivity, extremely high sensitivity, and excellent performance in quantitative detection are still lacking. Herein, we developed the bioluminescent probe BL-FAP for sensitive detection and imaging of endogenous FAP in gastric cancer cells and tissues and plasma from gastric cancer patients. The probe exhibited the high signal-to-noise ratio (15000∼fold), the excellent selectivity (FAP/DPP IV ratio and FAP/PREP ratio = 50000∼ fold), and the high sensitivity (18.1 pg/mL). BL-FAP facilitates monitoring of endogenous FAP in living cells and nude mice bearing MGC-803-luc tumors. More importantly, this probe was successfully applied to the measurement of FAP activity levels in plasma from gastric cancer patients for the first time. A significant enhancement in FAP levels was observed in patients with gastric cancer, suggesting that the FAP level may be a potential diagnostic parameter for gastric cancer.
Collapse
Affiliation(s)
- Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, PR China.
| | - Weiwu Ying
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Zhijia Sheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Li Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221002, PR China
| |
Collapse
|
21
|
Cui Y, Han S, Zhang J, Wang X. A ratiometric fluorescent nanoprobe for ultrafast imaging of peroxynitrite in living cells. J Biol Inorg Chem 2022; 27:595-603. [PMID: 35976437 DOI: 10.1007/s00775-022-01954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
For ratiometrically imaging peroxynitrite (ONOO-) in living cells, we devised and fabricated a novel fluorescent nanoprobe, NC-NP530/460, in this study. To achieve ratiometric fluorescence response towards ONOO-, NC-NP530/460 used 3-(2-benzothiazolyl) coumarin (Cou-Bz) as the internal reference and 1,8-naphthimide derivative (Naph-PN) as a fluorescent ONOO- probe. These compounds were incorporated into an amphiphilic block polymer called Pluronic F-127. In addition to an ultrafast response to ONOO-, NC-NP530/460 also showed great selectivity and sensitive detection (detection limit was 4.51 μM). It was important to note that NC-NP530/460 demonstrated solid performance for ONOO- fluorescence ratio imaging in living cells, highlighting its potential for ONOO--related chemical biology research.
Collapse
Affiliation(s)
- Yijing Cui
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Suping Han
- Department of Pharmacy, Shandong Medical College, 5460 Erhuannanlu Road, Jinan, 250002, China
| | - Jingjing Zhang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoqing Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China. .,Institute of Material Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
22
|
Wang Z, Gong J, Wang P, Xiong J, Zhang F, Mao Z. An activatable fluorescent probe enables in vivo evaluation of peroxynitrite levels in rheumatoid arthritis. Talanta 2022; 252:123811. [DOI: 10.1016/j.talanta.2022.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
|
23
|
He L, Liu H, Wu J, Cheng Z, Yu F. Construction of a mitochondria-endoplasmic reticulum dual-targeted red-emitting fluorescent probe for imaging peroxynitrite in living cells and zebrafish. Chem Asian J 2022; 17:e202200388. [PMID: 35521668 DOI: 10.1002/asia.202200388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Peroxynitrite (ONOO - ) is one of the important reactive oxygen species, which plays a vital role in the physiological process of intracellular redox balance. Revealing the biological functions of ONOO - will contribute to further understanding of the oxidative process of organisms. In this work, we designed and synthesized a novel red-emitting fluorescent probe MCSA for the detection of ONOO - , which could rapidly respond to ONOO - within 250 s and exhibited high sensitivity to ONOO - with a low detection limit of 78 nM. Co-localization experiments demonstrated MCSA had the ability to localize into the mitochondria and endoplasmic reticulum. What's more, MCSA enabled monitoring ONOO - level changes during tunicamycin-induced endoplasmic reticulum stress. We have also successfully achieved the visual detection of exogenous and endogenous ONOO - in living cells and zebrafish. This work presented a chemical tool for imaging ONOO - in vitro and in vivo.
