1
|
McDonald H, Li Q, Ashaduzzaman M, Zhao C, Pan S, Szulczewski GJ, Liang Q. Quantitative MALDI-MS and Imaging of Fungicide Pyrimethanil in Strawberries with 2-Nitrophloroglucinol as an Effective Matrix. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1272-1281. [PMID: 38687954 DOI: 10.1021/jasms.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This work explores the use of 2-nitrophloroglucinol (2-NPG) as a matrix for quantitative analysis of the fungicide Pyrimethanil (PYM) in strawberries using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and imaging. 2-NPG was selected for PYM analysis for optimum sensitivity and precision compared to common matrices α-cyano-4-hydroxylcinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). PYM-sprayed strawberries were frozen 0, 1, 3, and 4 days after treatment and sectioned for MALDI imaging. The remaining part of each strawberry was processed using quick easy cheap effective rugged and safe (QuEChERS) extraction and analyzed by MALDI-MS and ultraperformance liquid chromatography multireaction-monitoring (UPLC-MRM). MALDI-MS showed comparable performance to UPLC-MRM in calibration, LOD/LOQ, matrix effect, and recovery, with the benefit of fast analysis. The MALDI imaging results demonstrated that PYM progressively penetrated the interior of the strawberry over time and the PYM concentration on tissue measured by MALDI imaging correlated linearly with MALDI-MS and UPLC-MRM measurements and accounts for 79% MALDI-MS and 85% UPLC-MRM values on average. Additionally, quartz crystal microbalance (QCM) was introduced as a new approach to determine strawberry tissue mass per area for MALDI imaging absolute quantitation with sensitive, direct, and localized measurements. This work demonstrates the first example of absolute quantitative MALDI imaging of pesticides in a heterogeneous plant tissue. The novel use of the 2-NPG matrix in quantitative MALDI-MS and imaging could be applied to other analytes, and the new QCM tissue mass per area method is potentially useful for quantitative MALDI imaging of heterogeneous tissues in general.
Collapse
Affiliation(s)
- Heather McDonald
- Department of Physical Sciences, University of West Alabama, Livingston, Alabama 35470, United States
| | - Qi Li
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Md Ashaduzzaman
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Chao Zhao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shanlin Pan
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Greg J Szulczewski
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Qiaoli Liang
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
2
|
Nagano E, Odake K, Akiyoshi T, Shimma S. Development of a Mass Spectrometry Imaging Method to Evaluate the Penetration of Moisturizing Components Coated on Surgical Gloves into Artificial Membranes. Mass Spectrom (Tokyo) 2024; 13:A0145. [PMID: 38577169 PMCID: PMC10990723 DOI: 10.5702/massspectrometry.a0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Skin dryness and irritant contact dermatitis induced by the prolonged use of surgical gloves are issues faced by physicians. To address these concerns, manufacturers have introduced surgical gloves that incorporate a moisturizing component on their inner surface, resulting in documented results showing a reduction in hand dermatitis. However, the spatial distribution of moisturizers applied to surgical gloves within the integument remains unclear. Using matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI), we investigated the spatial distribution of moisturizers in surgical gloves within artificial membranes. Recently, dermal permeation assessments using three-dimensional models, silicone membranes, and Strat-M have gained attention as alternative approaches to animal testing. Therefore, in this study, we established an in vitro dermal permeation assessment of commercially available moisturizers in surgical gloves using artificial membranes. In this study, we offer a methodology to visualize the infiltration of moisturizers applied to surgical gloves into an artificial membrane using MALDI-MSI, while evaluating commercially available moisturizer-coated surgical gloves. Using our penetration evaluation method, we confirmed the infiltration of the moisturizers into the polyethersulfone 2 and polyolefin layers, which correspond to the epidermis and dermis of the skin, after the use of surgical gloves. The MSI-based method presented herein demonstrated the efficacy of evaluating the permeation of samples containing active ingredients.
