1
|
Huang SH, Parandhaman M, Farnia S, Kim J, Amemiya S. Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications. Chem Commun (Camb) 2023; 59:9575-9590. [PMID: 37458703 PMCID: PMC10416082 DOI: 10.1039/d3cc01982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we feature our recent efforts toward the development and application of nanoelectrochemistry at liquid/liquid interfaces, which are also known as interfaces between two immiscible electrolyte solutions (ITIES). Nanopipets, nanopores, and nanoemulsions are developed to create the nanoscale ITIES for the quantitative electrochemical measurement of ion transfer, electron transfer, and molecular transport across the interface. The nanoscale ITIES serves as an electrochemical nanosensor to enable the selective detection of various ions and molecules as well as high-resolution chemical imaging based on scanning electrochemical microscopy. The powerful nanoelectroanalytical methods will be useful for biological and material applications as illustrated by in situ studies of solid-state nanopores, nuclear pore complexes, living bacteria, and advanced nanoemulsions. These studies provide unprecedented insights into the chemical reactivity of important biological and material systems even at the single nanostructure level.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | | | - Solaleh Farnia
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
2
|
Pérez-García JA, Bacame-Valenzuela FJ, Espejel-Ayala F, Ortiz-Frade L, Reyes-Vidal Y. Effect of adsorption of pyocyanin on the electron transfer rate at the interface of a glassy carbon electrode. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Chen R, Liu S, Zhang Y. A nanoelectrode-based study of water splitting electrocatalysts. MATERIALS HORIZONS 2023; 10:52-64. [PMID: 36485037 DOI: 10.1039/d2mh01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of low-cost and efficient catalytic materials for key reactions like water splitting, CO2 reduction and N2 reduction is crucial for fulfilling the growing energy consumption demands and the pursuit of renewable and sustainable energy. Conventional electrochemical measurements at the macroscale lack the potential to characterize single catalytic entities and nanoscale surface features on the surface of a catalytic material. Recently, promising results have been obtained using nanoelectrodes as ultra-small platforms for the study of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) on innovative catalytic materials at the nanoscale. In this minireview, we summarize the recent progress in the nanoelectrode-based studies on the HER and OER on various nanostructured catalytic materials. These electrocatalysts can be generally categorized into two groups: 0-dimensional (0D) single atom/molecule/cluster/nanoparticles and 2-dimensional (2D) nanomaterials. Controlled growth as well as the electrochemical characterization of single isolated atoms, molecules, clusters and nanoparticles has been achieved on nanoelectrodes. Moreover, nanoelectrodes greatly enhanced the spatial resolution of scanning probe techniques, which enable studies at the surface features of 2D nanomaterials, including surface defects, edges and nanofacets at the boundary of a phase. Nanoelectrode-based studies on the catalytic materials can provide new insights into the reaction mechanisms and catalytic properties, which will facilitate the pursuit of sustainable energy and help to solve CO2 release issues.
Collapse
Affiliation(s)
- Ran Chen
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Songqin Liu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yuanjian Zhang
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Kurapati N, Janda DC, Balla RJ, Huang SH, Leonard KC, Amemiya S. Nanogap-Resolved Adsorption-Coupled Electron Transfer by Scanning Electrochemical Microscopy: Implications for Electrocatalysis. Anal Chem 2022; 94:17956-17963. [PMID: 36512745 DOI: 10.1021/acs.analchem.2c04008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we demonstrate for the first time that the mechanism of adsorption-coupled electron-transfer (ACET) reactions can be identified experimentally. The electron transfer (ET) and specific adsorption of redox-active molecules are coupled in many electrode reactions with practical importance and fundamental interest. ACET reactions are often represented by a concerted mechanism. In reductive adsorption, an oxidant is simultaneously reduced and adsorbed as a reductant on the electrode surface through the ACET step. Alternatively, the non-concerted mechanism mediates outer-sphere reduction and adsorption separately when the reductant adsorption is reversible. In electrocatalysis, reversibly adsorbed reductants are ubiquitous and crucial intermediates. Moreover, electrocatalysis is complicated by the mixed mechanism based on simultaneous ACET and outer-sphere ET steps. In this work, we reveal the non-concerted mechanism for ferrocene derivatives adsorbed at highly oriented pyrolytic graphite as simple models. We enable the transient voltammetric mode of nanoscale scanning electrochemical microscopy (SECM) to kinetically control the adsorption step, which is required for the discrimination of non-concerted, concerted, and mixed mechanisms. Experimental voltammograms are compared with each mechanism by employing finite element simulation. The non-concerted mechanism is supported to indicate that the ACET step is intrinsically slower than its outer-sphere counterpart by at least four orders of magnitude. This finding implies that an ACET step is facilitated thermodynamically but may not be necessarily accelerated or catalyzed by the adsorption of the reductant. SECM-based transient voltammetry will become a powerful tool to resolve and understand electrocatalytic ACET reactions at the elementary level.