Collapse
Affiliation(s)
- Lingchao He
- Qufu Normal University, College of Chemistry and Chemical Engineering, CHINA
| | - Heng Liu
- Hainan Medical University, College of Emergency and Trauma, CHINA
| | - Jinsheng Wu
- The First Affiliated Hospital of Hainan Medical University, Department of Radiotherapy, CHINA
| | - Ziyi Cheng
- Hainan Medical University, College of Emergency and Trauma, CHINA
| | - Fabiao Yu
- Hainan Medical University, Institute of Functional Materials and Molecular Imaging, 3 College Road, Longhua District, Haikou, China, 571199, Hainan, CHINA
| |
Collapse
|
24
|
Zhu J, Zhu R, Miao Q. Polymeric agents for activatable fluorescence, self-luminescence and photoacoustic imaging. Biosens Bioelectron 2022; 210:114330. [PMID: 35567882 DOI: 10.1016/j.bios.2022.114330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Numerous polymeric agents have been widely applied in biology and medicine by virtue of the facile chemical modification, feasible nano-engineering approaches and fine-tuned pharmacokinetics. To endow polymeric imaging agents with ability to monitor and measure subtle molecular or cellular alterations at diseased sites, activatable polymeric probes that can elicit signal changes in response to biomolecular interactions or the analytes of interest have to be developed. Herein, this review aims to provide a systemic interpretation and summarization of the design methodology and imaging utility of recently emerged activatable polymeric probes. An introduction of activatable probes allowing for precise imaging and classification of polymeric imaging agents is reported first. Then, we give a detailed discussion of the contemporary design approaches toward activatable polymeric probes in diverse imaging modes for the detection of various stimuli and their imaging applications. Finally, current challenges and future advances are discussed and highlighted.
Collapse
Affiliation(s)
- Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
25
|
Mao Z, Xiong J, Wang P, An J, Zhang F, Liu Z, Seung Kim J. Activity-based fluorescence probes for pathophysiological peroxynitrite fluxes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214356] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Yang X, Qin X, Ji H, Du L, Li M. Constructing firefly luciferin bioluminescence probes for in vivo imaging. Org Biomol Chem 2022; 20:1360-1372. [PMID: 35080225 DOI: 10.1039/d1ob01940f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Bioluminescence imaging (BLI) is a widely applied visual approach for real-time detecting many physiological and pathological processes in a variety of biological systems. Based on the caging strategy, lots of bioluminescent probes have been well developed. While the targets react with recognizable groups, caged luciferins liberate luciferase substrates, which react with luciferase generating a bioluminescent response. Among the various bioluminescent systems, the most widely utilized bioluminescent system is the firefly luciferin system. The H and carboxylic acid of luciferin are critically caged sites. The introduced self-immolative linker extends the applications of probes. Firefly luciferin system probes have been successfully applied for analyzing physiological processes, monitoring the environment, diagnosing diseases, screening candidate drugs, and evaluating the therapeutic effect. Here, we systematically review the general design strategies of firefly luciferin bioluminescence probes and their applications. Bioluminescence probes provide a new approach for facilitating investigation in a diverse range of fields. It inspires us to explore more robust light emission luciferin and novel design strategies to develop bioluminescent probes.
Collapse
Affiliation(s)
- Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huimin Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
27
|
Abstract
Significance: Reactive sulfur and nitrogen species such as hydrogen sulfide (H2S) and nitric oxide (NO•) are ubiquitous cellular signaling molecules that play central roles in physiology and pathophysiology. A deeper understanding of these signaling pathways will offer new opportunities for therapeutic treatments and disease management. Recent Advances: Chemiluminescence methods have been fundamental in detecting and measuring biological reactive sulfur and nitrogen species, and new approaches are emerging for imaging these analytes in living intact specimens. Ozone-based and luminol-based chemiluminescence methods have been optimized for quantitative analysis of hydrogen sulfide and nitric oxide in biological samples and tissue homogenates, and caged luciferin and 1,2-dioxetanes are emerging as a versatile approach for monitoring and imaging reactive sulfur and nitrogen species in living cells and animal models. Critical Issues: This review article will cover the major chemiluminescence approaches for detecting, measuring, and imaging reactive sulfur and nitrogen species in biological systems, including a brief history of the development of the most established approaches and highlights of the opportunities provided by emerging approaches. Future Directions: Emerging chemiluminescence approaches offer new opportunities for monitoring and imaging reactive sulfur and nitrogen species in living cells, animals, and human clinical samples. Widespread adoption and translation of these approaches, however, requires an emphasis on rigorous quantitative methods, reproducibility, and effective technology transfer. Antioxid. Redox Signal. 36, 337-353.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA
| | - Alexander Ryan Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas USA.,Center for Drug Discovery, Design, and Delivery (CD), Southern Methodist University, Dallas, Texas USA
| |
Collapse
|
28
|