Collapse
Affiliation(s)
- Erika Nagano
- Research and Development Department, Miruion Corporation, Ibaraki, Osaka 567–0085, Japan
| | - Kazuki Odake
- Research and Development Department, Miruion Corporation, Ibaraki, Osaka 567–0085, Japan
| | - Toru Akiyoshi
- Marketing Department, Cardinal Health K.K., Tokyo 163–1035, Japan
| | - Shuichi Shimma
- Research and Development Department, Miruion Corporation, Ibaraki, Osaka 567–0085, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565–0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565–0871, Japan
- Osaka University Shimadzu Omics Innovation Research Laboratory, Osaka University, Osaka 565–0871, Japan
| |
Collapse
|
3
|
Wang Q, Li X, Wang H, Li S, Zhang C, Chen X, Dong J, Shao H, Wang J, Jin F. Spatial Distribution and Migration Characteristic of Forchlorfenuron in Oriental Melon Fruit by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Foods 2023; 12:2858. [PMID: 37569126 PMCID: PMC10417659 DOI: 10.3390/foods12152858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Forchlorfenuron is a widely used plant growth regulator to support the pollination and fruit set of oriental melons. It is critical to investigate the spatial distribution and migration characteristics of forchlorfenuron among fruit tissues to understand its metabolism and toxic effects on plants. However, the application of imaging mass spectrometry in pesticides remains challenging due to the usually extremely low residual concentration and the strong interference from plant tissues. In this study, a matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) method was developed for the first time to obtain the dynamic images of forchlorfenuron in oriental melon. A quantitative assessment has also been performed for MALDI-MSI to characterize the time-dependent permeation and degradation sites of forchlorfenuron in oriental melon. The majority of forchlorfenuron was detected in the exocarp and mesocarp regions of oriental melon and decreased within two days after application. The degradation rate obtained by MALDI-MSI in this study was comparable to that obtained by HPLC-MS/MS, indicating that the methodology and quantification approach based on the MALDI-MSI was reliable and practicable for pesticide degradation study. These results provide an important scientific basis for the assessment of the potential risks and effects of forchlorfenuron on oriental melons.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Xiaohui Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Hongping Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Simeng Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Chen Zhang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Xueying Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Jing Dong
- Shimadzu China MS Center, Beijing 100020, China
| | - Hua Shao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| | - Fen Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.W.); (H.S.)
| |
Collapse
|
4
|
Russo C, Clench MR. Spatially Resolved Quantitation of Drug in Skin Equivalents Using Mass Spectrometry Imaging (MSI). Methods Mol Biol 2023; 2688:27-40. [PMID: 37410281 DOI: 10.1007/978-1-0716-3319-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has seen a growing interest as a leading technique in the pharmaceutical industry for mapping label-free exogenous and endogenous species in biological tissues. However, the use of MALDI-MSI to perform spatially resolved absolute quantitation of species directly in tissues is still challenging, and robust quantitative mass spectrometry imaging (QMSI) methods need to be developed. In this study, we describe the microspotting technique for analytical and internal standard deposition, matrix sublimation, powerful QMSI software, and mass spectrometry imaging setup to obtain absolute quantitation of drug distribution in 3D skin models.
Collapse
Affiliation(s)
- Cristina Russo
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
- Department of Natural Sciences, Middlesex University, London, UK.
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
5
|
Quantitative Mass Spectrometry Imaging of Bleomycin in Skin Using a Mimetic Tissue Model for Calibration. Pharmaceuticals (Basel) 2022; 15:ph15121583. [PMID: 36559034 PMCID: PMC9786816 DOI: 10.3390/ph15121583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of Quantitative mass spectrometry imaging (Q-MSI) is to provide distribution analysis and quantitation from one single mass-spectrometry-based experiment, and several quantitation methods have been devised for Q-MSI. Mimetic tissue models based on spiked tissue homogenates are considered one of the most accurate ways to perform Q-MSI, since the analyte is present in a well-defined concentration in a sample matrix highly similar to the one of the unknown sample to be analyzed. The delivery of drugs in skin is among the most frequent types of pharmaceutical MSI studies. Here, a mimetic tissue model is extended for use on the skin, which, due to its high collagen content, is different from most other tissue as the homogenates become extremely viscous. A protocol is presented which overcomes this by the addition of water and the handling of the homogenate at an elevated temperature where the viscosity is lower. Using a mimetic tissue model, a method was developed for the quantitative imaging of bleomycin in skin. To compensate for the signal drift and the inhomogeneities in the skin, an internal standard was included in the method. The method was tested on skin from a pig which had had an electropneumatic injection of bleomycin into the skin. Quantification was made at several regions in a cross section of the skin at the injection site, and the results were compared to the results of a quantitative LC-MS on a neighboring tissue biopsy from the same animal experiment. The overall tissue concentration determined by the LC-MS was within the range of the different regions quantified by the Q-MSI. As the model provides the results of the same order of magnitude as a LC-MS, it can either be used to replace LC-MS in skin studies where MSI and LC-MS are today carried out in combination, or it can add quantitative information to skin studies which are otherwise carried out by MSI alone.