Collapse
Affiliation(s)
- Niraja Kurapati
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Donald C Janda
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ryan J Balla
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin C Leonard
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Chen R, Wang X, Wu K, Liu S, Zhang Y. Voltammetric Study and Modeling of the Electrochemical Oxidation Process and the Adsorption Effects of Luminol and Luminol Derivatives on Glassy Carbon Electrodes. Anal Chem 2022; 94:17625-17633. [PMID: 36475634 DOI: 10.1021/acs.analchem.2c04297] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Luminol is one of the most widely used electrochemiluminescence (ECL) reagents, yet the detailed mechanism and kinetics of the electrochemical oxidation of luminol remain unclear. We propose a model that describes the electrochemical oxidation of luminol as multiple electron transfer reactions followed by an irreversible chemical reaction, and we applied a finite element method simulation to analyze the electron transfer kinetics in alkaline solutions. Although negligible at higher pH values, the adsorption of luminol on the glassy carbon electrode became noticeable in a solution with pH = 12. Additionally, various types of adsorption behaviors were observed for luminol derivatives and analogues, indicating that the molecular structure affected not only the oxidation but also the adsorption process. The adsorption effect was analyzed through a model with a Langmuir isotherm to show that the saturated surface concentration as well as the reaction kinetics increased with decreasing pH, suggesting a competition for the active sites between the molecule and OH-. Moreover, we show that the ECL intensity could be boosted through the adsorption effect by collecting the ECL intensity generated through the electrochemical oxidation of luminol and a luminol analogue, L012, in a solution with pH = 13. In contrast with luminol, a significant adsorption effect was observed for L012 at pH = 13, and the ECL intensity was enhanced by the adsorbed species, especially at higher scan rates. The magnitude of the enhancement of the ECL intensity matched well with the simulation using our model.
Collapse
Affiliation(s)
- Ran Chen
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Xin Wang
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Kaiqing Wu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Songqin Liu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Yuanjian Zhang
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| |
Collapse
|
6
|
Janda DC, Barma K, Kurapati N, Klymenko OV, Oleinick A, Svir I, Amatore C, Amemiya S. Systematic Assessment of Adsorption-Coupled Electron Transfer toward Voltammetric Discrimination between Concerted and Non-Concerted Mechanisms. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Jarosova R, Irikura K, Rocha‐Filho RC, Swain GM. Detection of Pyocyanin with a Boron‐doped Diamond Electrode Using Flow Injection Analysis with Amperometric Detection and Square Wave Voltammetry. ELECTROANAL 2022. [DOI: 10.1002/elan.202100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Romana Jarosova
- Department of Analytical Chemistry UNESCO Laboratory of Environmental Electrochemistry Charles University 12843 Prague 2 Czech Republic
- Department of Chemistry Michigan State University 48824-1322 East Lansing MI United States
| | - Kallyni Irikura
- Department of Chemistry Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos SP Brazil
- Department of Chemistry Michigan State University 48824-1322 East Lansing MI United States
| | - Romeu C. Rocha‐Filho
- Department of Chemistry Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos SP Brazil
| | - Greg M. Swain
- Department of Chemistry Michigan State University 48824-1322 East Lansing MI United States
| |
Collapse
|
8
|
|
9
|
Nguyen TP, McCreery RL, McDermott MT. Evaluation of the electroanalytical performance of carbon-on-gold films prepared by electron-beam evaporation. Analyst 2020; 145:5041-5052. [PMID: 32555909 DOI: 10.1039/d0an00409j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon film electrodes can often be used without pretreatment, and their fabrication allows for flexibility in size and shape and for mass production. In this work, we are exploring layered structures comprised of thin films of carbon on gold (eC/Au) prepared by electron-beam evaporation. These extremely flat films are not pyrolyzed and are comprised of mainly amorphous carbon but still exhibit reasonable conductivity due to the underlying gold layer. eC/Au electrodes, without any pretreatment, yield similar heterogeneous electron-transfer rates for benchmark redox systems and significantly lower background current in comparison with polished glassy carbon. Interestingly, they show insignificant adsorption of quinones, which is uncommon for most carbon electrode materials. However, eC/Au is still prone to adsorption of airborne hydrocarbons when exposed to ambient air like most graphitic materials. With reproducibly fast electron transfer kinetics, low background current, negligible adsorption, and ultraflat surface, eC/Au films are a promising candidate for electrochemical and sensor applications.
