1
|
Zadeh P, Camley BA. Picking winners in cell-cell collisions: Wetting, speed, and contact. Phys Rev E 2022; 106:054413. [PMID: 36559372 DOI: 10.1103/physreve.106.054413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Groups of eukaryotic cells can coordinate their crawling motion to follow cues more effectively, stay together, or invade new areas. This collective cell migration depends on cell-cell interactions, which are often studied by colliding pairs of cells together. Can the outcome of these collisions be predicted? Recent experiments on trains of colliding epithelial cells suggest that cells with a smaller contact angle to the surface or larger speeds are more likely to maintain their direction ("win") upon collision. When should we expect shape or speed to correlate with the outcome of a collision? To investigate this question, we build a model for two-cell collisions within the phase field framework, which allows for cell shape changes. We can reproduce the observation that cells with high speed and small contact angles are more likely to win with two different assumptions for how cells interact: (1) velocity aligning, in which we hypothesize that cells sense their own velocity and align to it over a finite timescale, and (2) front-front contact repolarization, where cells polarize away from cell-cell contact, akin to contact inhibition of locomotion. Surprisingly, though we simulate collisions between cells with widely varying properties, in each case, the probability of a cell winning is completely captured by a single summary variable: its relative speed (in the velocity-aligning model) or its relative contact angle (in the contact repolarization model). Both models are currently consistent with reported experimental results, but they can be distinguished by varying cell contact angle and speed through orthogonal perturbations.
Collapse
Affiliation(s)
- Pedrom Zadeh
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21210, USA
| | - Brian A Camley
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21210, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
2
|
Fajrial AK, Liu K, Gao Y, Gu J, Lakerveld R, Ding X. Characterization of Single-Cell Osmotic Swelling Dynamics for New Physical Biomarkers. Anal Chem 2021; 93:1317-1325. [PMID: 33253534 DOI: 10.1021/acs.analchem.0c02289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Characterization of cell physical biomarkers is vital to understand cell properties and applicable for disease diagnostics. Current methods used to analyze physical phenotypes involve external forces to deform the cells. Alternatively, internal tension forces via osmotic swelling can also deform the cells. However, an established assumption contends that the forces generated during hypotonic swelling concentrated on the plasma membrane are incapable of assessing the physical properties of nucleated cells. Here, we utilized an osmotic swelling approach to characterize different types of nucleated cells. Using a microfluidic device for cell trapping arrays with truncated hanging micropillars (CellHangars), we isolated single cells and evaluated the swelling dynamics during the hypotonic challenge at 1 s time resolution. We demonstrated that cells with different mechanical phenotypes showed unique swelling dynamics signature. Different types of cells can be classified with an accuracy of up to ∼99%. We also showed that swelling dynamics can detect cellular mechanical property changes due to cytoskeleton disruption. Considering its simplicity, swelling dynamics offers an invaluable label-free physical biomarker for cells with potential applications in both biological studies and clinical practice.
Collapse
Affiliation(s)
- Apresio K Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Kun Liu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Yu Gao
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Junhao Gu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States.,Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Ding I, Walz JA, Mace CR, Peterson AM. Early hMSC morphology and proliferation on model polyelectrolyte multilayers. Colloids Surf B Biointerfaces 2019; 178:276-284. [PMID: 30878802 DOI: 10.1016/j.colsurfb.2019.02.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/01/2023]
Abstract
Polyelectrolyte multilayers (PEMs) are a category of materials commonly used as coatings on surfaces that interact with cells. The properties of PEMs have been established to be controlled by not only polyelectrolyte choice, but by the identity of the initially applied (bottom) layer. In this work, 5-bilayer PEMs consisting of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS) were coated on gold-sputtered quartz substrates with different first layer materials. A final poly-l-lysine (PLL) layer was added to all PEMs to provide identical top layers conducive to cell growth. As in previous work, initial layer selection affected PEM roughness. All coated surfaces, including the PLL-only control, showed increased dispersive surface energy but decreased polar surface energy, as compared to uncoated surfaces. When human mesenchymal stem cells (hMSCs) were cultured on these surfaces, analysis through lateral cell imaging for the first 90 min and fluorescent staining after 1 day showed improved attachment on surfaces with a PDADMAC bottom layer. However, after 4 days, a higher cell density was observed on the PLL-only and uncoated control surfaces, indicating that the PEMs negatively affected hMSC proliferation. Both the long and short time period results did not correlate to any of the roughness and surface energy trends, indicating more complex interactions between the cells and the surface relating to charge distribution and functional group density.
Collapse
Affiliation(s)
- Ivan Ding
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Ave, Lowell, MA, 01854, United States
| | - Jenna A Walz
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, United States
| | - Amy M Peterson
- Department of Plastics Engineering, University of Massachusetts Lowell, One University Ave, Lowell, MA, 01854, United States.
| |
Collapse
|
4
|
Zhao Y, Liu H, Jiang Y, Song S, Zhao Y, Zhang C, Xin J, Yang B, Lin Q. Detection of Various Biomarkers and Enzymes via a Nanocluster-Based Fluorescence Turn-on Sensing Platform. Anal Chem 2018; 90:14578-14585. [DOI: 10.1021/acs.analchem.8b04691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yue Zhao
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Hou Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Yingnan Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, People’s Republic of China
| | - Shanliang Song
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Yueqi Zhao
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Chuan Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Jingwei Xin
- Department of Thyroid Surgery, China Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| |
Collapse
|
5
|
Qi L, Hu Q, Kang Q, Yu L. Fabrication of Liquid-Crystal-Based Optical Sensing Platform for Detection of Hydrogen Peroxide and Blood Glucose. Anal Chem 2018; 90:11607-11613. [PMID: 30184427 DOI: 10.1021/acs.analchem.8b03062] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid and accurate determination of H2O2 is of great importance in practical applications. In this study, we demonstrate construction of liquid-crystal (LC)-based sensing platforms for sensitive and real-time detection of H2O2 with high accuracy for the first time. Single-stranded DNA (ssDNA) adsorbed onto the surface of nanoceria is released to the aqueous solution in the presence of H2O2, which disrupts arrangement of the self-assembled cationic surfactant monolayer decorated at the aqueous/LC interface. Thus, the orientation of LCs changes from a homeotropic to planar state, leading to change in the optical response from dark-to-bright appearance. As H2O2 can be produced during oxidation of glucose by glucose oxidase (GOx), detection of glucose is also fulfilled by employing the H2O2 sensing platform. Our system can detect H2O2 and glucose with concentrations as low as 28.9 nM and 0.52 μM, respectively. It shows high promise of using LC-based sensors for the detection of H2O2 and its relevant biomarkers in practical applications.
Collapse
Affiliation(s)
- Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , PR China
| | - Qiongzheng Hu
- Salk Institute for Biological Studies , 10010 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , PR China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , PR China
| |
Collapse
|