1
|
Shi N, Li W, Liu Y, Yan S, Xu X, Chen D. One-pot derivatization/magnetic solid-phase extraction combined with high-performance liquid chromatography-fluorescence detection for rapid analysis of biogenic amines in alcoholic beverages. Food Chem 2024; 460:140754. [PMID: 39121762 DOI: 10.1016/j.foodchem.2024.140754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The determination of biogenic amines (BAs) in alcoholic beverages is crucial for assessing their health impact, ensuring beverage quality, and guaranteeing safety. Herein, a rapid one-pot derivatization/magnetic solid-phase extraction (OPD/MSPE) method was proposed using 6-aminoquinolinyl-N-hydroxysuccinimide carbamate as the derivatization reagent and magnetic hydroxyl-functionalized multi-walled carbon nanotubes as the extraction material. Integration of derivatization and extraction steps simplifies the sample preparation process, taking only three minutes and eliminating the need for centrifugation by utilizing magnetic sorbent. The resulting desorption solution was directly analyzed by high-performance liquid chromatography-fluorescence detection (HPLC-FLD) without any evaporation or reconstitution steps. The integrated OPD/MSPE-HPLC-FLD method demonstrates excellent linearity (R2 > 0.992), accuracy (relative recoveries: 85.1-109.2%), precision (RSDs≤9.7%) and detection limits (limits of detection: 0.3-2 ng/mL). It has been successfully applied to determine free BAs in various alcoholic beverages, including red wine, Baijiu, Huangjiu, and beer. This method enables rapid, sensitive and precise analysis of BAs in alcoholic beverages.
Collapse
Affiliation(s)
- Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Wenxuan Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuwei Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shumei Yan
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xia Xu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Di Chen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
López-López Á, López-Gonzálvez Á, Barbas C. Metabolomics for searching validated biomarkers in cancer studies: a decade in review. Expert Rev Mol Diagn 2024; 24:601-626. [PMID: 38904089 DOI: 10.1080/14737159.2024.2368603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION In the dynamic landscape of modern healthcare, the ability to anticipate and diagnose diseases, particularly in cases where early treatment significantly impacts outcomes, is paramount. Cancer, a complex and heterogeneous disease, underscores the critical importance of early diagnosis for patient survival. The integration of metabolomics information has emerged as a crucial tool, complementing the genotype-phenotype landscape and providing insights into active metabolic mechanisms and disease-induced dysregulated pathways. AREAS COVERED This review explores a decade of developments in the search for biomarkers validated within the realm of cancer studies. By critically assessing a diverse array of research articles, clinical trials, and studies, this review aims to present an overview of the methodologies employed and the progress achieved in identifying and validating biomarkers in metabolomics results for various cancer types. EXPERT OPINION Through an exploration of more than 800 studies, this review has allowed to establish a general idea about state-of-art in the search of biomarkers in metabolomics studies involving cancer which include certain level of results validation. The potential for metabolites as diagnostic markers to reach the clinic and make a real difference in patient health is substantial, but challenges remain to be explored.
Collapse
Affiliation(s)
- Ángeles López-López
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
3
|
Zhong ZJ, Ling J, Yao ZP, Liu LF, Zheng JY, Xin GZ. Targeted Quantification of Glutathione/Arginine Redox Metabolism Based on a Novel Paired Mass Spectrometry Probe Approach for the Functional Assessment of Redox Status. Anal Chem 2024; 96:9885-9893. [PMID: 38848670 DOI: 10.1021/acs.analchem.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Glutathione (GSH) redox control and arginine metabolism are critical in regulating the physiological response to injury and oxidative stress. Quantification assessment of the GSH/arginine redox metabolism supports monitoring metabolic pathway shifts during pathological processes and their linkages to redox regulation. However, assessing the redox status of organisms with complex matrices is challenging, and single redox molecule analysis may not be accurate for interrogating the redox status in cells and in vivo. Herein, guided by a paired derivatization strategy, we present a new ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based approach for the functional assessment of biological redox status. Two structurally analogous probes, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and newly synthesized 2-methyl-6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (MeAQC), were set for paired derivatization. The developed approach was successfully applied to LPS-stimulated RAW 264.7 cells and HDM-induced asthma mice to obtain quantitative information on GSH/arginine redox metabolism. The results suggest that the redox status was remarkably altered upon LPS and HDM stimulation. We expect that this approach will be of good use in a clinical biomarker assay and potential drug screening associated with redox metabolism, oxidative damage, and redox signaling.