Collapse
Affiliation(s)
- Thuy P Nguyen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2N4, Canada.
| | | | | |
Collapse
|
10
|
Oleinick A, Svir I, Amatore C. Transient cyclic voltammetry: new theoretical challenges to bring up to date a famous electrochemical lady. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04553-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Kurapati N, Pathirathna P, Ziegler CJ, Amemiya S. Adsorption and Electron‐Transfer Mechanisms of Ferrocene Carboxylates and Sulfonates at Highly Oriented Pyrolytic Graphite. ChemElectroChem 2019. [DOI: 10.1002/celc.201901664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Niraja Kurapati
- Department of Chemistry University of Pittsburgh Pittsburgh, PA 15260 USA
| | | | | | - Shigeru Amemiya
- Department of Chemistry University of Pittsburgh Pittsburgh, PA 15260 USA
| |
Collapse
|
12
|
Hersey M, Berger SN, Holmes J, West A, Hashemi P. Recent Developments in Carbon Sensors for At-Source Electroanalysis. Anal Chem 2018; 91:27-43. [PMID: 30481001 DOI: 10.1021/acs.analchem.8b05151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Kurapati N, Pathirathna P, Chen R, Amemiya S. Voltammetric Measurement of Adsorption Isotherm for Ferrocene Derivatives on Highly Oriented Pyrolytic Graphite. Anal Chem 2018; 90:13632-13639. [PMID: 30350623 DOI: 10.1021/acs.analchem.8b03883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Reversible and specific adsorption of redox-active molecules from the electrolyte solution to the electrode surface is an important process and is often diagnosed by cyclic voltammetry (CV). The entire voltammogram, however, is rarely analyzed quantitatively, thereby completely missing or incorrectly extracting inherent information about the adsorption isotherm. Herein, we report CV measurements of the adsorption isotherm for ferrocene derivatives on the basal plane of highly oriented pyrolytic graphite (HOPG) to quantitatively understand the thermodynamics of ferrocene-HOPG and ferrocene-ferrocene interactions at HOPG/water interfaces. Specifically, reversible CV of (ferrocenylmethyl)trimethylammonium, ferrocenemethanol, and 1,1'-ferrocenedimethanol is obtained at 0.05-10 V/s to confirm that only reduced forms of ferrocene derivatives are adsorbed on HOPG. Finite element analysis of the entire voltammogram yields the Frumkin isotherm to separately parametrize ferrocene-HOPG and ferrocene-ferrocene interactions. Adsorption of all ferrocene derivatives is driven by similarly weak ferrocene-HOPG interactions with free energy changes of approximately -20 kJ/mol. Adsorption of ferrocenemethanol is strengthened by intermolecular hydrogen bonding, which is quantitatively represented by a free energy change of -8 kJ/mol for surface saturation and is qualitatively characterized by a pair of sharp adsorption and desorption peaks following a pair of diffusional peaks. By contrast, adsorption of (ferrocenylmethyl)trimethylammonium and 1,1'-ferrocenedimethanol remains weak because of electrostatic repulsion and weak hydrogen bonding, respectively, which correspond to the respective free energy changes of +0.7 and -3 kJ/mol for surface saturation. The unfavorable or weakly favorable intermolecular interactions broaden or narrow a diffusional peak during the forward scan, respectively, without yielding a post peak.
Collapse
Affiliation(s)
- Niraja Kurapati
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Pavithra Pathirathna
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Ran Chen
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Shigeru Amemiya
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|