Ahmed N, Zareen W, Ye Y. Recent development in fluorescent probes based on attacking of double bond and masking of functional group. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Gu B, Wu C, Zhang C, He S, Tang S, Li H, Shen Y. A morpholino hydrazone-based lysosome-targeting fluorescent probe with fast response and high sensitivity for imaging peroxynitrite in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120100. [PMID: 34186297 DOI: 10.1016/j.saa.2021.120100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Peroxynitrite (ONOO-) plays important roles in many pathophysiological processes and its subcellular detection draws increasing attention. In this study, we designed and prepared a novel lysosome-targetable fluorescent probe (E)-2-(benzo[d]thiazol-2- yl)-4-methyl-6-((morpholinoimino)methyl)phenol (BMP) for selective detection of ONOO- in living systems by incorporating a reactive morpholino hydrazone as new ONOO- response site into a benzothiazole derivative as fluorophore. After reaction with ONOO-, an obvious fluorescence increase (83-fold) was observed accompanied with distinct dual colorimetric and fluorescence changes. Probe BMP displayed the merits of fast response (<3 s), ultrasensitivity (LOD = 6 nM) and high selectivity towards ONOO- over other physiological species including ROS/RNS. Most importantly, the probe was capable of imaging ONOO- in lysosomes of living cells with good cell permeation and negligible cytotoxicity. Therefore, this research provides an effective tool to study the functions of ONOO- in lysosomes.
Collapse
Affiliation(s)
- Biao Gu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Chunxiang Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Shihui He
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Siping Tang
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Youming Shen
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| |
Collapse
|
30
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
31
|
Gong X, Cheng D, Li W, Shen Y, Peng R, Shi L, He L, Yuan L. A highly selective ratiometric molecular probe for imaging peroxynitrite during drug-induced acute liver injury. J Mater Chem B 2021; 9:8246-8252. [PMID: 34499075 DOI: 10.1039/d1tb01534f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug-induced acute liver injury (DIALI) is a common liver disease, affecting a number of people worldwide with increasing morbidity each year. Thus, it is vital to develop new tools for intervention and diagnosis. Peroxynitrite (ONOO-), a highly reactive species, plays an important role in the DIALI process. Thus, in situ molecular imaging of endogenous ONOO- levels is considerably significant for detecting ONOO-. In this work, we present two destroyed-type ratiometric fluorescent probes, AHC and AHMC, for ONOO- detection by using a molecular hybridization strategy. The probe AHMC was developed by introducing the ester structure to AHC directly to enhance its membrane penetrability for living cell imaging. Probe AHC exhibited good analytical performance toward ONOO- compared to other reactive species, with a low detection limit (≈1.8 nM) and a strong ratiometric fluorescence response (134-fold). In cell imaging experiments, AHMC showed outstanding selectivity, favourable biocompatibility and mitochondria-targeting ability, which not only was used to detect endogenous and exogenous ONOO- changes, but also enabled noninvasive visualization of ONOO- generation in a different drug-induced DIALI model. We hope that these ratiometric probes can be useful chemical tools for the in-depth research of drug-induced acute hepatotoxicity.
Collapse
Affiliation(s)
- Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China. .,Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China.
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Rong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Ling Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Longwei He
- Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
32
|
Li Z, Lu J, Pang Q, You J. Construction of a near-infrared fluorescent probe for ratiometric imaging of peroxynitrite during tumor progression. Analyst 2021; 146:5204-5211. [PMID: 34312630 DOI: 10.1039/d1an00980j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Malignant tumors are one of the main causes for human death and are tightly associated with overexpression of reactive oxygen species (ROS) in pathological processes. Therefore, in vivo monitoring of ROS, especially ONOO-, remains of great significance for diagnosis and therapy of tumors to improve the survival rate. Herein, we designed and constructed a reliable near-infrared (NIR) ratiometric fluorescent biosensor CDMS for monitoring the fluctuations of ONOO- in the process of tumor progression. CDMS featured outstanding stability to photoirradiation, substantial quantum yields, rapid response (<5 s), high selectivity and excellent biocompatibility. Moreover, CDMS exhibited distinct ratiometric fluorescence signal changes after reacting with ONOO-. Fluorescence imaging in immune stimulated cells indicated that CDMS was competent to determine the levels of ONOO- in the cellular level. Remarkably, CDMS was further applied in monitoring the expression of ONOO- in a peritonitis mouse model and tumor-bearing mouse model. Based on the excellent properties of CDMS, the probe exhibited the potential for noninvasive in vivo visualization of ONOO- in the occurrence and process of tumor development. It is envisioned that CDMS can be employed as a promising tool for monitoring the ONOO- fluxes in tumor pathological progression, especially for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China.
| | - Jiao Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China.
| | - Qing Pang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China.