Collapse
Affiliation(s)
- Zhu-Jun Zhong
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Ling
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Centre for Chinese Medicine Innovation, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Ye L, Zhang HM, Zhou BJ, Tang W, Zhou JL. Advancements in Analyzing Tumor Metabolites through Chemical Derivatization-Based Chromatography. J Chromatogr A 2023; 1706:464236. [PMID: 37506465 DOI: 10.1016/j.chroma.2023.464236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Understanding the metabolic abnormalities of tumors is crucial for early diagnosis, prognosis, and treatment. Accurate identification and quantification of metabolites in biological samples are essential to investigate the relationship between metabolite variations and tumor development. Common techniques like LC-MS and GC-MS face challenges in measuring aberrant metabolites in tumors due to their strong polarity, isomerism, or low ionization efficiency during MS detection. Chemical derivatization of metabolites offers an effective solution to overcome these challenges. This review focuses on the difficulties encountered in analyzing aberrant metabolites in tumors, the principles behind chemical derivatization methods, and the advancements in analyzing tumor metabolites using derivatization-based chromatography. It serves as a comprehensive reference for understanding the analysis and detection of tumor metabolites, particularly those that are highly polar and exhibit low ionization efficiency.
Collapse
Affiliation(s)
- Lu Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hua-Min Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Bing-Jun Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiyang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
5
|
Pu Q, Wang M, Jiang N, Luo Y, Li X, Hu C, Du D. Novel Isotope-Labeled Derivatization Strategy for the Simultaneous Analysis of Fatty Acids and Fatty Alcohols and Its Application in Idiopathic Inflammatory Myopathies and Pancreatic Cancer. Anal Chem 2023; 95:8197-8205. [PMID: 37191225 DOI: 10.1021/acs.analchem.2c05558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fatty acids (FAs) and fatty alcohols (FOHs) are essential compounds for maintaining life. Due to the inherent poor ionization efficiency, low abundance, and complex matrix effect, such metabolites are challenging to precisely quantify and explore deeply. In this study, a pair of novel isotope derivatization reagents known as d0/d5-1-(2-oxo-2-(piperazin-1-yl) ethyl) pyridine-1-ium (d0/d5-OPEPI) were designed and synthesized, and an in-depth screening strategy for FAs and FOHs was established based on d0/d5-OPEPI coupled with liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS/MS). Using this approach, a total of 332 metabolites were identified and annotated (some of the FAs and FOHs were reconfirmed by standards). Our results demonstrated that OPEPI labeling could significantly enhance the MS response of FAs and FOHs via the introduction of permanently charged tags. The detection sensitivities of FAs were increased by 200-2345-fold compared with the nonderivatization method. At the same time, for FOHs, due to the absence of ionizable functional groups, sensitive detection was achieved utilizing OPEPI derivatization. One-to-one internal standards were provided by using d5-OPEPI labeling to minimize the errors in quantitation. Moreover, the method validation results showed that the method was stable and reliable. Finally, the established method was successfully applied to the study of the FA and FOH profiles of two heterogeneous severe clinical disease tissues. This study would improve our understanding of the pathological and metabolic mechanisms of FAs and FOHs for inflammatory myopathies and pancreatic cancer and also prove the generality and accuracy of the developed analytical method for complex samples.