Collapse
|
6
|
Hou JJ, Zhang ZJ, Wu WY, He QQ, Zhang TQ, Liu YW, Wang ZJ, Gao L, Long HL, Lei M, Wu WY, Guo DA. Mass spectrometry imaging: new eyes on natural products for drug research and development. Acta Pharmacol Sin 2022; 43:3096-3111. [PMID: 36229602 PMCID: PMC9712638 DOI: 10.1038/s41401-022-00990-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI results. Finally, the future development of MSI in new drug R&D is proposed.
Collapse
Affiliation(s)
- Jin-Jun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Jia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Yong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qing-Qing He
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Teng-Qian Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Wen Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Jun Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Gao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Li Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Adaptation of the Kirkstall QV600 LLI Microfluidics System for the Study of Gastrointestinal Absorption by Mass Spectrometry Imaging and LC-MS/MS. Pharmaceutics 2022; 14:pharmaceutics14020364. [PMID: 35214096 PMCID: PMC8878338 DOI: 10.3390/pharmaceutics14020364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Absorption studies on oral drugs can be difficult due to the challenge of replicating the complex structure and environment of the GI tract. Drug absorption studies can be conducted using in vivo and ex vivo animal tissue or animal-free techniques. These studies typically involve the use of Caco-2 cells. However, Caco-2 cells do not incorporate all the cell types found in intestinal tissue and lack P450 metabolizing enzymes. The QV600 LLI system is a microfluidics system designed for use with cell culture. Here, it has been adapted to house appropriate sections of ex vivo porcine tissue to act as a system that models the duodenum section of the small intestine. A pH regulated solution of Atorvastatin was flowed over the apical layer of the GI tissue and a nutrient solution flowed over the basal layer of the tissue to maintain tissue viability. The tissue samples were snap-frozen, cryosectioned, and imaged using MALDI Mass Spectrometry Imaging (MSI). A proof-of-concept study on the effect of excipients on absorption was conducted. Different concentrations of the solubilizing agent were added to the donor circuit of the QV600 LLI. The amount of Atorvastatin in the acceptor circuit was determined to study the effect of the excipient on the amount of drug that had permeated through the tissue. Using these data, Papp, pig values were calculated and compared with the literature.
Collapse
|
8
|
Zhu X, Xu T, Peng C, Wu S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem 2022; 9:782432. [PMID: 35186891 PMCID: PMC8850921 DOI: 10.3389/fchem.2021.782432] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Compared with conventional optical microscopy techniques, mass spectrometry imaging (MSI) or imaging mass spectrometry (IMS) is a powerful, label-free analytical technique, which can sensitively and simultaneously detect, quantify, and map hundreds of biomolecules, such as peptides, proteins, lipid, and other organic compounds in cells and tissues. So far, although several soft ionization techniques, such as desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS) have been used for imaging biomolecules, matrix-assisted laser desorption/ionization (MALDI) is still the most widespread MSI scanning method. Here, we aim to provide a comprehensive review of MALDI-MSI with an emphasis on its advances of the instrumentation, methods, application, and future directions in single cell and biological tissues.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Xu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Shihua Wu, ; Shihua Wu,
| |
Collapse
|
9
|
Noun M, Akoumeh R, Abbas I. Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-26. [PMID: 34809729 DOI: 10.1017/s1431927621013593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections. This advancement is attributed to the submicron lateral resolution, the high sensitivity, the good precision, and the accurate chemical specificity, which make these techniques suitable for decoding and understanding complex mechanisms of certain diseases, as well as monitoring the spatial distribution of specific elements, and compounds. While the application of both techniques for the analysis of cells and tissues is thoroughly discussed, a briefing of MALDI-TOF and TOF-SIMS basis and the adequate sampling before analysis are briefly covered. The importance of MALDI-TOF and TOF-SIMS as diagnostic tools and robust analytical techniques in the medicinal, pharmaceutical, and toxicology fields is highlighted through representative published studies.