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P.R. China.
| |
Collapse
|
33
|
Sheng W, Wang K, Gao N, Wang L, Wang R, Zhang X, Chen X, Zhang Y, Zhu B, Liu K. A novel p-dimethylaminophenylether-based fluorescent probe for the detection of native ONOO - in cells and zebrafish. Analyst 2021; 146:5264-5270. [PMID: 34337624 DOI: 10.1039/d1an00608h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peroxynitrite (ONOO-) is a highly reactive substance, and plays an essential part in maintaining cellular homeostasis. It is crucial to monitor the ONOO- level in cells in normal and abnormal states. We introduced a p-dimethylaminophenylether-based fluorescent probe PDPE-PN, which could be synthesized readily. The new probe had prominent sensitivity and specificity, and a fast response towards ONOO-. The spectral performance of probe PDPE-PN was outstanding and the limit of detection was 69 nM. Probe PDPE-PN with low toxicity was applied to detect endogenous/exogenous ONOO- in RAW 264.7 macrophages and zebrafish. Importantly, successful application of the new receptor opens up new ideas for the design of ONOO- probes.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Su H, Wang N, Wang J, Wang H, Zhang J, Zhao W. A resorufin-based red-emitting fluorescent probe with high selectivity for tracking endogenous peroxynitrite in living cells and inflammatory mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119502. [PMID: 33578120 DOI: 10.1016/j.saa.2021.119502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Peroxynitrite (ONOO-) plays essential roles on various physiological and pathological processes of living systems as a short-lived and highly reactive nitrogen (RNS) specie. The construction of novel long-wavelength fluorescent probes with high specificity towards ONOO- for imaging in vivo is still demand urgently. About this work, a novel resorufin-based red-emitting fluorescent probe for tracking ONOO- has been constructed. The probe RFP exhibited high selectivity towards ONOO- anion over other analytes. Utilizing the probe, ONOO- could be directly observed by the naked eye. Furthermore, RFP was successfully applied for imaging endogenous ONOO- in RAW264.7 cells and inflammatory mice. This work offers a convenient method for monitoring the intercellur ONOO- that be expected to be applied for explaining the bio-functional roles of ONOO- in living system.
Collapse
Affiliation(s)
- Huihui Su
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, PR China
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, PR China
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| | - Han Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, PR China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, PR China.
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
35
|
Takakura H. Molecular Design of d-Luciferin-Based Bioluminescence and 1,2-Dioxetane-Based Chemiluminescence Substrates for Altered Output Wavelength and Detecting Various Molecules. Molecules 2021; 26:molecules26061618. [PMID: 33803935 PMCID: PMC7998607 DOI: 10.3390/molecules26061618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022] Open
Abstract
Optical imaging including fluorescence and luminescence is the most popular method for the in vivo imaging in mice. Luminescence imaging is considered to be superior to fluorescence imaging due to the lack of both autofluorescence and the scattering of excitation light. To date, various luciferin analogs and bioluminescence probes have been developed for deep tissue and molecular imaging. Recently, chemiluminescence probes have been developed based on a 1,2-dioxetane scaffold. In this review, the accumulated findings of numerous studies and the design strategies of bioluminescence and chemiluminescence imaging reagents are summarized.