Collapse
Affiliation(s)
- Qianlun Pu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Manjiangcuo Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Na Jiang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yubin Luo
- Laboratory of Rheumatology & Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Li
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Lu X, Dou P, Li C, Zheng F, Zhou L, Xie X, Wang Z, Xu G. Annotation of Dipeptides and Tripeptides Derivatized via Dansylation Based on Liquid Chromatography-Mass Spectrometry and Iterative Quantitative Structure Retention Relationship. J Proteome Res 2023. [PMID: 37163573 DOI: 10.1021/acs.jproteome.3c00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Small peptides such as dipeptides and tripeptides show various biological activities in organisms. However, methods for identifying dipeptides/tripeptides from complex biological samples are lacking. Here, an annotation strategy involving the derivatization of dipeptides and tripeptides via dansylation was suggested based on liquid chromatography-mass spectrometry (LC-MS) and iterative quantitative structure retention relationship (QSRR) to choose dipeptides/tripeptides by using a small number of standards. First, the LC-autoMS/MS method and initial QSRR model were built based on 25 selected grid-dipeptides and 18 test-dipeptides. To achieve high-coverage detection, dipeptide/tripeptide pools containing abundant dipeptides/tripeptides were then obtained from four dansylated biological samples including serum, tissue, feces, and soybean paste by using the parameter-optimized LC-autoMS/MS method. The QSRR model was further optimized through an iterative train-by-pick strategy. Based on the specific fragments and tR tolerances, 198 dipeptides and 149 tripeptides were annotated. The dipeptides at lower annotation levels were verified by using authentic standards and grid-correlation analysis. Finally, variation in serum dipeptides/tripeptides of three different liver diseases including hepatitis B infection, liver cirrhosis, and hepatocellular carcinoma was characterized. Dipeptides with N-prolinyl, C-proline, N-glutamyl, and N-valinyl generally increased with disease severity. In conclusion, this study provides an efficient strategy for annotating dipeptides/tripeptides from complex samples.
Collapse
Affiliation(s)
- Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116031, China
| | - Peng Dou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116031, China
| | - Chao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116031, China
| | - Xiaoyu Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Zixuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Ng DHJ, Chan LY, Fitzner L, Keppler JK, Ismail SM, Hird S, Hancock P, Karin S, Tobias D. A novel screening method for free non-standard amino acids in human plasma samples using AccQ·Tag reagents and LC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:445-454. [PMID: 36602091 DOI: 10.1039/d2ay01588a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There are at least 500 naturally occurring amino acids, of which only 20 standard proteinogenic amino acids are used universally across all organisms in the synthesis of peptides and proteins. Non-standard amino acids can be incorporated into proteins or are intermediates and products of metabolic pathways. While the analysis of standard amino acids is well-defined, the analysis of non-standard amino acids can be challenging due to the wide range of physicochemical properties, and the lack of both reference standards and information in curated databases to aid compound identification. It has been shown that the use of an AccQ·Tag™ derivatization kit along with LC-MS/MS is an attractive option for the analysis of free standard amino acids in complex samples because it is fast, sensitive, reproducible, and selective. It has been demonstrated that the most abundant quantitative transition for MS/MS analysis of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatized amino acids corresponds to the fragmentation of the molecule at the 6-aminoquinoline carbonyl group producing a common m/z 171 fragment ion and occurs at similar mass spectrometry collision energy and cone voltages. In this study, the unique properties of AQC derivatized amino acids producing high intensity common fragment ions, along with chromatographic separation of amino acids under generic chromatography conditions, were used to develop a novel screening method for the detection of trace levels of non-standard amino acids in complex matrices. Structural elucidation was carried out by comparing the MS/MS fragment ion mass spectra generated with in silico predicted fragmentation spectra to enable a putative identification, which was confirmed using an appropriate analytical standard. This workflow was applied to screen human plasma samples for bioactive thiol-group modified cysteine amino acids and S-allylmercaptocysteine (SAMC), S-allylcysteine sulfoxide (SACS or alliin) and S-propenylcysteine (S1PC) are reported for the first time to be present in human plasma samples after the administration of garlic supplements.
Collapse
Affiliation(s)
- Daniel H J Ng
- International Food and Water Research Centre, Waters Pacific Pte Ltd, 1 Science Park Road #01-10, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore.
| | - Li Yan Chan
- International Food and Water Research Centre, Waters Pacific Pte Ltd, 1 Science Park Road #01-10, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore.