Collapse
Affiliation(s)
- Manale Noun
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Rayane Akoumeh
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| |
Collapse
|
10
|
Mass spectrometry imaging in drug distribution and drug metabolism studies – Principles, applications and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
DESI-MS imaging to visualize spatial distribution of xenobiotics and endogenous lipids in the skin. Int J Pharm 2021; 607:120967. [PMID: 34352336 DOI: 10.1016/j.ijpharm.2021.120967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 01/18/2023]
Abstract
The cutaneous biodistribution method (CBM) yields a high-resolution quantitative profile of drug deposition as a function of skin depth. However, it provides limited details about drug spatial distribution or penetration pathways. Mass spectrometry imaging (MSI) can complement the detailed quantitative data generated by CBM studies. The objectives of this work were to use desorption electrospray ionization (DESI)-MSI to (i) investigate the spatial cutaneous distributions of a topically applied drug and excipient and relate them to skin structures and (ii) image endogenous skin components and combine these results to gain insight into drug penetration routes. Porcine skin was used to compare two bioequivalent creams of econazole nitrate (ECZ) and a micelle formulation based on D-α-tocopheryl succinate polyethylene glycol 1000 (TPGS). DESI-MSI successfully imaged the cutaneous spatial distribution of ECZ and TPGS in 40 µm-thick horizontal sections and vertical cross-sections of the skin. Interestingly, clinically bioequivalent formulations did not appear to exhibit the same molecular distribution of ECZ in XY-horizontal sections. DESI-MSI also enabled visualization of TPGS (m/z 772.4706), mainly in the upper epidermis (≤80 µm). In conclusion, through co-localization of drugs and excipients with endogenous elements of the skin, DESI-MSI could further our understanding of the cutaneous penetration pathways of xenobiotics.
Collapse
|
12
|
Handler AM, Eirefelt S, Lambert M, Johansson F, Hollesen Schefe L, Østergaard Knudsen N, Bodenlenz M, Birngruber T, Sinner F, Huss Eriksson A, Pommergaard Pedersen G, Janfelt C, Troensegaard Nielsen K. Characterizing Cutaneous Drug Delivery Using Open-Flow Microperfusion and Mass Spectrometry Imaging. Mol Pharm 2021; 18:3063-3072. [PMID: 34247482 DOI: 10.1021/acs.molpharmaceut.1c00285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Traditionally, cutaneous drug delivery is studied by skin accumulation or skin permeation, while alternative techniques may enable the interactions between the drug and the skin to be studied in more detail. Time-resolved skin profiling for pharmacokinetic monitoring of two Janus Kinase (JAK) inhibitors, tofacitinib and LEO 37319A, was performed using dermal open-flow microperfusion (dOFM) for sampling of perfusate in an ex vivo and in vivo setup in pig skin. Additionally, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) was performed to investigate depth-resolved skin distributions at defined time points ex vivo in human skin. By dOFM, higher skin concentrations were observed for tofacitinib compared to LEO 37319A, which was supported by the lower molecular weight, higher solubility, lipophilicity, and degree of protein binding. Using MALDI-MSI, the two compounds were observed to show different skin distributions, which was interpreted to be caused by the difference in the ability of the two molecules to interact with the skin compartments. In conclusion, the techniques assessed time- and depth-resolved skin concentrations and were able to show differences in the pharmacokinetic profiles of two JAK inhibitors. Thus, evidence shows that the two techniques can be used as complementary methods to support decision making in drug development.
Collapse
Affiliation(s)
- Anne Mette Handler
- LEO Pharma A/S, 2750 Ballerup, Denmark.,Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | | | | | | - Manfred Bodenlenz
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Thomas Birngruber
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Frank Sinner
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | | | | | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | |
Collapse
|
13
|
Applications of stable isotopes in MALDI imaging: current approaches and an eye on the future. Anal Bioanal Chem 2021; 413:2637-2653. [PMID: 33532914 DOI: 10.1007/s00216-021-03189-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) is now an established imaging modality with particular utility in the study of biological, biomedical and pathological processes. In the first instance, the use of stable isotopically labelled (SIL) compounds in MALDI-IMS has addressed technical barriers to increase the accuracy and versatility of this technique. This has undoubtedly enhanced our ability to interpret the two-dimensional ion intensity distributions produced from biological tissue sections. Furthermore, studies using delivery of SIL compounds to live tissues have begun to decipher cell, tissue and inter-tissue metabolism while maintaining spatial resolution. Here, we review both the technical and biological applications of SIL compounds in MALDI-IMS, before using the uptake and metabolism of glucose in bovine ocular lens tissue to illustrate the current limitations of SIL compound use in MALDI-IMS. Finally, we highlight recent instrumentation advances that may further enhance our ability to use SIL compounds in MALDI-IMS to understand biological and pathological processes. Graphical Abstract.