Collapse
Affiliation(s)
- Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
36
|
Wang Z, Wang W, Wang P, Song X, Mao Z, Liu Z. Highly Sensitive Near-Infrared Imaging of Peroxynitrite Fluxes in Inflammation Progress. Anal Chem 2021; 93:3035-3041. [PMID: 33494590 DOI: 10.1021/acs.analchem.0c05118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is an important protection reaction in living organisms associated with many diseases. Since peroxynitrite (ONOO-) is engaged in the inflammatory processes, illustrating the key nexus between ONOO- and inflammation is significant. Due to the lack of sensitive ONOO- in vivo detection methods, the research still remains at its infancy. Herein, a highly sensitive NIR fluorescence probe DDAO-PN for in vivo detection of ONOO- in inflammation progress was reported. The probe responded to ONOO- with significant NIR fluorescence enhancement at 657 nm (84-fold) within 30 s in solution. Intracellular imaging of exogenous ONOO- with the probe demonstrated a 68-fold fluorescence increase (F/F0). Impressively, the probe can in vivo detect ONOO- fluxes in LPS-induced rear leg inflammation with a 4.0-fold fluorescence increase and LPS-induced peritonitis with an 8.0-fold fluorescence increase The remarkable fluorescence enhancement and quick response enabled real-time tracking of in vivo ONOO- with a large signal-to-noise (S/N) ratio. These results clearly denoted that DDAO-PN was able to be a NIR fluorescence probe for in vivo detection and high-fidelity imaging of ONOO- with high sensitivity and will boost the research of inflammation-related diseases.
Collapse
Affiliation(s)
- Zhao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Weiwei Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Pengzhan Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xinjian Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhiqiang Mao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.,Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
37
|
Zhan Z, Dai Y, Li Q, Lv Y. Small molecule-based bioluminescence and chemiluminescence probes for sensing and imaging of reactive species. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Du Y, Wang H, Zhang T, Wei W, Guo M. ICT-based fluorescent ratiometric probe for monitoring mitochondrial peroxynitrite in living cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj01713f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondria-targeted near-infrared fluorescent probe for the detection of peroxynitrite and the bioimaging of peroxynitrite in cells.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Hongliang Wang
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Ting Zhang
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Wen Wei
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| | - Minmin Guo
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- China
| |
Collapse
|
39
|
Li S, Ruan Z, Zhang H, Xu H. Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system. Eur J Med Chem 2020; 211:113111. [PMID: 33360804 DOI: 10.1016/j.ejmech.2020.113111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Bioluminescence imaging (BLI) is a newly developed noninvasive visual approach which facilitates the understanding of a plethora of biological processes in vitro and in vivo due to the high sensitivity, resolution and selectivity, low background signal, and the lack of external light excitation. BLI based on firefly luciferin-luciferase system has been widely used for the activity evaluation of tumor-specific enzymes, for the detection of diseases-related bioactive small molecules and metal ions, and for the diagnosis and therapy of diseases including the studies of drug transport, the research of immune response, and the evaluation of drug potency and tissue distribution. In this review, we highlight the recent achievements in luciferin derivatives with red-shifted emission spectra, mutant luciferase-luciferin pairs, and the diagnostic and therapeutic application of BLI based on firefly luciferin-luciferase system. The development and application of BLI will expand our knowledge of the occurrence and development of diseases and shed light on the diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyang Ruan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
40
|
Abstract