| | - Laura Fitzner
- Division of Food Technology, Kiel University, Heinrich-Hecht Platz 10, Kiel, 24118, Germany
| | - Julia Katharina Keppler
- Division of Food Technology, Kiel University, Heinrich-Hecht Platz 10, Kiel, 24118, Germany
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708 WG, the Netherlands
| | - Shareef M Ismail
- Global Service Education, Waters Pacific Pte Ltd, 1 Science Park Road #01-10, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| | - Simon Hird
- Food and Environment Scientific Operations, Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - Peter Hancock
- Food and Environment Scientific Operations, Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - Schwarz Karin
- Division of Food Technology, Kiel University, Heinrich-Hecht Platz 10, Kiel, 24118, Germany
| | - Demetrowitsch Tobias
- Division of Food Technology, Kiel University, Heinrich-Hecht Platz 10, Kiel, 24118, Germany
| |
Collapse
|
8
|
Sun X, Ai L, Ran Y, Zhang Y, Zhang Q, Li Q, Cui Y, Sun L. Combined exploration of the mechanism of Sang Xing Decoction in the treatment of smoke-induced acute bronchitis from protein and metabolic levels. Biomed Pharmacother 2022; 152:113254. [PMID: 35691159 DOI: 10.1016/j.biopha.2022.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/21/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022] Open
Abstract
Sang Xing decoction (SXD) is a typical prescription for treating "warm dryness" in traditional Chinese medicine (TCM), which is equivalent to respiratory diseases such as acute bronchitis in modern medicine. However, its mechanism of action remains unclear. In this study, the representative components of SXD were characterized using liquid chromatography-tandem mass spectrometry (LC-MS). The key targets, signaling pathways, and metabolic pathways associated with SXD in the treatment of acute bronchitis were identified via network prediction and metabolomics. A rat model of acute bronchitis was also established using mixed smoke, systematic in vivo experiments such as histopathological analyses, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, immunohistochemistry and western blotting were conducted to evaluate the network prediction results. An in-depth analysis of the targeted quantitative results was performed using the SIMCA software and MetaboAnalyst website. The results revealed that 50 active compounds and 45 key targets were screened and clustered with 20 approved drugs. The NF-κB signaling pathway, oxidative stress, and glutamine metabolism were associated with the therapeutic mechanism of SXD in acute bronchitis. In vivo experiments showed that SXD may maintain the production of inflammatory factors by regulating the PI3K/Akt/NF-κB signaling pathway, improving the metabolism of glutamine and glutamate to reduce oxidative stress, and inhibiting apoptosis. Simultaneously, the possibility of using SXD as an adjuvant drug for COVID-19 treatment was also revealed. This research will lay the foundation for the modern clinical application of SXD and promote the promotion and innovation of TCM.
Collapse
Affiliation(s)
- Xiaomeng Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Lun Ai
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Yinfei Ran
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Yan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Lixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| |
Collapse
|
9
|
Liu S, Zhang M, Lai Z, Tian H, Qiu Y, Li Z. Coral-like Magnetic Particles for Chemoselective Extraction of Anionic Metabolites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32890-32900. [PMID: 35819264 DOI: 10.1021/acsami.2c06922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, advanced chemical biology tools for chemoselective extraction of metabolites are limited. In this study, unique coral-like polymer particles were synthesized via high concentrations of 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS), which are usually used as condensation agents. The polymers can wrap or adhere Fe3O4 nanoparticles (Fe3O4-NPs) to form polymer magnetic microparticles (PMMPs). With abundant NHS-activated moieties on their surface, the coral-like PMMPs could be modified by cystamine for the chemoselective extraction of phosphate/carboxylate anion metabolites from complex biological samples. Finally, 97 metabolites including nucleotides, phosphates, phosphate sugars, carboxylate sugars, and organic acids were extracted and identified from serum, tissues, and cells. These metabolites are involved in four major metabolic pathways including glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, and nucleotide metabolism. This study has provided a cost-effective and easy-to-implement preparation of PMMPs with a robust chemoselective extraction ability and versatile applications.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Yuming Qiu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| |
Collapse
|
10
|
Yu C, Wang L, Zheng J, Jiang X, Zhang Q, Zhang Y, Bi K, Li D, Li Q. Nanoconfinement effect based in-fiber extraction and derivatization method for ultrafast analysis of twenty amines in human urine by GC-MS: Application to cancer diagnosis biomarkers’ screening. Anal Chim Acta 2022; 1217:339985. [DOI: 10.1016/j.aca.2022.339985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022]