Collapse
|
14
|
Flinders B, Morrell J, Marshall PS, Ranshaw LE, Heeren RMA, Clench MR. Monitoring the three-dimensional distribution of endogenous species in the lungs by matrix-assisted laser desorption/ionization mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8957. [PMID: 32990347 DOI: 10.1002/rcm.8957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is routinely employed to monitor the distribution of compounds in tissue sections and generate two-dimensional (2D) images. Whilst informative the images do not represent the distribution of the analyte of interest through the entire organ. The generation of 3D images is an exciting field that can provide a deeper view of the analyte of interest throughout an entire organ. METHODS Serial sections of mouse and rat lung tissue were obtained at 120 μm depth intervals and imaged individually. Homogenate registration markers were incorporated in order to aid the final 3D image construction. Using freely available software packages, the images were stacked together to generate a 3D image that showed the distribution of endogenous species throughout the lungs. RESULTS Preliminary tests were performed on 16 serial tissue sections of mouse lungs. A 3D model showing the distribution of phosphocholine at m/z 184.09 was constructed, which defined the external structure of the lungs and trachea. Later, a second experiment was performed using 24 serial tissue sections of the left lung of a rat. Two molecular markers, identified as [PC (32:1) + K]+ at m/z 770.51 and [PC (36:4) + K]+ at m/z 820.52, were used to generate 3D models of the parenchyma and airways, respectively. CONCLUSIONS A straightforward method to generate 3D MALDI-MS images of selected molecules in lung tissue has been presented. Using freely available imaging software, the 3D distributions of molecules related to different anatomical features were determined.
Collapse
Affiliation(s)
- Bryn Flinders
- Centre for Mass Spectrometry Imaging, Biomedical Research Centre, City Campus, Sheffield Hallam University, Sheffield, S1 1WB, UK
- Hair Diagnostix, Dutch Screening Group, Gaetano Martinolaan 63A, Maastricht, 6229 GS, The Netherlands
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Josie Morrell
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | | - Lisa E Ranshaw
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomedical Research Centre, City Campus, Sheffield Hallam University, Sheffield, S1 1WB, UK
| |
Collapse
|
15
|
Quantitative MALDI mass spectrometry imaging for exploring cutaneous drug delivery of tofacitinib in human skin. Eur J Pharm Biopharm 2020; 159:1-10. [PMID: 33352255 DOI: 10.1016/j.ejpb.2020.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
In skin penetration studies, HPLC-MS/MS analysis on extracts of heat-separated epidermis and dermis provides an estimate of the amount of drug penetrated. In this study, MALDI-MSI enabled qualitative skin distribution analysis of endogenous molecules and the drug molecule, tofacitinib and quantitative analysis of the amount of tofacitinib in the epidermis. The delivery of tofacitinib to the skin was investigated in a Franz diffusion cell using three different formulations (two oil-in-water creams, C1 and C2 and an aqueous gel). Further, in vitro release testing (IVRT) was performed and resulted in the fastest release of tofacitinib from the aqueous gel and the lowest from C2. In the ex vivo skin penetration and permeation study, C1 showed the largest skin retention of tofacitinib, whereas, lower retention and higher permeation were observed for the gel and C2. The quantitative MALDI-MSI analysis showed that the content of tofacitinib in the epidermis for the C1 treated samples was comparable to HPLC-MS/MS analysis, whereas, the samples treated with C2 and the aqueous gel were below LOQ. The study demonstrates that MALDI-MSI can be used for the quantitative determination of drug penetration in epidermis, as well as, to provide valuable information on qualitative skin distribution of tofacitinib.