Bioluminescence (BL) is an excellent optical readout platform that has great potential to be utilized in various bioassays and molecular imaging. The advantages of BL-based bioassays include the long dynamic range, minimal background, high signal-to-noise ratios, biocompatibility for use in cell-based assays, no need of external light source for excitation, simplicity in the measurement system, and versatility in the assay design. The recent intensive research in BL has greatly diversified the available luciferase-luciferin systems in the bioassay toolbox. However, the wide variety does not promise their successful utilization in various bioassays as new tools. This is mainly due to complexity and confusion with the diversity, and the unavailability of defined standards. This review is intended to provide an overview of recent basic developments and applications in BL studies, and showcases the bioanalytical utilities. We hope that this review can be used as an instant reference on BL and provides useful guidance for readers in narrowing down their potential options in their own assay designs.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine
| |
Collapse
|
41
|
Chen F, Teng L, Lu C, Zhang C, Rong Q, Zhao Y, Yang Y, Wang Y, Song G, Zhang X. Activatable Magnetic/Photoacoustic Nanoplatform for Redox-Unlocked Deep-Tissue Molecular Imaging In Vivo via Prussian Blue Nanoprobe. Anal Chem 2020; 92:13452-13461. [DOI: 10.1021/acs.analchem.0c02859] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fangfang Chen
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lili Teng
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiming Rong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yan Zhao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yue Yang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
42
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
43
|
Cheng D, Gong X, Wu Q, Yuan J, Lv Y, Yuan L, Zhang X. High-Selectivity Fluorescent Reporter toward Peroxynitrite in a Coexisting Nonalcoholic Fatty Liver and Drug-Induced Liver Diseases Model. Anal Chem 2020; 92:11396-11404. [PMID: 32683859 DOI: 10.1021/acs.analchem.0c02277] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peroxynitrite (ONOO-), a highly reactive species, is profoundly involved in many physiological and pathological processes. Change of the ONOO- level usually indicates an abnormal body function. Thus, it is desired to develop a highly reliable ONOO- assay to elucidate its roles in a related disease environment. In this work, we have constructed a ratiometric molecule fluorescent probe RTFP toward ONOO- with high specificity by the combination strategy of probe screening and a rational design method. RTFP displayed excellent detection sensitivity (detection limit: 4.1 nM) and produced a highly ratiometric emission signal (130-fold). Leveraging this probe, we showed the change of ONOO- content in the free-fatty-acid-induced nonalcoholic fatty liver disease (NAFLD) and acetaminophen-induced drug-induced liver injury (DILI) cellular model and for the first time disclosed the involved mechanism of cytochrome P450 2E1 (CYP2E1) enzyme in NAFLD with a DILI pathological environment. Furthermore, RTFP also was utilized to visualize ONOO- fluctuation of living liver tissues in a high-fat-diet-caused NAFLD model. We expected that this probe may help the study of liver injury in the exploration of mechanism and signal path.
Collapse
Affiliation(s)
- Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yun Lv
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
44
|
Luo J, Yang J, Li G, Yang S, Zhou Y, Li JB, Huang G, Hu Y, Zou S, Zeng Q, Yang R. Noncovalently Caged Firefly Luciferins Enable Amplifiable Bioluminescence Sensing of Hyaluronidase-1 Activity in Vivo. ACS Sens 2020; 5:1726-1733. [PMID: 32441104 DOI: 10.1021/acssensors.0c00393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hyaluronidase 1 (Hyal-1) is an important enzyme involved in intracellular hyaluronic acid (HA) catabolism for performing various physiological functions, and its aberrant level is closely associated with many malignant diseases. Bioluminescence imaging is advantageous for monitoring Hyal-1 activity in vivo, but it remains challenging to design an available probe for differentiating Hyal-1 from other isoforms by a traditional strategy that covalently masks the firefly luciferase substrate. Herein, we, for the first time, present a noncovalently caging approach to construct a Hyal-1-specific bioluminogenic nanosensor by entrapping d-luciferin (d-Luc) inside the cholesterylamine-modified HA (CHA) nanoassembly to inhibit the bioluminescence production. When encountered with intracellular Hyal-1, CHA could be fully dissembled to liberate multiple copies of the loaded d-Luc, thereby emitting light by the luciferase-catalyzed bioluminescence reaction. Because of its cascade signal amplification feature, d-Luc@CHA displayed a remarkable "turn-on" response (248-fold) to 5 μg/mL Hyal-1 with a detection limit of 0.07 ng/mL. Importantly, bioluminescence imaging results validated that d-Luc@CHA could be competent for dynamically visualizing endogenous Hyal-1 changes in living cells and animals and possessed the capability of discriminating between normal and cancer cells, thus offering a promising toolbox to evaluate Hyal-1 roles in biological processes as well as to diagnose Hyal-1-related diseases.