|
11
|
A novel strategy based on targeted cellular metabolomics for quantitatively evaluating anti-aging effect and screening effective extracts of Erzhi Wan. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122857. [PMID: 34280712 DOI: 10.1016/j.jchromb.2021.122857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/15/2020] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
The complexity of ingredients in traditional Chinese medicine (TCM) makes it challenging to clarify its efficacy in an acceptable and scientific approach. The present study was aimed to use quantification results from targeted cellular metabolomics to evaluate anti-aging efficacy of a famous Chinese medicine formula, Erzhi Wan (EZW), and screen possible effective extracts, depending on the developed strategy integrating multivariate receiver operating characteristic (ROC) curve and analytic hierarchy process (AHP). In this study, senescent NRK cells induced by D-galactose were treated with drug-containing serum of EZW and four kinds of extracts (petroleum ether, ethyl acetate, butanol and water). Intermediates of two major metabolic pathways for energy synthesis, tricarboxylic acid (TCA) cycle and glycolysis, were accurately quantified by GC-MS/MS to identify discriminate metabolites for clarifying therapeutic mechanism of EZW based on multivariate statistical analysis. Senescent and non-senescent cells were successfully distinguished using these metabolites by ROC curve analysis. Next, these metabolites were used as evaluation indexes to quantitatively reflect different effect of EZW and its extracts, according to the role of them in distinguishing groups and in conjunction with AHP. In vitro detection of senescence-associated β-galactosidase (SA-β-gal) activity was used to verify the reliability of evaluation results. The reversal after treatment of drug-containing serum of EZW and extracts was observed, and the petroleum ether extract might be the potential active extract responsible for the major anti-aging effect of EZW, which was in agreement with in vitro experiments. Altogether, metabolomics was a powerful approach for evaluation efficacy and elucidation action mechanisms of TCM. The integrated evaluation strategy in this paper with properties of high practicality, feasibility and effectivity was expected to provide a new insight into comprehensive and quantitative efficacy evaluation.
Collapse
|
12
|
Yu C, Zhang Q, Zou Y, Liu R, Zhao J, Bi K, Li D, Li Q. Across-polarity quantification method for broad metabolome coverage based on consecutive nanoconfined liquid phase nanoextraction technology: Application in discovering the plasma potential biomarkers of different types of cancer. Anal Chim Acta 2021; 1167:338577. [DOI: 10.1016/j.aca.2021.338577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022]
|
13
|
Zhang Q, Yang X, Wang Q, Zhang Y, Gao P, Li Z, Liu R, Xu H, Bi K, Li Q. "Modeling-Prediction" Strategy for Deep Profiling of Lysophosphatidic Acids by Liquid Chromatography-Mass Spectrometry: Exploration Biomarkers of Breast Cancer. J Chromatogr A 2020; 1634:461634. [PMID: 33176220 DOI: 10.1016/j.chroma.2020.461634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 01/13/2023]
Abstract
Lysophosphatidic acids (LPAs) are important bioactive phospholipids consisting of various species involved in a wide array of physiological and pathological processes. However, LPAs were rarely identified in untargeted lipidomics studies because of the incompatibility with analytical methods. Moreover, in targeted studies, the coverages of LPAs remained unsatisfactorily low due to the limitation of reference standards. Herein, a "modeling-prediction" workflow for deep profiling of LPAs by liquid chromatography-mass spectrometry was developed. Multiple linear regression models of qualitative and quantitative parameters were established according to features of fatty acyl tails of the commercial standards to predict the corresponding parameters for unknown LPAs. Then 72 multiple reaction monitoring (MRM) transitions were monitored simultaneously and species of LPA 14:0, LPA 16:1, LPA 18:3, LPA 20:3 and LPA 20:5 were firstly characterized and quantified in plasma. Finally, the workflow was applied to explore the changes of LPAs in plasma of breast cancer patients compared with healthy volunteers. Multi-LPAs indexes with strong diagnostic ability for breast cancer were identified successfully using Student's t- test, orthogona partial least-squares discrimination analysis (OPLS-DA) and logistic regression- receiver operating characteristic (ROC) curve analysis. The proposed workflow with high sensitivity, high accuracy, high coverage and reliable identification would be a powerful complement to untargeted lipidomics and shed a light on the analysis of other lipids.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiao Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qian Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Gao
- Metabolomics Core Facility of RHLCCC, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
14
|
Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Zhang Q, Liu R, Xu H, Yang X, Zhang Y, Wang Q, Gao P, Bi K, Han T, Li Q. Multifunctional isotopic standards based steroidomics strategy: Exploration of cancer screening model. J Chromatogr A 2020; 1614:460723. [DOI: 10.1016/j.chroma.2019.460723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022]
|
16
|
Horak J, Lämmerhofer M. Racemization without deamidation: Effect of racemization conditions on 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate tagged amino acids. J Chromatogr A 2019; 1604:460492. [PMID: 31488295 DOI: 10.1016/j.chroma.2019.460492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023]
Abstract
The aim of this research study was to provide a more thorough understanding of the underlying mechanism and to broaden the application field of the recently introduced racemization method employing the amino acid derivatization tag 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC, AccQ) for heat-induced stereoisomerization of common amino acids as well as uniformly isotopically labeled [U-13C15N]-amino acids. The influence of different buffer types such as sodium borate buffer and sodium carbonate buffer as well as their pH and molarity on the racemization and deamidation of amino acids were investigated. It was found that a 0.4 M borate buffer with a pH of 8.0 +/- 0.2 was the most suitable derivatization as well as racemization buffer to ensure degradation free racemization of deamidation prone compounds such as glutamine. Hereby essential was the in-solution pH measurement before and after derivatization with AQC as well as after heat-induced racemization. This strategy provided further insight at which pH an actual racemization event was observed and when an unwanted deamidation of glutamine to glutamic acid occurred. In addition also the influence of the presence of oxygen during racemization was studied. In this context it was possible to determine ideal oxidation and racemization conditions for the production of scalemic mixtures of chiral isotopically labeled methionine AQC-DL-[U-13C15N]-Met as well as its oxidation products, AQC-DL-[U-13C15N]-Met-O and AQC-DL-[U-13C15N]-Met-O2. All stereoselective separations were performed on the zwitterionic Chiralpak ZWIX(+) column combined with HPLC-ESI-QTOF-MS analysis in positive ionization mode.
Collapse
Affiliation(s)
- Jeannie Horak
- Eberhard-Karls-University Tuebingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8 (Haus B), 72076 Tuebingen, Germany.
| | - Michael Lämmerhofer
- Eberhard-Karls-University Tuebingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8 (Haus B), 72076 Tuebingen, Germany
| |
Collapse
|
17
|
Horak J, Lämmerhofer M. Stereoselective separation of underivatized and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatized amino acids using zwitterionic quinine and quinidine type stationary phases by liquid chromatography–High resolution mass spectrometry. J Chromatogr A 2019; 1596:69-78. [DOI: 10.1016/j.chroma.2019.02.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
|
18
|
Current Status and Future Prospects of Clinically Exploiting Cancer-specific Metabolism-Why Is Tumor Metabolism Not More Extensively Translated into Clinical Targets and Biomarkers? Int J Mol Sci 2019; 20:ijms20061385. [PMID: 30893889 PMCID: PMC6471292 DOI: 10.3390/ijms20061385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor cells exhibit a specialized metabolism supporting their superior ability for rapid proliferation, migration, and apoptotic evasion. It is reasonable to assume that the specific metabolic needs of the tumor cells can offer an array of therapeutic windows as pharmacological disturbance may derail the biochemical mechanisms necessary for maintaining the tumor characteristics, while being less important for normally proliferating cells. In addition, the specialized metabolism may leave a unique metabolic signature which could be used clinically for diagnostic or prognostic purposes. Quantitative global metabolic profiling (metabolomics) has evolved over the last two decades. However, despite the technology’s present ability to measure 1000s of endogenous metabolites in various clinical or biological specimens, there are essentially no examples of metabolomics investigations being translated into actual utility in the cancer clinic. This review investigates the current efforts of using metabolomics as a tool for translation of tumor metabolism into the clinic and further seeks to outline paths for increasing the momentum of using tumor metabolism as a biomarker and drug target opportunity.
Collapse
|
19
|
Zhang Q, Xu H, Liu R, Gao P, Yang X, Jin W, Zhang Y, Bi K, Li Q. A Novel Strategy for Targeted Lipidomics Based on LC-Tandem-MS Parameters Prediction, Quantification, and Multiple Statistical Data Mining: Evaluation of Lysophosphatidylcholines as Potential Cancer Biomarkers. Anal Chem 2019; 91:3389-3396. [DOI: 10.1021/acs.analchem.8b04715] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Gao
- Metabolomics Core Facility of RHLCCC, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Xiao Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wei Jin
- Urumqi Traditional Chinese Medicine Hospital, 590 Youhao South Road, Urumqi 830000, China
| | - Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|