Collapse
|
16
|
Couto N, Newton JRA, Russo C, Karunakaran E, Achour B, Al-Majdoub ZM, Sidaway J, Rostami-Hodjegan A, Clench MR, Barber J. Label-Free Quantitative Proteomics and Substrate-Based Mass Spectrometry Imaging of Xenobiotic Metabolizing Enzymes in Ex Vivo Human Skin and a Human Living Skin Equivalent Model. Drug Metab Dispos 2020; 49:39-52. [PMID: 33139459 DOI: 10.1124/dmd.120.000168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/08/2020] [Indexed: 01/15/2023] Open
Abstract
We report for the first time label-free quantification of xenobiotic metabolizing enzymes (XME), transporters, redox enzymes, proteases, and nucleases in six human skin explants and a three-dimensional living skin equivalent model from LabSkin. We aimed to evaluate the suitability of LabSkin as an alternative to animal testing for the development of topical formulations. More than 2000 proteins were identified and quantified from total cellular protein. Alcohol dehydrogenase 1C, the most abundant phase I XME in human skin, and glutathione S-transferase pi 1, the most abundant phase II XME in human skin, were present in similar abundance in LabSkin. Several esterases were quantified and esterase activity was confirmed in LabSkin using substrate-based mass spectrometry imaging. No cytochrome P450 (P450) activity was observed for the substrates tested, in agreement with the proteomics data, where the cognate P450s were absent in both human skin and LabSkin. Label-free protein quantification allowed insights into other related processes such as redox homeostasis and proteolysis. For example, the most abundant antioxidant enzymes were thioredoxin and peroxiredoxin-1. This systematic determination of functional equivalence between human skin and LabSkin is a key step toward the construction of a representative human in vitro skin model, which can be used as an alternative to current animal-based tests for chemical safety and for predicting dosage of topically administered drugs. SIGNIFICANCE STATEMENT: The use of label-free quantitative mass spectrometry to elucidate the abundance of xenobiotic metabolizing enzymes, transporters, redox enzymes, proteases, and nucleases in human skin enhance our understanding of the skin physiology and biotransformation of topical drugs and cosmetics. This will help to develop mathematical models to predict drug metabolism in human skin and to develop more robust in vitro engineered human skin tissue as alternatives to animal testing.
Collapse
Affiliation(s)
- Narciso Couto
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Jillian R A Newton
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Cristina Russo
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Brahim Achour
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Zubida M Al-Majdoub
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - James Sidaway
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Amin Rostami-Hodjegan
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Malcolm R Clench
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Jill Barber
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| |
Collapse
|
17
|
Spencer CE, Flint LE, Duckett CJ, Cole LM, Cross N, Smith DP, Clench MR. Role of MALDI-MSI in combination with 3D tissue models for early stage efficacy and safety testing of drugs and toxicants. Expert Rev Proteomics 2020; 17:827-841. [PMID: 33440126 PMCID: PMC8396712 DOI: 10.1080/14789450.2021.1876568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Introduction: Three-dimensional (3D) cell cultures have become increasingly important materials to investigate biological processes and drug efficacy and toxicity. The ability of 3D cultures to mimic the physiology of primary tissues and organs in the human body enables further insight into cellular behavior and is hence highly desirable in early-stage drug development. Analyzing the spatial distribution of drug compounds and endogenous molecules provides an insight into the efficacy of a drug whilst simultaneously giving information on biological responses. Areas Covered: In this review we will examine the main 3D cell culture systems employed and applications, which describe their integration with mass spectrometry imaging (MSI). Expert Opinion: MSI is a powerful technique that can map a vast range of molecules simultaneously in tissues without the addition of labels that can provide insights into the efficacy and safety of a new drug. The combination of MSI and 3D cell cultures has emerged as a promising tool in early-stage drug analysis. However, the most common administration route for pharmaceutical drugs is via oral delivery. The use of MSI in combination with models of the GI tract is an area that has been little explored to date, the reasons for this are discussed.