Collapse
Affiliation(s)
- Jinqiu Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jinfeng Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, P. R. China
| | - Guangjie Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jun-Bin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Ge Huang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, P. R. China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Shuangfa Zou
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, P. R. China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| |
Collapse
|
45
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
46
|
Wang W, Xiong W, Wang J, Wang QA, Yang W. Brønsted Acid-Catalyzed Asymmetric Friedel-Crafts Alkylation of Indoles with Benzothiazole-Bearing Trifluoromethyl Ketone Hydrates. J Org Chem 2020; 85:4398-4407. [PMID: 32118421 DOI: 10.1021/acs.joc.0c00116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient Brønsted acid-catalyzed asymmetric Friedel-Crafts alkylation of indoles with benzothiazole-bearing trifluoromethyl ketone hydrates as electrophiles has been developed. The mild organocatalytic reactions proceeded well with low catalyst loading to afford a range of enantioenriched α-trifluoromethyl tertiary alcohols containing both benzothiazole and indole rings with excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Wenhui Xiong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jinping Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Qiu-An Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Wen Yang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
47
|
Shen Y, Dai L, Zhang Y, Li H, Chen Y, Zhang C. A novel pyridinium-based fluorescent probe for ratiometric detection of peroxynitrite in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117762. [PMID: 31708458 DOI: 10.1016/j.saa.2019.117762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Peroxynitrite (ONOO-) is a primary kind of reactive oxygen species. Excessive ONOO- can induce oxidative damage to biomolecules and further results in various diseases. So, quantitative monitoring ONOO- with excellent selectivity and sensitivity is imperative for elucidating its role in biological processes. In this study, a novel pyridinium fluorescent ONOO- probe (CPC) has been constructed base on ICT-modulated by combining coumarin fluorophore and diphenylphosphinate recognition group. The fluorescence response of CPC for ONOO- is realized via the removal of diphenylphosphinate group. The probe CPC shows prominent features for detection of ONOO- including fast response rate (within 3 min), excellent selectivity and sensitivity, distinct colorimetric (red to green), and a large emission wavelength shift (105 nm). The emission intensity ration (I538/I643) exhibits 153-fold enhancement along with the increasing ONOO- and the detection limit is as low as 1.60 × 10-8 M. These good response properties make CPC possible to quantitative detection of ONOO- concentration. By using the strategy, the ratiometric CPC has been employed to detection of mitochondrial ONOO- in live cell successfully.
Collapse
Affiliation(s)
- Youming Shen
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| | - Lingcong Dai
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yuandao Chen
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Chunxiang Zhang
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| |
Collapse
|
48
|
Wang B, Wang Y, Wang Y, Zhao Y, Yang C, Zeng Z, Huan S, Song G, Zhang X. Oxygen-Embedded Pentacene Based Near-Infrared Chemiluminescent Nanoprobe for Highly Selective and Sensitive Visualization of Peroxynitrite In Vivo. Anal Chem 2020; 92:4154-4163. [DOI: 10.1021/acs.analchem.0c00329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bingzhe Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People’s Republic of China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People’s Republic of China
| | - Yanpei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People’s Republic of China
| | - Yan Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People’s Republic of China
| | - Chan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People’s Republic of China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People’s Republic of China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People’s Republic of China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People’s Republic of China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|
49
|
Wang G, Wang Y, Wang C, Huang C, Jia N. A new long-wavelength fluorescent probe for tracking peroxynitrite in live cells and inflammatory sites of zebrafish. Analyst 2020; 145:828-835. [DOI: 10.1039/c9an01934k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Design of a long-wavelength fluorescent probe for tracking peroxynitrite in live cells and inflammatory sites of zebrafish.
Collapse
Affiliation(s)
- Guanyang Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Yang Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Chengcheng Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| |
Collapse
|
50
|
Zhang L, Shi Y, Sheng Z, Zhang Y, Kai X, Li M, Yin X. Bioluminescence Imaging of Selenocysteine in Vivo with a Highly Sensitive Probe. ACS Sens 2019; 4:3147-3155. [PMID: 31701738 DOI: 10.1021/acssensors.9b01268] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Selenocysteine (Sec), a vital member of reactive selenium species, is closely implicated in diverse pathophysiological states, including cancer, cardiovascular diseases, diabetes, neurodegenerative diseases, and male infertility. Monitoring Sec in vivo is of significant interest for understanding the physiological roles of Sec and the mechanisms of human diseases associated with abnormal levels of Sec. However, no bioluminescence probe for real-time monitoring of Sec in vivo has been reported. Herein, we present a novel bioluminescent probe BF-1 as an effective tool for the determination of Sec in living cells and in vivo for the first time. BF-1 has advantages of high sensitivity (a detection limit of 8 nM), remarkable bioluminescence enhancement (580-fold), reasonable selectivity, low cytotoxicity, and high signal-to-noise ratio imaging feasibility of Sec in living cells and mice. More importantly, BF-1 affords high sensitivity for monitoring Sec stimulated by Na2SeO3 in tumor-bearing mice. These results demonstrate that our new probe could serve as a powerful tool to selectively monitor Sec in vivo, thus providing a valuable approach for exploring the physiological and pathological functions and anticancer mechanisms of selenium.
Collapse
Affiliation(s)
- Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yanfen Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Zhijia Sheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yiran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xiaoning Kai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| |
Collapse
|