Collapse
Affiliation(s)
- Chloe E Spencer
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Lucy E Flint
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Catherine J Duckett
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Laura M Cole
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Neil Cross
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - David P Smith
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
18
|
Havlikova J, May RC, Styles IB, Cooper HJ. Direct identification of bacterial and human proteins from infected wounds in living 3D skin models. Sci Rep 2020; 10:11900. [PMID: 32681099 PMCID: PMC7368034 DOI: 10.1038/s41598-020-68233-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/19/2020] [Indexed: 11/23/2022] Open
Abstract
Trauma is one of the leading causes of death in people under the age of 49 and complications due to wound infection are the primary cause of death in the first few days after injury. The ESKAPE pathogens are a group of bacteria that are a leading cause of hospital-acquired infections and a major concern in terms of antibiotic resistance. Here, we demonstrate a novel and highly accurate approach for the rapid identification of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) directly from infected wounds in 3D in vitro skin models. Wounded skin models were inoculated with bacteria and left to incubate. Bacterial proteins were identified within minutes, directly from the wound, by liquid extraction surface analysis mass spectrometry. This approach was able to distinguish closely related strains and, unlike genomic approaches, can be modified to provide dynamic information about pathogen behaviour at the wound site. In addition, since human skin proteins were also identified, this method offers the opportunity to analyse both host and pathogen biomarkers during wound infection in near real-time.
Collapse
Affiliation(s)
- Jana Havlikova
- EPSRC Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Robin C May
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Iain B Styles
- EPSRC Centre for Doctoral Training in Physical Sciences for Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, The Midlands, Birmingham, UK.,Alan Turing Institute, 96 Euston Road, London, NW1 2DB, UK
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
19
|
Cazier H, Malgorn C, Fresneau N, Georgin D, Sallustrau A, Chollet C, Tabet JC, Campidelli S, Pinault M, Mayne M, Taran F, Dive V, Junot C, Fenaille F, Colsch B. Development of a Mass Spectrometry Imaging Method for Detecting and Mapping Graphene Oxide Nanoparticles in Rodent Tissues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1025-1036. [PMID: 32223237 DOI: 10.1021/jasms.9b00070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene-based nanoparticles are continuously being developed for biomedical applications, and their use raises concerns about their environmental and biological impact. In the literature, some imaging techniques based on fluorescence and radioimaging have been used to explore their fate in vivo. Here, we report on the use of label-free mass spectrometry and mass spectrometry imaging (MSI) for graphene oxide (GO) and reduced graphene oxide (rGO) analyses in rodent tissues. Thereby, we extend previous work by focusing on practical questions to obtain reliable and meaningful images. Specific radical anionic carbon clusters ranging from C2-• to C9-• were observed for both GO and rGO species, with a base peak at m/z 72 under negative laser desorption ionization mass spectrometry (LDI-MS) conditions. Extension to an LDI-MSI method was then performed, thus enabling the efficient detection of GO nanoparticles in lung tissue sections of previously exposed mice. The possibility of quantifying those nanoparticles on tissue sections has also been investigated. Two different ways of building calibration curves (i.e., GO suspensions spotted on tissue sections, or added to lung tissue homogenates) were evaluated and returned similar results, with linear dynamic concentration ranges over at least 2 orders of magnitude. Moreover, intra- and inter-day precision studies have been assessed, with relative standard deviation below 25% for each concentration point of a calibration curve. In conclusion, our study confirms that LDI-MSI is a relevant approach for biodistribution studies of carbon-based nanoparticles, as quantification can be achieved, provided that nanoparticle suspension and manufacturing are carefully controlled.
Collapse
Affiliation(s)
- Hélène Cazier
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Carole Malgorn
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Nathalie Fresneau
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Dominique Georgin
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Antoine Sallustrau
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Céline Chollet
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Jean-Claude Tabet
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | | | - Mathieu Pinault
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Martine Mayne
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Frédéric Taran
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Vincent Dive
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Christophe Junot
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - François Fenaille
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| | - Benoit Colsch
- INRAE, Médicaments et Technologies pour la Santé (MTS), Université Paris-Saclay, CEA, 91191 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Hochart G, Bonnel D, Stauber J, Stamatas GN. Biomarker Mapping on Skin Tape Strips Using MALDI Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2082-2091. [PMID: 31407158 DOI: 10.1007/s13361-019-02277-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 05/23/2023]
Abstract
Keratinocyte organization and biochemistry are important in forming the skin's protective barrier. Intrinsic and extrinsic factors can affect skin barrier function at the cellular and molecular levels. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging, a technique which combines both molecular aspects and histological details, has proven to be a valuable method in various disciplines including pharmacology, dermatology and cosmetology. It typically requires ex vivo samples, prepared following frozen tissue sectioning. This paper demonstrates the feasibility of performing MALDI analysis on tape strips collected non-invasively on skin. The aim is to obtain molecular imaging of corneocytes on tapes towards novel biological insights. Tapes were collected from two skin sites (volar forearm and cheek) of human volunteers. Ten molecules relating to skin barrier function were detected with a single mode of acquisition at high spatial resolution with a 7 T MALDI-Fourier transform ion cyclotron resonance (FTICR) instrument. The method sensitivity was adequate to create molecular maps which could be overlaid on transmission microscopy images of the same area of the tape. Analysis of the molecular distributions from tapes at the two skin sites was consistent with the known skin properties of the two sites, confirming the validity of the observations. Hierarchical clustering analysis was used to differentiate corneocyte populations based on their molecular profiles. Furthermore, morphological analysis provided a new way of considering statistical populations of corneocytes on the same tape, rather than measuring a single averaged value, providing additional useful information relating to their structure-function relationship.
Collapse
Affiliation(s)
| | - David Bonnel
- ImaBiotech SAS, 152 rue du Docteur Yersin, 59120, Loos, France
| | | | - Georgios N Stamatas
- Johnson & Johnson Santé Beauté France, 1 rue Camille Desmoulins, 92130, Issy-les-Moulineaux, France
| |
Collapse
|
21
|
Precision pharmacology: Mass spectrometry imaging and pharmacokinetic drug resistance. Crit Rev Oncol Hematol 2019; 141:153-162. [PMID: 31302407 DOI: 10.1016/j.critrevonc.2019.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Failure of systemic cancer treatment can be, at least in part, due to the drug not being delivered to the tumour at sufficiently high concentration and/or sufficiently homogeneous distribution; this is termed as "pharmacokinetic drug resistance". To understand whether a drug is being adequately delivered to the tumour, "precision pharmacology" techniques are needed. Mass spectrometry imaging (MSI) is a relatively new and complex technique that allows imaging of drug distribution within tissues. In this review we address the applicability of MSI to the study of cancer drug distribution from the bench to the bedside. We address: (i) the role of MSI in pre-clinical studies to characterize anti-cancer drug distribution within the body and the tumour, (ii) the application of MSI in pre-clinical studies to define optimal drug dose or schedule, combinations or new drug delivery systems, and finally (iii) the emerging role of MSI in clinical research.
Collapse
|
22
|
Köllmer M, Mossahebi P, Sacharow E, Gorissen S, Gräfe N, Evers DH, Herbig ME. Investigation of the Compatibility of the Skin PAMPA Model with Topical Formulation and Acceptor Media Additives Using Different Assay Setups. AAPS PharmSciTech 2019; 20:89. [PMID: 30680544 DOI: 10.1208/s12249-019-1305-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/04/2019] [Indexed: 01/10/2023] Open
Abstract
The Skin Parallel Artificial Membrane Permeability Assay (PAMPA) is a 96-well plate-based skin model with an artificial membrane containing free fatty acid, cholesterol, and synthetic ceramide analogs to mimic the stratum corneum (SC) barrier. The current study evaluates the compatibility of lipophilic solvents/penetration enhancer, topical emulsions containing different emulsifier systems, and organic acceptor media additives with the artificial membrane of the assay. Additionally, different assay setups (standard setup: donor in bottom plate versus modified setup: donor in top plate) were compared. Methylparaben (MP), ethylparaben (EP), and propylparaben (PP) were used as model permeants and internal standards for proper assay execution. The permeation order of the parabens (MP > EP > PP) remained the same with different lipophilic solvents, and the ranking of lipophilic solvents was comparable under standard and modified conditions (isopropyl myristate, IPM > dimethyl isosorbide, DMI ≥ propylene glycol, PG > diisopropyl adipate, DIPA). Pre-incubation of the Skin PAMPA plates with IPM, DIPA, and DMI, as well as with formulations that contain non-ionic emulsifiers, and acceptor solutions containing DMSO or EtOH (≤ 50%) for 4 h did not increase the percentage of permeated parabens in the main experiment, suggesting that those compounds do not make the artificial membrane more permeable. High-resolution mass spectrometry confirmed that acceptor solutions with ≤ 50% DMSO or EtOH do not extract stearic acid, cholesterol, and certramides at standard assay conditions. Hence, if certain constraints are considered, the Skin PAMPA model can be used as a pre-screening tool for topical formulation selection.
Collapse
|